
Nested Proof Search as Reduction in the λ-calculus

Nicolas Guenot
LIX, École Polytechnique

rue de Saclay, 91128 Palaiseau, France

nguenot@lix.polytechnique.fr

ABSTRACT

We present here a proof system called JS for purely implicative
intuitionistic logic at the propositional level in the formalism of
the calculus of structures, which is a generalisation of the sequent
calculus implementing the deep inference methodology. We show
that this system is sound and complete with respect to the usual
sequent calculus LJ, and consider a restricted system JLSd for a
restricted class of formulas. Moreover, we show how to encode
λ-terms with explicit substitutions inside formulas of JLSd and
prove that there is a correspondence between proof search in
JLSd and reduction in a λ-calculus with explicit substitutions.
Finally, we present a restriction JLSn of JLSd which allows to
establish the same correspondence with the standard λ-calculus
equipped with β-reduction, and show that we can prove results
on the reductions of our λ-calculus with explicit substitutions, as
well as the correspondence between the standard β-reduction
and explicit substitutions, by proving results on derivations in
the JLSd and JLSn systems.

1. INTRODUCTION

This work is oriented towards the connection between structural
proof theory, a field where the properties of proofs as objects
of deductive systems as well as the design of logical rules and
transformations applied on proofs are studied, and the design
of programming languages, in particular in the setting of the
two well-known paradigms of functional programming and logic
programming. Both of these language paradigms have a central
connection to logical systems and have greatly benefited from
advances made in proof theory over the last decades. The goal
of this paper is to show how some recent developments in proof
theory can be applied to introduce new ways of reasoning about,
and designing, programming languages.

Deep inference. This proof-theoretical methodology [GS01] is
an extension of the traditional view of deductive systems such
as natural deduction and the sequent calculus, where inference

rules are allowed to be applied deep inside some formula. It has
been implemented in several formalisms, and in particular in
the calculus of structures [Brü03], where no meta-level structure
such as a sequent is used, but formulas are directly rewritten
by inference rules. As an example, the SKS system for classical
logic is an elegant proof system which exhibits a nice top-down
symmetry and where all inference rules are atomic, in the sense
that they never modify, nor copy, nor erase non-atomic formulas
[Brü06]. In this system, inference is not necessarily shallow, as
illustrated in the following proof:

>
−−−−−−−−−−−
a ∨¬a

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(a ∧ (¬b ∨ b))∨¬a
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
¬b ∨ ((a ∧ b)∨¬a)

Moreover, the SKS proof system enjoys a surprisingly simple
syntactic cut elimination procedure, which is quite different from
the standard proof of the sequent calculus although the cut is
defined as an inference rule within the system. The calculus of
structures is a versatile tool, and it has also been used to study
non-commutativity in the setting of linear logic [GS01]. Here we
define a proof system for intuitionistic logic, which has not yet
been studied thoroughly in this setting.

Functional programming. The λ-calculus is often considered
as the theoretical core of the functional programming paradigm,
since it provides clean foundations for its main abstraction, the
notion of function, as well as the central ideas of bindings, scope
and variables. Although it needs to be enriched with various
features to be used as a reasonable programming language, it is
the home ground for the mathematical study of the evaluation
of functional programs, and in particular the study of evaluation
strategies [Plo75]. There is a very important line of research
on the connection between the proofs of intuitionistic logic and
functional programs seen as λ-terms, often referred to as the
Curry-Howard tradition. Its cornerstone is the correspondence
between normalisation of proofs in natural deduction and the β
rule expressing the operational behaviour of the λ-calculus.

The Curry-Howard correspondence has been extended later to
proofs of the sequent calculus [Her94] and to a decomposition
of the λ-calculus through the reification inside the language of
the notion of substitution, leading to an extensive literature on
explicit substitutions [Kes07]. In this work we will rely heavily
on this decomposition of the β-reduction process, since the first
correspondence we establish between a system for intuitionistic
logic and functional programs is based on a variant of standard
λ-calculi that can be found in the literature. However, this nice



correspondence can be defined for the usual λ-calculus as well,
by using the standard way of recovering plain β-reduction from
finer reduction systems. It is important to notice our work does
not belong to this tradition, since we are not using any kind of
cut, and computation will not be modeled as normalisation of
proofs, or as some kind of transformation.

Logic programming. Among modern programming languages,
another common way of establishing theoretical foundations for
programs consists in using the logical formulas as a language
and the process of proving a formula, seen as a program, as the
computation associated to this logic program. This methodology
is often referred to as the proof-search-as-computation paradigm,
and one can use deductive systems such as the sequent calculus
to provide a foundation for such logic programming languages
[MNPS91], that can be extended without losing logical purity to
advanced features such as modules [Mil89]. This work belongs
to this tradition in the sense that we are interpreting formulas
of intuitionistic logic as functional programs, and then defining
computation as the process of building a proof, even if this is an
incomplete proof, in some deductive system.

Contributions. This paper introduces an analysis of functional
computation, described by means of a λ-calculus with explicit
substitutions, called λs and based on the following grammar:

t, u ::= x | λx .t | t u | t[x ← u]

in a setting of logic programming, where proof search models
computation. In Section 2 we present a new proof system for
intuitionistic logic in the calculus of structures, called JS, and
prove that it is sound and complete with respect to the standard
sequent calculus system. The goal is to encode all λs-terms into
formulas using the following scheme:

¹xº = x
¹λx .tº = x → ¹tº
¹t uº = (¹uº→>)→ ¹tº

¹t[x ← u]º = (¹uº→ x)→ ¹tº

and to fit the reduction rules of the calculus with respect to this
encoding, we define a restriction of JS, called JLSd, which is
sound and comes with a partial completeness result. Then, in
Section 3 we establish a precise correspondence between proof
search in JLSd and reduction in the rewrite system defining the
operational behaviour of our calculus. Properties of λs and the
relation with properties of JLSd are discussed. Finally, Section 4
introduces another restriction based on annotations in the style
of focusing [And92], called JLSn, shows that this system yields a
correspondence with the standard λ-calculus with β-reduction,
and proves properties of λs with respect to the λ-calculus using
this correspondence. The relationships between different proof
systems and calculi is shown in Figure 1, where arrows indicate
which systems simulate other systems — we will also use JLSb,

JS −→ JLS −→ JLSd ←→ JLSn

≈ ≈ ≈

? λs ←→ λ

Figure 1: Proof systems and calculi used in this paper

a subset of the JLSd system which is not mentioned here. In
the conclusion, we also discuss the possibility of extending this
correspondence to the full JS system, which would require to
move from the λ-calculus to a calculus with pattern-matching,
such as the pure pattern calculus [JK09]. It is thus further work
to fill the hole left in Figure 1 and interpret full JS.

Related work. There is not much work on intuitionistic logic in
the setting of deep inference, and most of it is purely on the side
of proof theory [Tiu06]. The only computational interpretation
of an intuitionistic system in the calculus of structures [BM08] is
based on the proofs-as-programs paradigm and cut-elimination.
It also uses a different proof system relying on conjunction, and
with no switch rule. We have a completely different approach,
since we use the proof-search-as-computation paradigm. There
exists however some work on the encoding of reduction in the
λ-calculus with explicit substitutions into proof search [Rov11],
also in the setting of deep inference, but we are using here plain
intuitionistic logic rather than a variant of linear logic extended
with non-commutativity and a renaming operator, and the result
here is not restricted to the linear fragment of the λ-calculus.
The methodology adopted to represent computation is also quite
different in the two settings.

The point of this work is to establish a bridge between functional
programming and the methodology of logic programming, which
allows for a fine analysis of computation in terms of logic only. A
goal would be to get new insights on the evaluation mechanisms
of the λ-calculus through the use of proof-theoretical tools, and
we can also hope for cross-fertilisation of the two fields if we can
transpose results on one side to the other side.

2. INTUITIONISTIC LOGIC IN THE
CALCULUS OF STRUCTURES

The proof systems we present here are all based on a common
system JS, which can be seen as an intuitionistic variant of the
KSg system [Brü03] for classical logic at the propositional level,
using only the implication → as a connective. In this setting,
any inference rule can be applied deep inside a formula, and a
derivation is not a tree, but a sequence of rule instances.

