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I. Quadratic fields as examples of number fields

A) Definitions and properties

B) Units

C) Factoring in OK
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A) Definitions and properties

d ∈ Z− {1} squarefree

Def. K = Q(
√

d) = {a + b
√

d, a, b ∈ Q}.
Prop. K is a field extension of degree 2 of Q, i.e., a vector space of
dimension 2 over Q.

Proof: since
√

d 6∈ Z, a + b
√

d is invertible for (a, b) 6= (0, 0).
A basis of K/Q is {1,

√
d}. Addition/subtraction is done

componentwise, multiplication by scalar easy. �

Rem. More generally, a number field is Q[X]/(f (X)) with f (X) ∈ Z[X],
f (X) irreducible. Here, f (X) = X2 − d.
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Conjugates, etc.

Def. Conjugate of α = a + b
√

d is α′ = a− b
√

d;
norm: N(α) = αα′ = a2 − db2

trace: Tr(α) = α+ α′ = 2a).

Prop.
(i) Tr(x + y) = Tr(x) + Tr(y) ;
(ii) N(xy) = N(x)N(y) ;
(iii) N(x) = 0⇔ x = 0.

Prop. K has two Q-automorphisms, Id and conjugation
σ(a + b

√
d) = a− b

√
d.
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Minimal polynomial

Def. Minimal polynmial Mα(X) of α = a + b
√

d is the monic P of
minimal degree s.t. P(a + b

√
d) = 0.

Prop. Let α = a + b
√

d.
(i) If b = 0, Mα(X) = X − a; if b 6= 0, then

Mα(X) = X2 − 2aX + a2 − db2.

(ii) All Q(X) ∈ Q[X] s.t. Q(α) = 0 is a multiple of Mα in Q[X].
Proof.
(i) For b 6= 0, α 6∈ Q, hence deg(Mα(X)) > 1.
Let’s try P(X) = AX2 + BX + C:

A(a2 + db2) + Ba + C = 0, 2Aab + Bb = 0

from which
P(X) = A(X2 − 2aX + a2 − db2).

(ii) use euclidean division of polynomials (classical).�
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Algebraic integers

Def. An element of K = Q(
√

d) is an algebraic integer iff it satisfies a
monic algebraic equation with coeffcients in Z. These numbers form
OK .

Rem. Generalizes the concept of integers in Q.

Thm. OK is a commutative ring with unit.

Thm. α = a + b
√

d ∈ OK iff Mα(X) = X2 − 2aX + a2 − db2 ∈ Z[X],
equivalently Tr(α),N(α) ∈ Z.

Rem. Very general results for any number field.
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A basis for OK (1/2)

Thm. OK = Z[ω] = {a + bω; a ∈ Z, b ∈ Z} where

ω =





√
d if d ≡ 2, 3 mod 4,

1 +
√

d
2

if d ≡ 1 mod 4.

Ex.
1. d = −1 : K = Q(i); OK = Z[i] ;
2. d = 2 : OK = Z[

√
2] ;

3. d = 5 : OK = Z[(1 +
√

5)/2].

Rem. Not all number fields have integral power basis. For instance,
this is almost never the case for Q( 3

√
d).
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A basis for OK (2/2)

Proof: let x = a + b
√

d ∈ OK . ∃u, h in Z. s.t.

Tr(x) = 2a = u, N(x) = a2 − db2 = h.

⇒ 4db2 = u2 − 4h, or d(2b)2 ∈ Z.
⇒ 2b = v with v ∈ Z, from which

u2 − dv2 = 4h ≡ 0 (mod 4).

u is even⇒ v even, since d 6≡ 0 (mod 4).
u is odd⇒ v odd, only if d ≡ 1 mod 4. If yes, u = 2u′ + 1, v = 2v′ + 1
and

a + b
√

d =
2u′ + 1

2
+
√

d
2v′ + 1

2
= (u′ − v′) + (2v′ + 1)ω.

Converse true using elementary calculations. �
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Discriminant

Def. The discriminant of [α1, α2] = α1Z+ α2Z with αi ∈ OK is

Disc([α1, α2]) =

∣∣∣∣
α1 α2

σ(α1) σ(α2)

∣∣∣∣
2

.

Prop. The discriminant D of K is the discriminant of [1, ω], i.e., D = d
if d ≡ 1 mod 4 and D = 4d otherwise.
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B) Units

Def. unit = invertible element in OK .

