MPRI: 2.12.2

F. MORAIN

Exercise sheet #2; October 7, 2019

Exercises

Exercise 1. Let w_1, w_2, \ldots, w_k be integers such that their product $w_1w_2\cdots w_k$ is known to be a perfect square Z^2 whose square root must be computed. If the w_i 's (resp. k) are big, then computing the product, followed by the computation of Z is costly. Show that if the w_i 's have common factors, this cost can be reduced using gcd computations. As for a numerical application, compute Z when the w_i 's are given by:

i	1	2	3	4	5
w_i	776	1136	2048	3007	2201

What is the interest of this approach for CFRAC?

Exercise 2. Let N = 91. Consider the following congruences modulo N:

$$96 \equiv 5,90 \equiv -1,88 \equiv -3,81 \equiv -10,80 \equiv -11,75 \equiv -16.$$
(1)

Let p be a prime factor of N and g a generator of $(\mathbb{Z}/p\mathbb{Z})^*$. Put

$$-1 = g^{x_1}, 2 = g^{x_2}, 3 = g^{x_3}, 5 = g^{x_4}, 11 = g^{x_5}$$

Translate congruences (1) into a linear system of congruences whose unknown are the x_i 's. Show that $6x_3 \equiv 2x_1 \mod p - 1$ and that $3^6 \equiv 1 \mod p$. Deduce from this non-trivial factors of N.

Exercise 3. Suppose that in the course of QS, we find

$$P(x) = \left(\prod_{p \in \mathcal{B}} p\right) \times q$$

with q prime. Using the identity

$$P(x + yq) = P(x) + 2yq(x + g) + y^2q^2,$$

explain how to find another relation whose factorization also contains q.