We start with a set of formulas, denoted by capital latin letters
such as A, B, C , and generated from a countable set of atoms,
denoted by a, b, c and so on, and the truth unit > by using the
binary connective→ for implication. Formally, we have:

L ::= a | > A, B ::= L | A→ B

and we denote literals with letters such as L. Moreover, formulas
are usually considered in the calculus of structures through a set
of equations, so that structures are defined as equivalence classes
of formulas generated by the following congruence rules:

>→ A ≡u A and A→ (B→ C) ≡a B→ (A→ C)

Then, the set of inference rules for the JS system is shown in
Figure 2. Being in the setting of deep inference means having
the ability to apply inference rules inside some context, which is
a structure with a hole { }, meant to be filled by a structure. To
keep notations simple, we consider only positive contexts here,
those where the hole is located on the left of an even number of
implications, as follows:

ξ ::= { } | (ξ→ A)→ B



B
i −−−−−−−−−−−−−−−−−−−−−−−
(B→ A)→ A

((A→ B)→ C)→ D
s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A→ ((B→ C)→ D)

B
w −−−−−−−−−−−

A→ B

A→ (A→ B)
c −−−−−−−−−−−−−−−−−−−−−−−

A→ B

Figure 2: Inference rules for system JS

Contexts will be denoted as ξ{ } or ζ{ }, and for example ξ{A}
is the context ξ where the hole is replaced by a structure or a
context A. The inference rules in Figure 2 can only be applied in
positive contexts, and any rule r can be instantiated in a context
ξ by placing its premise and conclusion inside:

(rule)
A

r −−−
B

−→
ξ{A}

r −−−−−−−−
ξ{B}

(rule instance)

We use standard notations for a derivation D from A to B, and a
proof D ′ of B, which is a derivation with > as premise:

A
D







B
and

−
D′







B

To show that our system is suitable for intuitionistic logic, we
prove soundness and completeness with respect to the sequent
calculus system shown in Figure 3, that we call LJ∪ {cut}. This
requires to translate sequents into structures:

¹` AºS = A and ¹A,∆ ` BºS = A→ ¹∆ ` BºS

We use the short notation Γ→ A to denote the translation of the
sequent Γ ` A, which is sensible because the equation ≡a allows
to treat A→ (B→ C) as the formula (A∧ B)→ C .

THEOREM 1 (SOUNDNESS OF JS). If a structure A is provable
in the system JS, then the sequent ` A is provable in LJ∪ {cut}.

PROOF. The proof is standard, see for example [Brü03]. We
proceed by induction on the given proof in JS. For each rule
instance with premise ξ{A} and conclusion ξ{B} we can show
by induction on the context that the sequent ` ξ{A} → ξ{B} is
provable in LJ∪ {cut}. Then, we use a cut at each step. �

There is no equivalent of the cut rule in JS, and we thus prove
completeness using the cut-free system LJ as a reference.

THEOREM 2 (COMPLETENESS OF JS). If some sequent Γ ` A is
provable in LJ, then the structure ¹Γ ` AºS is provable in JS.

PROOF. By induction on a proof of Γ ` A in LJ. Almost all cases
are straightforward, the only interesting case is actually the left
implication rule, shown below:

��
��

��
??????Π1

Γ ` A
��

��
��

??????
Π2

∆, B ` C
→L −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Γ,∆, A→ B ` C

−→

−
D2








∆→ B→ C
≡u −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∆→ (>→ B)→ C

D1








∆→ ((Γ→ A)→ B)→ C
s∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∆→ Γ→ (A→ B)→ C

≡∗a −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Γ→∆→ (A→ B)→ C

where the proof D2 is obtained from Π2 by induction hypothesis,
and the derivation D1 by plugging the translation of Π1 into the
context ∆ → ({ } → B) → C , which is possible because of the
deep inference methodology used here. �

ax −−−−−−−−
A` A

Γ ` A ∆, A` B
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ,∆ ` B
>R −−−−−−` >

Γ ` B
weak −−−−−−−−−−−−−−

Γ, A` B

Γ, A, A` B
cont −−−−−−−−−−−−−−−−−−

Γ, A` B

Γ ` A
>L −−−−−−−−−−−−−−Γ,> ` A

Γ, A` B
→R −−−−−−−−−−−−−−−−−−Γ ` A→ B

Γ ` A ∆, B ` C
→L −−−−−−−−−−−−−−−−−−−−−−−−−−−−−Γ,∆, A→ B ` C

Figure 3: Inference rules for system LJ∪ {cut}

Although it is a simple system for a fragment of intuitionistic
logic, JS is already too general to represent the λ-calculus with
precision in a proof search style. Indeed, no term corresponds to
a formula with a compound formula in negative position, such
as (A → (B → C)) → D, and even if we restrict formulas to
images of the translation mentioned in the introduction — and
formally defined in Section 3 — we still have problems with
inference rules and equations that do not correspond to valid
operations of our λ-calculus, as for example:

λx .t −→ λx .λx .t
λx .λy.t ≡a λy.λx .t

Thus, we define a restriction of this system, called JLS, where
formulas are limited to those where the subformulas in negative
position, located on the left of an odd number of implications,
can only be atoms, plus some restrictions on the use of the >
unit, as shown in the following grammar:

B ::= a | a→ B | ω→ B | δ→ B
δ ::= B→ a ω ::= B→>

where B defines the class of restricted formulas, that we denote
as normal formulas, and δ defines the blocks, denoted by greek
letters such as δ, κ, µ, which represent explicit substitutions in
our encoding. Subformulas defined by ω are called matchers
and denoted by ω or τ, they represent the argument term in an
application. We use contexts to restrict the congruence as well,
keeping only the equation ≡a on specific positive subformulas:

ξ{δ→ (κ→ A)} ≡b ξ{κ→ (δ→ A)}

Finally, the inference rules of the restricted system JLS are given
in Figure 4. In this system, the switch rule and the rules of
weakening and contraction can only be used to move, erase or
duplicate blocks. Moreover, another part of the equation ≡a is
expressed in the rule xr, which also can only exchange blocks.
The identity rule is also restricted, through the condition that
the premise cannot be the > unit, and it only applies on atoms.
The new rule isu is a compound rule that embodies the use of an
identity on >, and corresponds to the following JS derivation:

(B→ a)→ C
i −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
((((B→>)→>)→ a)→ C)

s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(B→>)→ ((>→ a)→ C)

≡u −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−(B→>)→ (a→ C)

This new inference rule corresponds, through the encoding of
λs-terms, to the standard B rule which triggers a β-redex to turn
an application into an explicit substitution, to be carried out:

(λx .t) u−→B t[x ← u]



B
ir −−−−−−−−−−−−−−−−−−−−−−−
(B→ a)→ a

(B→ a)→ C
isu −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(B→>)→ (a→ C)

A
wr −−−−−−−−−−−
δ→ A

δ→ (δ→ A)
cr −−−−−−−−−−−−−−−−−−−−−−−−

δ→ A

A→ (δ→ B)
xr −−−−−−−−−−−−−−−−−−−−−−−−
δ→ (A→ B)

((δ→ A)→ L)→ B
sr −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
δ→ ((A→ L)→ B)

Figure 4: Inference rules for system JLS

This system is clearly not going to be complete, since restrictions
are so strong that for example, there is no way of writing a proof
of a→ (a→>)→ a. However, this system can easily be shown
sound with respect to its general version JS.

THEOREM 3 (SOUNDNESS OF JLS). If there is a derivation from
A to B in JLS, then there is a derivation from A to B in JS.