Prop. U = {x unit} = {x ∈ OK ,N(x) = ±1}; U is a multiplicative
group.

Proof: If x is invertible in OK : xy = 1 and

N(xy) = 1 = N(x)N(y)

and N(x) is in Z.
If x = a + b

√
d has norm ε = ±1, its inverse is ε(a− b

√
d). �

Thm. (Dirichlet) Let f (X) ∈ Q(X) with r1 real roots and 2r2 complex
roots. Then U = {±1} × Zr1+r2−1.

Rem. All units can be of norm 1, or not; U+ is either the full U , or a
subgroup of index 2.
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The case of imaginary quadratic fields (d < 0)

Thm. If d = −1, #U = 4; if d = −3, #U = 6; otherwise #U = 2.
Proof: Write d = −d′ < 0; ε = a + bω is a unit iff

N(ε) = N(a + bω) = ±1, with a, b ∈ Z.

If d ≡ 2, 3 (mod 4), d′ ≡ 2, 1 (mod 4) and
N(a + bω) = a2 − db2 = a2 + d′b2 = ±1. Only +1 is possible and as
soon as d′ ≥ 2, the only solution is ε = ±1. If d′ = 1, U = {±1,±i}.
If d ≡ 1 (mod 4), d′ ≡ 3 (mod 4) and
N(a + bω) = (a + b

2 )
2 + b2

4 d′ = +1. If d′ = 3, solutions are b = 0,

a = ±1 and b = ±1, a = ± 1
2 − b

2 , and U =
{(

1+i
√

3
2

)m
, 0 ≤ m ≤ 5

}
. If

d′ > 3 (i.r., d′ ≥ 7), the only solution is a = ±1, b = 0. �
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The case of real quadratic fields (d > 0)

Thm. U = {±1} × Z. There exists a unit ε > 1, the fundamental unit,
s.t. all η ∈ U can be written η = ±εm with m ∈ Z.

Rem. in fact, ε = min{u ∈ U , u > 1}.

Rem. the fundamental unit is computed using the Pell Fermat
equation, or x2 − dy2 = ±1 or ± 4. It can be solved using continued
fractions.
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C) Factoring in OK

Goal: generalize factorization over Z.

Be careful: units are trouble shooters and deserve a special
treatment. Unique factorization is rather rare.

Def. x ∈ OK is irreducible iff x is not a unit and x = yz implies y or z is
a unit.

Ex. In K = Q(
√
−5), let us prove that 2 is irreducible.

If 2 = yz, we get 4 = N(y)N(z), therefore N(y) | 4. Write
y = u + v

√
−5, of norm

N(u + v
√
−5) = u2 + 5v2.

The number 2 cannot be a norm and the only possible solution are
±2 of norm 4. Therefore N(y) = 1 (and y is a unit) or N(y) = 4 (and z
is a unit).
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Associates

Def. x, x′ ∈ A are associate iff there is some unit u s.t. x′ = ux.
Association is an equivalence relation.

Prop. If x is irreducible in A and x′ associate of x, then x′ is
irreducible in A.

Def. π in A is prime iff π | αβ implies π | α or π | β.

Thm. A prime number is irreducible.

Proof: let x be prime, written as x = ab. We have x | a or x | b. If x | a,
one has a = xc with c in A. We get a(1− bc) = 0 and since a 6= 0,
1 = bc and b is a unit. �
Ex. (cont’d) One has

6 = 2× 3 = (1 +
√
−5)(1−

√
−5).

2 is irreducible, but not prime, because 2 doesn’t divide any of
1±
√
−5: N(2) = 4, but N(1±

√
−5) = 6.
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Factoring over a number field: general theorems

The integer ring of a number field has the so-called Noetherian
property.

Thm. If A is Noetherian, all elements can be written as a finite
product of irreducible elements.

Thm. The Noetherian ring A has unique factorization iff irreducible
implies prime.

Thm. If A is principal, factorization is unique.

Thm. If A is euclidean, it is principal (copy the proof for Z).
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Euclidean rings

Def. A is euclidean iff there exists φ : A× → N s.t. for x, y ∈ A×:
• x | y⇒ φ(x) ≤ φ(y) ;
• ∃q, r ∈ A×, x = yq + r, with r = 0 or φ(r) < φ(y).

This is rather rare.

Thm. If d < 0, OK is euclidean iff d ∈ {−1,−2,−3,−7,−11}.

Thm. If d > 0, OK is euclidean iff

d ∈ {2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73}.
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II. Factorization in (euclidean) quadratic fields

We consider the case where Q(
√

d) is euclidean.

Thm. Let d be such that Q(
√

d) is euclidean and p be a rational
prime.

(a) If
(d

p

)
= −1, p is irreducible in OK and p is unramified.

(b) If
(d

p

)
= 1, p = uπpπ

′
p with u ∈ U , πp = x− y

√
d and π′p = x + y

√
d

are two irreducible non associate factors in OK ; p splits.

(c) If
(d

p

)
= 0, p = u(x + y

√
d)2 where x + y

√
d is irreducible in OK and

u ∈ U ; p is ramified.

Rem. For small p’s, any trivial algorithm will work.

F. Morain – École polytechnique – MPRI – cours 2.12.2 – 2019-2020 18/32

A numerical example: Q(
√

6)

Fundamental unit: ε = 5 + 2
√

6.

2 = −(2 +
√

6)(2−
√

6) = (5− 2
√

6)(2 +
√

6)2 = ε−1(2 +
√

6)2.

Let’s factor ξ = 1010 + 490
√

6. We first have

N(ξ) = 10102 − 6 · 4902 = −420500 = −22 · 53 · 292,

5 = −(1 +
√

6)(1−
√

6), 29 = −(5 + 3
√

6)(5− 3
√

6); therefore

ξ = u(2 +
√

6)α(1 +
√

6)γ1(1−
√

6)δ1(5 + 3
√

6)γ2(5− 3
√

6)δ2 .

α = 2, ξ1 = ξ

(2+
√

6)2 = −415 + 215
√

6

γ1 = 1, ξ2 = ξ1

1+
√

6
= 341− 126

√
6

δ1 = 2, ξ3 = ξ2

(1−
√

6)2 = 35− 8
√

6

γ2 = 2, ξ4 = ξ3

(5+3
√

6)2 = 5− 2
√

6
γ3 = 0, u = ξ4 = ε−1

ξ = ε−1(2 +
√

6)2(1 +
√

6)(1−
√

6)2(5 + 3
√

6)2.
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III. NFS

Pollard’s idea: let f (X) ∈ Z[X] and m s.t.

f (m) ≡ 0 mod N.

Let θ be a root of f in C and K = Q[X]/(f (X)) = Q(θ).
To simplify things: OK is supposed to be Z[θ] and euclidean. Let

φ : Z[θ] → Z/NZ
θ 7→ m mod N.

φ is a ring homomorphism.
Look for algebraic integers of the form a− bθ s.t.

a− bθ =
∏

π∈BK

πvπ(a−bθ)

where vπ(a− bθ) ∈ Z and

a− bm =
∏

p∈B
pwp(a−bm)

with B a prime basis and wp(a− bm) ∈ Z.
F. Morain – École polytechnique – MPRI – cours 2.12.2 – 2019-2020 20/32



NFS: basic idea (cont’d)

We then look for A s.t. ∏

(a,b)∈A
(a− bθ)

is a square in OK and at the same time
∏

(a,b)∈A
(a− bm)

is a square in Z. Then
∏

(a,b)∈A
(a− bm) = Z2,

∏

(a,b)∈A
(a− bθ) = (A− Bθ)2.

Applying φ, we get:

φ((A− Bθ)2) ≡ (A− Bm)2 ≡ Z2 mod N

and gcd(A− Bm± Z,N) might factor N.
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Numerical example

Let’s factor N = 58 − 6 = 390619 = m2 − 6 (surprise!) with
m = 54 = 625, hence we will work in Q(θ) = Q[X]/(f (X)) with
f (X) = X2 − 6 and θ =

√
6.

Rational basis: B = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29}.
Algebraic basis: BK given as

p cp π, π′

2 0 2 + θ = π2
3 0 3 + θ = π3
5 ±1 1 + θ = π5, 1− θ = π′5

19 ±5 5 + θ = π19, 5− θ = π′19
23 ±11 1 + 2θ = π23, 1− 2θ = π′23
29 ±8 5 + 3θ = π29, 5− 3θ = π′29

with cp s.t. f (cp) ≡ 0 mod p. All these obtained via factoring of
N(a− bθ) for small a’s and b’s.