PROOF. Any derivation from A to B in JLS can be immediately
converted into a derivation in JS. Indeed, the rules ir, wr, cr
and sr are restrictions of the rules of JS, the equation ≡b is a
restriction of ≡a and the xr rule also corresponds to another
use of this equation. Finally, any instance of the isu rule can be
replaced with a derivation of JS, as it was shown above. �

It is interesting to notice that the identity on the unit > we use
in the derivation corresponding to isu is not even needed in JS,
since it will be shown admissible. To preserve the upper bound
on the length of proofs during the process, it is useful to consider
the system JS’, a variant of JS where the usual switch is replaced
with a compound rule called super-switch [Str03]:

ξ{δ} → B
ss −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
δ→ (ξ{>} → B)

which is equivalent to a derivation of several switches, so that
there are obvious translations between JS and JS’. We can use
this alternative system to count a sequence of switches as only
one rule instance in the length of a proof.

PROPOSITION 4. If there is a proof of a structure ξ{A} in JS,
then there is a proof of ξ{(A→>)→>} as well in JS, not using
an identity on these > occurrences.

PROOF. By induction on the length of the given proof D of A
in JS, translated into the JS’ system. If D is of length 0, we
replace > with (> → >) → > using ≡u. Then, in the general
case, we use a case analysis on the bottommost rule instance r in
D. We can always rewrite the conclusion and use the induction
hypothesis to rewrite the premise, but in the case of a switch
moving some structure E inside A, where A is (B→ C)→ D, we
must use an additional switch:

ξ{((E→ B)→ C)→ D}
s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{E→ ((B→ C)→ D)}

−→
ξ{((((E→ B)→ C)→ D)→>)→>}

s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{((E→ ((B→ C)→ D))→>)→>}

s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{E→ ((((B→ C)→ D)→>)→>)}

apply wr on (B→ a)→ C : only if |C |a = 0
apply crn on (B→ a)→ C : only if |C |a ≥ 2
apply xr on (B→ a)→ (C → D) : only if |C |a = 0
apply sr on (B→ a)→ ((C → L)→ D) : only if |D|a = 0

ξ{(C → a)→ ((D→ b)→ E)} ≡b ξ{(D→ b)→ ((C → a)→ E)}
this equation holds only if we have |D|a = 0 and |C |b = 0

Figure 5: Restrictions used to define JLSd from JLS

which can be rewritten into a super-switch ss instance. Note that
in the case of the contraction c, we need to use the induction
hypothesis twice, and this is possible because the transformation
is length-preserving, thanks to the super-switch. �

Now, we will show that the JLS proof system is actually not so
far from being complete with respect to the restricted fragment
of intuitionistic logic. In order to do this, we consider a smaller
fragment, by imposing more restrictions on structures: only one
negative occurrence of each atom is allowed, and all its positive
occurrences must appear in the scope of this negative occurrence.
We use the notation a ∈ B to denote that some atom a appears
in the structure B, and a ∈ ξ if a appears in the context ξ{ }.

DEFINITION 5. The (positive) multiplicity of an atom a in some
structure B, denoted by |B|+a , is the number of occurrences of a in
positive position in B. Its negative multiplicity, denoted by |B|−a ,
is its number of occurrences in negative position in B.

The formulas of the more restricted class defined here are called
functional structures because they will be the ones corresponding
to λs-terms in the rest of the paper.

DEFINITION 6. A restricted structure B is said to be functional
if for any a ∈ B, there is a context ξ{ } and structures C and D such
that we have either B ≡b ξ{a → C} or B ≡b ξ{(D → a) → C},
with a 6∈ ξ, a 6∈ D, |C |+a ≥ 0 and |C |−a = 0.

Then, we can observe that functional structures are not stable
under application of inference rules of JLS, in particular under
contraction. Therefore we need to tweak our inference rules.

To be able to use contraction on such structures, we consider the
following variation of the cr rule:

(B→ d)→ ((B→ a)→ C[d/a])
crn −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(B→ a)→ C

where C[d/a] denotes the same C with exactly one occurrence of
the atom a replaced by an occurrence of a fresh atom d. This
rule can be shown sound by a induction on proofs. Finally, we
define the proof system JLSd as {ir, isu,wr,crn,xr, sr}, with extra
conditions on the conclusion of rules and on the congruence,
summarised in Figure 5. These conditions ensure that functional
structures are stable under application of rules of JLSd, as well
as its congruence.

These new restrictions correspond, on the side of our λ-calculus,
to the idea that we want to manipulate terms up to renaming of
variables, so that no variable name is bound twice, and we can
use implicitly α-conversion to change names.



The JLSd system is sound with respect to intuitionistic logic,
since we only added restrictions on inference rules of JLS and
we observed that the variant rule crn was sound too, and we will
now study its completeness. As we already noticed, this system
is not complete — the unit > cannot appear as the premise of
a derivation, so that there is no proof per se in this system —
but we can establish a partial completeness result. We do that
in three steps: first we use a subset of the JLSd system, then we
deal with some particular weakenings forbidden in JLSd, and
finally we build the proof premise > from a simple formula, by
dealing again with weakenings. The goal is to show that if some
A is provable in JS, we can build a proof of the shape:

>
{wm,iaw}








B
JLSb








A

(1)

A terminating subset of JLSd. We consider the system JLSb,
which is defined as JLSd without the isu rule, for which we show
that proof search is terminating. To do that, we need a measure
on functional structures that will decrease during proof search,
and the first part of this measure can be defined in a simple way.

DEFINITION 7. Given any functional structure A, we can define
as follows its block-complexity, denoted by C (A) and its net size,
denoted by N (A), using the following induction:

C (a) = 0
C (a→ B) = C (B)

C ((C →>)→ B) = C (C) +C (B)
C ((C → a)→ B) = C (C) +C (B) +N (B)

N (a) = 1
N (a→ B) = 1+N (B)

N ((C →>)→ B) = N (C) +N (B)
N ((C → a)→ B) = N (B)

REMARK 8. The block-complexity is invariant under congruence,
namely the equation ≡b, because the blocks that can be exchanged
this way are exactly the substructures that are not counted in the
size of a given structure.

This complexity measure is simply the sum, for each block δ, of
the size of the structure in the scope of δ. We can use this to
show that the process of building a derivation by applications of
inference rules of JLSb terminates — we call this proof search
although we are building derivations and not proofs.

LEMMA 9. Proof search in JLSb is terminating.

PROOF. Given some functional structure A, if we apply any
inference rule of JLSb on A other than the contraction crn rule,
we obtain a functional structure B such that C (B) < C (A), as
can be checked for the rules ir, wr, xr and sr.
In the case of crn, we can observe that one positive occurrence
of an atom has been replaced with an occurrence of some fresh
atom. We define for any functional structure F a measure M(F)
as the multiset of |F |+d for all d ∈ F , under multiset ordering,
and with crn we have M(B) < M(A) since |B|+e < |A|

+
e for some

e ∈ A, and the introduced atom has a multiplicity of 1 in B.
Finally, we can use an induction on the pair (M(A),C (A)), under
lexicographic order, and we reach the case of a structure G such
that (M(A),C (A)) = (0, 0), which means that there is no block
δ in G. This implies that no rule of JLSb can be applied on G. �

Moreover, we can prove that the rules JLSb are invertible in JS,
so that proof search preserves provability in JS. This means we
can use JLSb on a structure A to produce by proof search a B
such that A is provable in JS if and only if B is provable in JS.

LEMMA 10. If there is a proof in JS of a functional structure
ξ{(B→ a)→ a}, then there is a proof in JS for ξ{B}.

PROOF. By induction on the length of a given proof D in JS of
ξ{(B→ a)→ a}, we build a proof of at most the same length for
ξ{B}. If D has length 2, it uses identities on ((b→ b)→ a)→ a,
and we use the identity on b→ b only. In the general case, we
use a case analysis on the bottommost rule instance r in D:

1. If r does not affect this occurrence of (B→ a)→ a, we can
rewrite the conclusion into ξ{B}, and use the induction
hypothesis to rewrite the premise accordingly.

2. If r only affects a structure inside this occurrence of B, we
rewrite the conclusion into ξ{B}, use the same rule inside
a smaller context, and then the induction hypothesis.

3. If r is a contraction c on this occurrence of B→ a, we use
the induction hypothesis on only one copy of B→ a.

4. If r is a switch s moving a structure D on the left of B→ a,
we can remove it and go on by induction hypothesis:

ξ{((E→ B)→ a)→ a}
s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{E→ ((B→ a)→ a)}

−→ ξ{E→ B}

Notice that there can be no weakening on this B→ a since there
would be no a left in negative position to complete the proof. �

LEMMA 11. If there is a proof in JS of some functional structure
ξ{(B→ a)→ C}, and |C |a = 0, then there is a proof in JS for the
structure ξ{C}.

PROOF. By induction on the length of a given proof D in JS of
ξ{(B → a) → C}, we build a proof of at most the same length
for ξ{C}. If D has length 2, it uses a weakening and an identity
on (B→ a)→ (c→ c), and we use the identity on c→ c only. In
the general case, we use a case analysis on the bottommost rule
instance r in D:

1. If r does not affect this occurrence of B → a, we rewrite
the conclusion into ξ{C} and use the induction hypothesis
to rewrite the premise accordingly.

2. If r only affects a structure inside this occurrence of B, we
rewrite the conclusion into ξ{C}, use the same rule inside
a smaller context, and then the induction hypothesis.

3. If r is a weakening w on this occurrence of B → a, we
remove it in the conclusion and the result is immediate.

4. If r is a contraction c on this occurrence of B → a, we
can rewrite the conclusion into ξ{C} and then use twice
the induction hypothesis, which is possible since the first
proof obtained has at most the same length as the original.

5. If r is a switch s moving a structure E on the left of B→ a,
we replace it by a weakening, as shown below:

ξ{((E→ B)→ a)→ C}
s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{E→ ((B→ a)→ C)}

−→
ξ{C}

w −−−−−−−−−−−−−−−−−−
ξ{E→ C}

and we can go on by induction hypothesis. �



LEMMA 12. If there is a proof in JS of some functional structure
ξ{(B→ a)→ ((C → L)→ D)}, and |D|a = 0, then there is a proof
in JS for the structure ξ{((((B→ a)→ C)→ L)→ D)}.

PROOF. By induction on the length of a given proof D in JS of
ξ{(B→ a)→ ((C → L)→ D)} translated to JS’, we build a proof
of at most the same length for ξ{((((B→ a)→ C)→ L)→ D)}.
If D has length 3, it uses on ((c → c) → a) → ((a → b) → b)
three identities and we do the same. In the general case, we use
a case analysis on the bottommost rule instance r in D:

1. If r does not affect this occurrence of B → a, we rewrite
the conclusion into ξ{((((B → a)→ C)→ L)→ D)} and
use the induction hypothesis to rewrite the premise.

2. If r only affects a structure inside this occurrence of B, we
rewrite the conclusion again, use the same rule inside a
smaller context, and then use the induction hypothesis.

3. If r is a weakening w on this occurrence of B → a, we
rewrite the conclusion again and use a weakening.

4. If r is a contraction c on this occurrence of B → a, we
rewrite the conclusion again and use twice the induction
hypothesis, which is possible since the proof obtained the
first time has at most the same length as the original.

5. If r is a switch s moving a structure E on the left of B→ a,
we replace it by a super-switch, as shown below:

ξ{((E→ B)→ a)→ ((C → L)→ D)}
s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{E→ ((B→ a)→ ((C → L)→ D))}

−→
ξ{((((E→ B)→ a)→ C)→ L)→ D}

ss −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{E→ ((((B→ a)→ C)→ L)→ D)}

and then we go on by induction hypothesis. The case of a
super-switch is treated exactly the same way.

In the end, we have a proof in JS’ that we can turn into a proof
of the same structure in JS by expanding super-switches. �

LEMMA 13. If there is a proof in JS of some functional structure
ξ{(B→ a)→ C}, and |C |a ≥ 2, then there is a proof in JS for the
structure ξ{(B→ a)→ ((B→ a)→ C)}.

PROOF. Such a proof can be obtained as follows:
−
D







ξ{(B→ a)→ C}
w −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{(B→ a)→ ((B→ a)→ C)}

where D is the given proof of ξ{(B→ a)→ C} in JS. �

LEMMA 14. If there is a proof in JS of some functional structure
ξ{(B→ a)→ (C → D)}, and |C |a = 0, then there is a proof in JS
for the structure ξ{C → ((B→ a)→ D)}.

PROOF. This corresponds to the use of the congruence in the
JS system, namely the equation ≡a, so that this is immediate. �

We can use all these lemmas to prove that proof search in JLSb
has the interesting property of preserving provability, which will
be a crucial argument in our partial completeness result.

LEMMA 15. For any structures A and B, if there is a derivation
from A to B in the JLSb system and B is provable in JS, then A is
provable in JS.

PROOF. By induction on the length of the given derivation D
from A to B in JLSb. If D has length 0, the result is immediate
since A is B. In the general case, we use a case analysis on the
bottommost rule instance r in D, to prove that if there is a proof
of its conclusion A in JS, there is a proof of its premise, by either
Lemma 10, Lemma 11, Lemma 13, Lemma 14 or Lemma 12. �

Weakening matchers. We consider the following rule, which
corresponds to a case of weakening forbidden in JLS:

A
wm −−−−−−−−−−−−−−−−−−−−−−−−
(B→>)→ A

Then, we show that this inference rule is complete, in the sense
that using it during a proof search cannot turn some provable
structure into an unprovable one — it is an invertible rule.

LEMMA 16. If there is a proof in JS of some functional structure
ξ{(B→>)→ A}, then there is a proof of ξ{A} in JS.

PROOF. By induction on the given proof D in JS, we build a
proof of ξ{A}, preserving the upper bound on the length of the
proof. If D has length 1, it uses a weakening on (B →>)→>,
and the result is immediate. In the general case, we use a case
analysis on the bottommost rule instance r in D:

1. If r does not affect this occurrence of B → >, we remove
it from the conclusion and use the induction hypothesis to
rewrite the premise accordingly.

2. If r only affects a structure inside this occurrence of B, we
remove this instance and use the induction hypothesis.

3. If r is a weakening w on this occurrence of B → >, the
result is immediate.

4. If r is a contraction c on this occurrence of B → >, we
can rewrite the conclusion and we use twice the induction
hypothesis, which is possible since the proof obtained the
first time has at most the same length as the original.

5. If r is a switch s moving a structure C on the left of B, we
replace it by a weakening, as shown below, and go on by
induction hypothesis:

ξ{((C → B)→>)→ A}
s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{C → ((B→>)→ A)}

−→
ξ{A}

w −−−−−−−−−−−−−−−−−−
ξ{C → A}

In this analysis, there is no need to consider the case where r is
an instance of the identity i used on (B→>)→>, since we can
always remove it from any proof in JS by using Proposition 4. �

Closing the proof. We consider a functional structure where no
block and no matcher appears, and observe that it is of the shape
b1 → ·· · → bn → a. Such a structure is provable if and only if
there is an i such that bi is a, and we can use the following
inference rule, not to be applied inside a context:

>
iaw −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

b1→ ·· · → a→ ·· · → bn→ a

which can be applied on a structure of this shape if and only
if it is provable, since it is equivalent to many weakenings and
one identity instance. Now, we can glue the pieces together to
produce a proof of weak completeness, which states that given a
functional structure A provable in JS, although there is no proof
of A in JLSb nor in JLSd, there is a derivation from a structure B
to A in JLSb, such that B can easily be mechanically checked.



THEOREM 17 (WEAK COMPLETENESS OF JLSb). For any given
functional structure A, if there is a proof of A in JS, then there is a
structure B such that there is a derivation from B to A in JLSb and
a proof of B in {wm, iaw}.

PROOF. As a first step, we apply Lemma 9 to produce by proof
search a derivation D1 from some structure A1 to A in the JLSb
system. Notice that there can be no block — that is, structures
of the shape (B → c) in negative position — in the structure A1
since that would imply that at least one inference rule of JLSb
could be applied. Moreover, by Lemma 15 we know that if A is
provable in JS, then A1 is provable in JS too. Then, we apply
as much as possible the wm rule on A1 to produce a derivation
D2 from a structure A2 with no matchers — that is, structures
of the shape (B → >) in negative position — to A1. By Lemma
16 we know that if A1 is provable in JS, then A2 is provable
in JS too. Finally, if A2 is provable in JS and does not contain
matchers, then we can use one instance of iaw to build a proof of
the shape described in (1), where the expected derivation from
B to A in JLSb is D1, since this A1 is provable in {wm, iaw}. �

COROLLARY 18 (WEAK COMPLETENESS OF JLSd). For any given
functional structure A, if there is a proof of A in JS, then there is a
structure B such that there is a derivation from B to A in JLSd and
a proof of B in {wm, iaw}.

This result tells us that JLSb is indeed a sensible system to deal
with functional structures, and therefore JLSd can also be used.
The problem of proving functional structures in the JLSd system
is more subtle that in JLSb, since it allows the use of the isu rule
which is not invertible, but we can avoid using the wm rule to
get a complete proof in some cases. This is not always possible,
as shown by the following example proof:

>
iaw −−−−−−−−−−

a→ a
wm −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(B→>)→ (a→ a)

In this case, we cannot use the isu rule if the structure B is not
provable in JS, while the complete structure is provable in JS.
The JLSd system allows to use the minimal amount of instances
of wm to get a proof in JS, but there is no way in general to
build a proof from JLSd and the iaw rule only. The class of
structures that can be proved using JLSd and iaw only is more
behaved than general functional structures, since the structure B
in a structure of the shape (B→>)→ C is not logically relevant.

3. PROOF SEARCH AS REDUCTION
WITH EXPLICIT SUBSTITUTIONS

We now consider a λ-calculus with explicit substitutions [Kes07],
that we will call λs, and show how its terms can be encoded into
logical structures, so that the process of building a derivation in
JLSd will simulate the process of applying reduction rules in the
λs-calculus. We say proof search, although we are not building
complete proofs but rather open derivations, to emphasize the
relation of this work with the usual proof-search-as-computation
paradigm [MNPS91].

It is a direct approach, based on incomplete derivations of the
proof system, in the sense that if two given structures A and B
represent programs such that A can be reduced to B through the
operational semantics of the language, there is a derivation from
B to A rather than a proof of A→ B, as we will see.

(λx .t) u −→B t[x ← u]

x[x ← u] −→var u
t[x ← u] −→rm t if |t|x = 0
t[x ← u] −→dup t[y/x][x ← u][y ← u] if |t|x ≥ 2

(λy.t)[x ← u] −→lam λy.t[x ← u]
(t v)[x ← u] −→apl t[x ← u] v if |v|x= 0
(t v)[x ← u] −→apr t v[x ← u] if |t|x = 0

t[y ← v][x ← u] −→cmp t[y ← v[x ← u]] if |t|x = 0

t[y ← v][x ← u]≡ t[x ← u][y ← v] if |v|x = |u|y = 0

Figure 6: Reduction rules and equation for the λs-calculus

Our λ-calculus is very similar to many other calculi with explicit
substitutions in the literature, and in particular it borrows its
handling of duplication using a linear renaming operation from
the structural λ-calculus [AK10]. The syntax of λs-terms can be
defined by the following grammar:

t, u ::= x | λx .t | t u | t[x ← u]

where the object [x ← u], which is called an explicit substitution,
is a binder for the variable x , so that x is bound in t[x ← u].
Moreover, terms are considered modulo α-conversion, so that a
variable is always bound at most once in any λs-term. We will
need to count the use of variables in a term, using the following
definition.

DEFINITION 19. The multiplicity of a variable x in a term t,
denoted by |t|x , is the number of occurrences of the variable x in
the term t, not including the use of the name x in a binder.

The reduction rules defining the operational behaviour of the
λs-calculus are shown in Figure 6, where the construction t[y/x]
denotes the term t where exactly one occurrence of x has been
replaced with y . Notice that in the dup rule, the new variable
y must of course be fresh to avoid capture by some binder. This
system of reduction rules is standard, and is similar to the one of
the λes-calculus [Kes07], except in the handling of duplications
of substitutions.

We can now define an encoding of λs-terms into structures. For
that, we need to consider a bijection between logical atoms and
variables in the calculus, so that to any variable x corresponds
an atom also denoted by x .

DEFINITION 20 (ENCODING OF λs). The encoding ¹·ºλ from
λs-terms into structures of the JLSd system is defined as follows:

¹xºλ = x
¹λx .tºλ = x → ¹tºλ
¹t uºλ = (¹uºλ→>)→ ¹tºλ

¹t[x ← u]ºλ = (¹uºλ→ x)→ ¹tºλ

Notice that through this encoding, λs-terms correspond only to
functional structures as they were defined for use with the JLSd
system — this is of course the reason why we restricted the rules
of JS this way. Moreover, the equation on λs-terms allowing to
exchange unrelated explicit substitutions exactly corresponds to
the equation ≡b used on functional structures.



REMARK 21. It is easy to see that the encoding ¹·ºλ defines a
bijection between λs-terms and functional structures. Indeed, each
shape of structure defined in the grammar for restricted structures
corresponds to exactly one construction in the λ-terms syntax, and
the extra restrictions for functional structures correspond to the
writing of a λs-term with a correct scope structure α-converted to
avoid repetition of bindings on the same name.

We can now state the theorem establishing the correspondence,
at the computational level, between the operational behaviour
of the λs-calculus and the behaviour of proof search in the JLSd
system, where the −→R relation is the reduction defined by the
rules of Figure 6, −→∗

R
is its reflexive and transitive closure, and

−→S is the same as the first, where the B rule is not used.

THEOREM 22 (COMPUTATIONAL ADEQUACY OF JLSd). For any
given λs-terms t and u, there is a derivation from ¹uºλ to ¹tºλ
in the JLSd system if and only if t −→∗

R
u.

PROOF. By induction on the reduction steps from t to u. If
the reduction path is empty, t and u are the same and the result
is trivial because the encoding ¹·ºλ is uniquely defined. In the
general case, we consider the first step in the reduction, and use
the induction hypothesis on the rest of the reduction. We thus
simply have to check that there is an inference rule instance in
JLSd with premise ¹uºλ and conclusion ¹tºλ if and only if we
have t −→R u. This is immediately done by observing that each
reduction rule corresponds exactly to one case of application of
an inference rule of JLSd:

(B→ a)→ C
isu −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(B→>)→ (a→ C)

←→
t[x ← u]

B −−−−−−−−−−−−−−−−−
(λx .t) u

B
ir −−−−−−−−−−−−−−−−−−−−−−−
(B→ a)→ a

←→
u

var −−−−−−−−−−−−−−−−−
x[x ← u]

C
wr −−−−−−−−−−−−−−−−−−−−−−−−
(B→ a)→ C

←→
t

rm −−−−−−−−−−−−−−−−−
t[x ← u]

(B→ d)→ ((B→ a)→ C[d/a])
cr −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(B→ a)→ C
←→

t[y/x][x ← u][y ← u]
dup −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

t[x ← u]

c→ ((B→ a)→ D)
xr −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(B→ a)→ (c→ D)

←→
λy.t[x ← u]

lam −−−−−−−−−−−−−−−−−−−−−−−−−−−
(λy.t)[x ← u]

(C →>)→ ((B→ a)→ D)
xr −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(B→ a)→ ((C →>)→ D)

←→
t[x ← u] v

apl −−−−−−−−−−−−−−−−−−−−−−−−
(t v)[x ← u]

(((B→ a)→ C)→>)→ D
sr −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(B→ a)→ ((C →>)→ D)

←→
t v[x ← u]

apr −−−−−−−−−−−−−−−−−−−−−−−−
(t v)[x ← u]

(((B→ a)→ C)→ e)→ D
sr −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(B→ a)→ ((C → e)→ D)

←→
t[y ← v[x ← u]]

cmp −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
t[y ← v][x ← u]

Notice that the conditions on the multiplicity of variables in the
reduction rules for λs-terms exactly match the restrictions that
were imposed on inference rules to define JLSd from JLS. �

This result establishes a tight connection between our restricted
intuitionistic system and the λs-calculus. The interesting point
is then that a theorem that we prove on derivations of the JLSd
system on the logical side also holds in its computational form
on reduction paths in the λs-calculus. As an example, we can
prove that the subsystem −→S terminates.

THEOREM 23. The reduction subsystem −→S terminates.

PROOF. This is a direct corollary of Lemma 9, considering
derivations of JLSb as reduction paths in the −→S subsystem
through the correspondence defined by Theorem 22. �

The other way around, if we have some result on reduction in
the λs-calculus, then we can directly transpose this result to the
logical side. For example, the Church-Rosser property states that
the −→R rewriting system is confluent, and we could prove it
using the standard method of parallel reductions from Tait and
Martin-Löf, see for example [Kes07]— to prove a similar result
on derivations of the JLSd system. We would thus obtain a proof
of the following proposition.

PROPOSITION 24. For any structures A, B and C, if there are
derivations from B to A and from C to A in JLSd, then there is a
structure D such that there are derivations from D to B and from
D to C in JLSd.

Moreover, we observed that the class of structures which can
be proven by proof search in JLSd without using wm is more
interesting than plain functional structures, since this rule does
not correspond to a valid rewriting on λs-terms. Also notice that
the conclusion of the iaw rule, where no structure of the shape
B → > appears, is exactly a λs-term in normal form. From this
we can derive a characterisation of weakly normalising terms.

THEOREM 25. A λs-term t is weakly normalising if and only if
there is a proof of ¹tºλ in the JLSd∪ {iaw} system.

PROOF. First, if the term t is weakly normalising, then there
is a u in normal form such that t −→∗

R
u, and by Theorem 22 we

have a derivationD from ¹uºλ to ¹tºλ in JLSd. We can thus use
the iaw rule on ¹uºλ to produce a proof of ¹tºλ. Then, if there
is a proof of ¹tºλ in JLSd∪{iaw}, we have such a derivation D
and we can use Theorem 22 the other way around to get a term
u in normal form such that t −→∗

R
u. �

It would therefore be interesting to learn more about this class of
structures, inside the logic, to get insights on weakly normalising
terms in the λs-calculus. Furthermore, an important class is the
one of strongly normalising terms, for which any reduction path
reaches a normal form, and which are often characterised using
type systems [LLD+04]. It is not clear whether this class can be
characterised through a particular variant of the JLSd system.
An interesting problem would then be in defining an efficient
procedure to decide whether a given structure is provable in this
system, to check if some λs-term is strongly normalising without
computing its typing derivation. In particular, this means that
we could ensure termination of a program without knowing its
type: if this can be done efficiently using an algorithm such as a
variant of resolution for a fragment of intuitionistic logic, this is
interesting, but it does not ensure that the composition of two
well-behaved programs is well-behaved. It is thus unclear what
kind of mechanism could take the role of typing in this setting.

The tight correspondence established by Theorem 22 allows for
direct reasoning on reduction paths in the λs-calculus, where
each step can be handled separately. In particular, if we have a
trace of computation corresponding to the reduction of a term
t to some term u and another trace for the reduction from u to
some term v, composing these traces is immediate and provides
a trace of computation from t to v. Contexts can also be handled
in a very natural way, as it is done in the calculus of structures.



B
ir −−−−−−−−−−−−−−−−−−−−−−−−−−−
(B→ a)→⇓ a

(B→ a)→⇓C
isu −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(B→>)→ (a→ C)

A
wr −−−−−−−−−−−−−−
δ→⇓A

δ→⇓ (δ→⇓A)
cr −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

δ→⇓A

A→ (δ→⇓B)
xr −−−−−−−−−−−−−−−−−−−−−−−−−−−
δ→⇓ (A→ B)

((δ→⇓A)→ L)→ B
sr −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
δ→⇓ ((A→ L)→ B)

Figure 7: Inference rules for system JLSn

Moreover, permutations of rule instances, and transformations
on derivations in the JLSd system allow for a reorganisation of
a reduction path between two given λs-terms. There are strong
decomposition results in the calculus of structures [GS10], and
results of this kind can be interesting when studying reduction
strategies of the λs-calculus. In the following section, we will
present a restriction of JLSd yielding such a reduction strategy.

4. FOCUSED PROOF SEARCH AND
REDUCTION STRATEGIES

Following our methodology, there is a direct connection between
the cases where an inference rule can be applied on a structure
and the reduction strategy implemented by the reduction system
chosen for λs-terms. Indeed, we could use a variant of JLSd not
using extra conditions on the multiplicity of atoms in the rules,
but this would induce highly non-deterministic reduction rules
for the λs-calculus. We made the reduction system deterministic
by imposing a strategy in the sense that one reduction rule can
be applied in only one way, but there is still a non-deterministic
dimension in the choice of which redex to pick and reduce, given
a λs-terms with several redexes. We now address the question of
this choice, which is usually called choosing a reduction strategy.

The JLSd system can be restricted further by using annotations
on structures in the spirit of focusing [And92], and this can be
interpreted on the computational side as restricting the choice
of the next redex to be rewritten. This restriction is similar to a
standard formulation of focusing for intuitionistic logic [LM07],
although the deep inference setting used here does not allow the
exact same treatment. It should be noted that focusing in the
calculus of structures cannot be immediately defined through a
translation of usual focusing in the sequent calculus, although
there is some work on the topic [Gue10]. For example, there
is no separation between different branches, and we thus need
to duplicate focusing annotations, with copies being moved to
different parts of the structure, corresponding to branches.

The inference rules for the JLSn system are shown in Figure 7,
where the syntax of structures is extended with annotations, so
that ξ{⇓A} is a valid structure for any ξ{ } and A — annotations
are only allowed in positive position. Then, the decision action
is embedded inside the isu rule, which picks a structure on the
right of a block of the shape B→ a and forces to move this block
inside this structure until its contents, in B, are released by the
ir rule. This sequence of rule applications guided by annotations
is called a focused phase, and we are mainly interested in the
structures at the borders of such a phase.

DEFINITION 26. A functional structure B is said to be basic if
all the structures in negative position inside B are either atoms or
matchers — it contains no block, as C → a in negative position.

The point of the JLSn system is then to handle basic structures
by choosing a redex for the isu rule, to introduce a block B→ a
through this rule, and then maximally use the JLSb subsystem
to produce a new basic structure, by removing all the remaining
blocks. In particular, we add the restriction that the rule isu is
not used on a structure that already contains a focus annotation.
It is easy to see that any basic formula corresponds through the
encoding ¹·ºλ to some pure λ-term, which is a λs-term without
explicit substitutions. We can therefore consider the standard
rule for β-reduction in the pure λ-calculus:

(λx .t) u−→β t{u/x}

and show that there is a computational adequacy result between
JLSn and this simple rewriting system, through the same ¹·ºλ
encoding as before. As a first step, we need a lemma explaining
the effect of a focusing phase on a structure. In the following,
we denote by ξ{A}+ a context with several holes filled with the
structure A, and by ξ{A}∗ a context with zero or more holes filled
with A. Moreover, the notation ξ{a}∗ implicitly means there is
no occurrence of a in ξ{ }∗ except in its holes.

LEMMA 27. Given any functional structure without annotations,
of the shape ξ{(B → >) → (a → ζ{a}∗)}, there is a derivation
from ξ{ζ{B}∗} to this structure in JLSn.

PROOF. Given a functional structure without annotations, of
the shape ξ{(B → >)→ (a → ζ{a}∗)} we prove that there is a
derivation D in JLSn such that we have the following situation:

ξ{ζ{B}∗}
D







ξ{(B→ a)→⇓ζ{a}∗}
isu −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{(B→>)→ (a→ ζ{a}∗)}

We proceed by induction on the size of the context ζ{ }∗ to prove
that there is such a D, using a case analysis on its toplevel shape:

1. If ζ{ }∗ is { }, then we can use an identity rule, as shown
below, and we are done since we have our derivation D.

ξ{B}
ir −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{(B→ a)→⇓ a}

2. If ζ{ }∗ is C , where the atom a does not appear in C , then
we can use a weakening rule, as shown below, and we are
also done with the induction:

ξ{C}
wr −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{(B→ a)→⇓C}

3. If ζ{ }∗ is (C → L)→ θ{ }+, then we can use an exchange
rule, since the atom a does not appear in C , and then go
on by induction hypothesis:

ξ{(C → L)→ ((B→ a)→⇓θ{a}+)}
xr −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{(B→ a)→⇓ ((C → L)→ θ{a}+)}

4. If ζ{ }∗ is (θ{ }+→ L)→ C , then we can use a switch rule,
since the atom a does not appear in C , and then go on by
induction hypothesis:

ξ{(((B→ a)→⇓θ{a}+)→ L)→ C}
sr −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{(B→ a)→⇓ ((θ{a}+→ L)→ C)}



5. If ζ{ }∗ is (θ{ }+→ L)→ θ ′{a}+, then we have to use both
the exchange and switch rules, after using a contraction
rule to duplicate the block B→ a, and then go on by using
twice the induction hypothesis:

ξ{(((B→ a)→⇓θ{a}+)→ L)→ ((B→ a)→⇓θ ′{a}+)}
xr −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{(B→ a)→⇓ (((B→ a)→⇓θ{a}+)→ L)→ θ ′{a}+}

sr −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{(B→ a)→⇓ ((B→ a)→⇓ ((θ{a}+→ L)→ θ ′{a}+))}

cr −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{(B→ a)→⇓ ((θ{a}+→ L)→ θ ′{a}+)}

Notice that if the context ζ{ }∗ had no hole, the weakening rule
is applied and no replacement is performed. �

THEOREM 28 (COMPUTATIONAL ADEQUACY OF JLSn). For any
two λ-terms t and u, there is a derivation from ¹uºλ to ¹tºλ in
the JLSn system if and only if t −→∗β u.

PROOF. By induction on the reduction steps from t to u. If
the reduction path is empty, t and u are the same and the result
is trivial because the encoding ¹·ºλ is uniquely defined. In the
general case, we consider the first step in the reduction, and use
the induction hypothesis on the rest of the reduction. We thus
simply have to check that there is an inference rule instance in
JLSn with premise ¹uºλ and conclusion ¹tºλ if and only if we
have t −→β u. To do it, we consider a particular redex, such that
t is the term C[(λx .v) w] for some context C[·], and show that
u is C[v{w/x}] if and only if there is a derivation from ¹uºλ to
¹tºλ in JLSn. More precisely, this derivation exactly consists of
one phase, where the bottommost rule instance is an instance
of isu with premise (¹wºλ → x)→ ⇓¹vºλ, and the premise of
the phase is a basic structure which must be ¹uºλ, as a direct
consequence of Lemma 27. �

COROLLARY 29 (FULL COMPOSITION). For any given λs-terms
t and u, we have t[x ← u]−→∗

S
t{u/x}.

PROOF. This is a corollary of Lemma 27 considered through
the encoding ¹·ºλ using Theorem 28. Indeed, the therm t{u/x}
using an implicit substitution corresponds through ¹·ºλ to the
structure ¹tºλ where all occurrences of the atom x are replaced
with the structure ¹uºλ. �

This theorem establishes a precise correspondence between one
β-reduction big step, performing an implicit substitution inside
the term, and a focusing phase in JLSn. We can now express the
relation between the big-step reduction in the λ-calculus and
the small-step operational behaviour which is implemented in
the λs-calculus, and this corresponds to the study of soundness
and completeness of JLSn with respect to JLSd.

THEOREM 30 (SOUNDNESS OF JLSn). For two basic structures
A and B, if there is a derivation from A to B in JLSn then there is
a derivation from A to B in JLSd.

PROOF. Each inference rule in the JLSn system is actually an
inference rule of JLSd with focus annotations. Therefore, we
just need to remove annotations in the given derivation from A
to B in JLSn to produce a derivation from A to B in JLSd. �

The meaning of this theorem, on the computational side, is that
any reduction path from t to u in the restricted reduction system
of β-reduction can be replaced with a reduction sequence from
t to u in the more general −→R rewrite system, which is exactly
stepwise simulation of β-reduction by explicit substitutions.

COROLLARY 31 (SIMULATION OF β). For any λ-terms t and u,
if t −→∗

β
u then t −→∗

S
u.

The other direction of the correspondence between JLSd and
JLSn is more interesting, since it indicates that the simulation
of β-reduction in the λs-calculus does not rely on the use of a
reduction system that would not be sensible.

LEMMA 32. For any basic structure A, if there is a derivation
from A to a structure ξ{(B → c) → ζ{c}∗} in JLSd, there is a
derivation of at most the same length from A to ξ{ζ{B}∗} in JLSd.

PROOF. By induction on the context ζ{ }∗. If ζ{ }∗ is { }, then
we can use the ir rule and an induction on the given derivation
D to remove the structure (B→ c) and replace c with B. This is
similar to the result of Lemma 10, stating the invertibility of the
rule ir. In the general case, we can use a case analysis on the
shape of ζ{ }∗ and in each case use an induction on the given
derivation, as for ir. This induction is a variant of invertibility for
the rules of JLSb, which preserves the upper bound on the length
of the derivation, and relies on the fact that the given derivation
uses these rules because its premise A is a basic structure — and
B→ c thus does not appear in A. �

THEOREM 33 (COMPLETENESS OF JLSn). Given any two basic
structures A and B, if there is a derivation from A to B in the JLSd
system, there is a derivation from A to B in the JLSn system.

PROOF. By induction on a given derivation D from A to B in
the JLSd system. If D is of length 0, then A is B and there is a
trivial derivation from A to B in JLSn. In the general case, since
B is a basic structure, there is no structure of the shape C → d
in negative position in B and the bottommost rule instance must
be an instance of the isu rule, and has a structure of the shape
ξ{(C → d) → ζ{d}∗} as premise. Thus, by Lemma 32 there is
a derivation D1 of smaller length than D from A to ξ{ζ{C}∗} in
JLSd, and by Lemma 27 there is a derivation D2 from ξ{ζ{C}∗}
to B in JLSn. We can then apply the induction hypothesis to D1
to produce a derivation D3 and the result is the composition of
the two derivations D2 and D3. �

On the computational side, this theorem says that the λs-calculus
is sensible with respect to the standard λ-calculus. Indeed, a
way of defining a reduction system that can simulate β-reduction
is to add too many possible reductions, thus loosing all good
properties. This is not the case here, since we have stated in this
theorem the projection of reduction with explicit substitutions
inside β-reduction. Notice that in the following corollary, it is
important that the given terms t and u are plain λ-terms, and
not terms with explicit substitutions.

COROLLARY 34 (PROJECTION IN β). For any λ-terms t and u,
if t −→∗

S
u then t −→∗

β
u.

We have now all the elements to compare the standard λ-calculus
and the λs-calculus with explicit substitutions only in terms of
comparisons between the logical systems JLSn and JLSd that we
have defined. Moreover, there are many possible restrictions of
the JLSd system that correspond to other λ-calculi or various
reduction strategies. For example, we could add restrictions on
inference rules of JLSn to enforce a normal order evaluation, so
that this variant would correspond exactly to the call-by-name
weak reduction of λ-terms. Enforcing a call-by-value reduction
strategy is more complicated, since the required restrictions on



inference rules would be less natural, because of the problem of
detecting structures that represent values. Notice that using a
shallow proof search strategy betrays the idea of using the deep
inference methodology, the same way as using a weak reduction
strategy betrays the very spirit of the λ-calculus [Asp98].

5. CONCLUSION

We have defined here a deductive system for a small fragment
of intuitionistic logic and established a correspondence between
the proof search process in this system and computation in the
functional programming setting, by means of a λ-calculus with
explicit substitutions. This methodology can provide interesting
links between results on the logical side, such as the soundness
and completeness results of a deductive system, and results in
the λ-calculus, such as the simulation of a reduction system in
another system.

The use of a deep inference system is essential in the sense that it
induces a very elegant correspondence between inference rules
and reduction rules, and allows to model a reduction sequence
as a derivation from one structure to another in a logical system,
so that computation traces can be easily composed. If we want
to have this ability, we need to be able to apply inference rules
deep inside formulas to handle reductions inside a λ-term, and
not reduce the study to weak evaluation strategies only. There
is much future work left in this project, and we give now some
details on further research directions to be explored.

Extension to full JS. In this paper we have restricted our study
to a small fragment of the JS proof system, based on restrictions
that are quite artificial from the logical viewpoint, which were
only motivated by the structure of our λ-calculus. Although we
can still explore the relations between logical and computational
notions in this setting, it would surely be interesting to design
a correspondence for the full JS system. The question is then
to find a meaning for non-atomic formulas in negative position,
which could be done with a generic notion of pattern matching,
as is defined in the pure pattern calculus [JK09]. Indeed, this
calculus generalises the notion of λ-abstraction from λx .t into
the case construct u → t, where the x in negative position is
replaced with some arbitrary term u is negative position. This
extension is not trivial, since we have to handle explicit pattern
matching, and syntactic distinctions between case, application
and explicit matching. Moreover, we would still have to restrict
JS since we cannot accept some term manipulations, such as
the transformation from u→ v→ t to v→ u→ t in the general
case. Such an extension would provide a logical background
for the pure pattern calculus, allowing to explore the benefits of
using the standard proof-theoretical techniques.

Evaluation strategies. Another important direction is the study
of different evaluation strategies available in the λ-calculus with
explicit substitutions, ranging from highly non-deterministic to
highly constrained procedures. It was interesting to notice the
connection between the focusing technique and call-by-name,
and we can now look for more subtle restrictions which would
correspond to known strategies, such as call-by-value. Normal
forms for proofs can be used as a source of inspiration for new
evaluation strategies, and because of the methodology used here,
all the work on improving the efficiency of proof search can be
used to improve efficiency in reduction strategies. For example,

if we can prove that for a given set of formulas, some restricted
system only allows short proofs — that is, bound in some way
with respect to the size of the formula — it means that we have
an evaluation strategy where reduction is also bounded. It might
be interesting to translate the question of optimal reduction in
this setting.

Variant systems. Many variants of our inference rules can be
defined in the calculus of structures, and in particular local rules,
which never modify, copy or erase non-atomic formula. Such a
local variant of JLSd would induce through our correspondence
a calculus where all reduction steps are local, which can be a
nice feature in the implementation of a functional language. The
problem is that designing a local presentation for intuitionistic
logic might be quite difficult, or induce a highly complex system
that would not fit our needs [Tiu06].

Classes of λ-terms. There is one aspect of the standard results
on λ-terms that has been set aside in this study: the class of
simply-typed, and weakly or strongly normalising terms, is quite
difficult to understand in our proof-search setting. It is unclear
if these subsets of the set of all programs make any sense here,
since types are usually identified with logical formulas. It would
be interesting to provide characterisations, in terms of restricted
proof systems, of important sets of terms, such as those that
terminate, or those that can be composed while preserving some
good properties.

Other logics and calculi. The methodology introduced here is a
general notion of correspondence, and could be applied in other
settings. As an example, linear logic [Gir87] is a refinement of
intuitionistic logic that is often presented as a logic of resources,
as it offers a greater control over duplication and erasure inside
its proof system. The interpretation of a system for intuitionistic
linear logic could thus provide a basis for the study of λ-calculi
with resource operators [KL05]. Moreover, our correspondence
could be translated to a classical setting, its computational side
taking the form of some process algebra rather than a sequential
programming language, as suggested by existing work on the
encoding of concurrent computation in proof search within the
setting of deep inference [Bru02].

Acknowledgements. The paper has greatly benefited from the
many interesting comments and useful suggestions made by the
anonymous reviewers.

6. REFERENCES

[AK10] B. Accattoli and D. Kesner. The structural
λ-calculus. In A. Dawar and H. Veith, editors,
CSL’10, volume 6247 of LNCS, pages 381–395,
2010.

[And92] J-M. Andreoli. Logic programming with focusing
proofs in linear logic. Journal of Logic and
Computation, 2(3):297–347, 1992.

[Asp98] A. Asperti. Optimal reduction of functional
expressions. In C. Palamidessi, H. Glaser, and
K. Meinke, editors, PLILP’98, volume 1490 of LNCS,
pages 427–428, 1998.



[BM08] K. Brünnler and R. McKinley. An algorithmic
interpretation of a deep inference system. In
I. Cervesato, H. Veith, and A. Voronkov, editors,
LPAR’08, volume 5330 of LNCS, pages 482–496,
2008.

[Bru02] P. Bruscoli. A purely logical account of sequentiality
in proof search. In P. J. Stuckey, editor, ICLP’02,
volume 2401 of LNCS, pages 302–316, 2002.

[Brü03] K. Brünnler. Deep Inference and Symmetry in
Classical Proofs. PhD thesis, Technische Universität
Dresden, September 2003.

[Brü06] K. Brünnler. Locality for classical logic. Notre Dame
Journal of Formal Logic, 47:557–580, 2006.

[Gir87] J-Y. Girard. Linear logic. Theoretical Computer
Science, 50:1–102, 1987.

[GS01] A. Guglielmi and L. Straßburger.
Non-commutativity and MELL in the calculus of
structures. In L. Fribourg, editor, CSL’01, volume
2142 of LNCS, pages 54–68, 2001.

[GS10] A. Guglielmi and L. Straßburger. A system of
interaction and structure IV: The exponentials and
decomposition. To appear in ACM Transactions on
Computational Logic, 2010.

[Gue10] N. Guenot. Focused proof search for linear logic in
the calculus of structures. In M. Hermenegildo and
T. Schaub, editors, ICLP’10 (Technical Comm.),
volume 7 of LIPIcs, pages 84–93, 2010.

[Her94] H. Herbelin. A λ-calculus structure isomorphic to
Gentzen-style sequent calculus structure. In
L. Pacholski and J. Tiuryn, editors, CSL’94, volume
933 of LNCS, pages 61–75, 1994.

[JK09] B. Jay and D. Kesner. First-class patterns. Journal of
Functional Programming, 19(2):191–225, 2009.

[Kes07] D. Kesner. The theory of calculi with explicit
substitutions revisited. In J. Duparc and T. A.
Henzinger, editors, CSL’07, volume 4646 of LNCS,
pages 238–252, 2007.

[KL05] D. Kesner and S. Lengrand. Extending the explicit
substitution paradigm. In J. Giesl, editor, RTA’05,
volume 3467 of LNCS, pages 407–422, 2005.

[LLD+04] S. Lengrand, P. Lescanne, D. Dougherty,
M. Dezani-Ciancaglini, and S. van Bakel.
Intersection types for explicit substitutions.
Information and Computation, 189(1):17–42, 2004.

[LM07] C. Liang and D. Miller. Focusing and polarization in
intuitionistic logic. In J. Duparc and T. A.
Henzinger, editors, CSL’07, volume 4646 of LNCS,
pages 451–465, 2007.

[Mil89] D. Miller. A logical analysis of modules in logic
programming. Journal of Logic Programming,
6(1&2):79–108, 1989.

[MNPS91] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov.
Uniform proofs as a foundation for logic
programming. Annals of Pure and Applied Logic,
51:125–157, 1991.

[Plo75] G. Plotkin. Call-by-name, call-by-value and the
λ-calculus. Theoretical Computer Science,
1(2):125–159, 1975.

[Rov11] L. Roversi. Linear λ-calculus with explicit
substitutions as proof-search in deep inference.
Accepted at TLCA’11, 2011.

[Str03] L. Straßburger. Linear Logic and Noncommutativity
in the Calculus of Structures. PhD thesis, Technische
Universität Dresden, July 2003.

[Tiu06] A. Tiu. A local system for intuitionistic logic. In
M. Hermann and A. Voronkov, editors, LPAR’06,
volume 4246 of LNCS, pages 242–256, 2006.