Free relations: 2 = ε−1(2 + θ)2, or 5 = −π5π
′
5.
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Sieving

N(a− bθ) = a2 − 6b2 = b2f (a/b).

Function Sieve(F,A,B)
for b = 1 to B do

for a = −A to A− 1 do
T[a]← a2 − 6b2;

for p ∈ B do
for cp root of f mod p do

x← smallest z ≡ bcp mod p and z ≥ −A;
while x ≤ A do

T[x]← T[x]/p;
x← x + p;

for a = −A to A− 1 do
if T[a] = ±1 then

refactor a2 − 6b2 over B;
store relation if needed;
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Results for |a| ≤ 60, 1 ≤ b ≤ 30

rel a b N(a− bθ) a− bθ a− bm
L1 2 0 22 ε−1 · π2

2 2
L2 3 0 32 ε−1 · π2

3 3
L3 5 0 52 −π5 · π′5 5
L4 19 0 192 π19 · π′19 19
L5 23 0 232 −π23 · π′23 23
L6 29 0 292 −π29 · π′29 29
L7 −21 1 3 · 5 · 29 −ε−1 · π3 · π5 · π29 −2 · 17 · 19
L8 −12 1 2 · 3 · 23 −ε−1 · π2 · π3 · π23 −72 · 13
L9 −5 1 19 −π19 −2 · 32 · 5 · 7
L10 −2 1 −2 −π2 −3 · 11 · 19
L11 0 1 −2 · 3 −ε−1 · π2 · π3 −54

L12 1 1 −5 π′5 −24 · 3 · 13
L13 4 1 2 · 5 ε−1 · π2 · π5 −33 · 23
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More results

rel a b N(a− bθ) a− bθ a− bm
L14 9 1 3 · 52 ε−1 · π3 · π2

5 −23 · 7 · 11
L15 16 1 2 · 53 −π2 · π′35 −3 · 7 · 29
L16 −10 3 2 · 23 π2 · π′23 −5 · 13 · 29
L17 5 3 −29 π′29 −2 · 5 · 11 · 17
L18 13 3 5 · 23 π′5 · π′23 −2 · 72 · 19
L19 1 4 −5 · 19 −π5 · π′19 −3 · 72 · 17
L20 25 4 232 π′223 −32 · 52 · 11
L21 −11 5 −29 ε · π′29 −26 · 72

L22 −7 9 −19 · 23 π19 · π′23 −29 · 11
L23 −27 11 3 −ε · π3 −2 · 7 · 17 · 29
L24 −2 11 −2 · 192 −π2 · π′219 −13 · 232

L25 33 13 3 · 52 ε−1 · π3 · π′25 −22 · 7 · 172
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The associated matrix




u0 ε π2 π3 π5 π
′
5 π19 π

′
19 π23 π

′
23 π29 π

′
29 2 3 5 7 11 13 17 19 23 29

L1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
L2 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
L3 1 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
L4 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
L5 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
L6 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1
L7 0 1 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0
L8 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
L9 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0
L10 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0
L11 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L12 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0
L13 1 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0

· · ·



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Some dependency relation

L3 · L6 · L7 · L10 · L15 · L17 · L25 yields

φ
(
(5 + 2θ)−1(2 + θ)(3 + θ)(1 + θ)(1− θ)3(5 + 3θ)(5− 3θ)

)2

≡
(
22 · 3 · 5 · 7 · 11 · 172 · 19 · 29

)2
(mod N)

and
22 · 3 · 5 · 7 · 11 · 172 · 19 · 29 ≡ 148603 (mod N),

gives 2420162 ≡ 1486032 mod N and gcd(242016− 148603,N) = 1,
L1 · L2 · L3 · L4 · L9 · L10 · L14 · L15 · L19 · L23 leads to

φ
(
(5 + 2θ)−1(2 + θ)2(3 + θ)2(1 + θ)2(1− θ)2(5 + θ)(5− θ)

)2

≡
(
23 · 33 · 5 · 73 · 11 · 17 · 19 · 29

)2
(mod N)

or 611792 ≡ 813142 mod N, gcd(61179− 81314,N) = 4027.
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Working without units

We can use factorization modulo units. We will end up with relations

N(A + B
√

6) = εm = 1

and hope to get a square.

If we don’t know ε, we can try to extract a squareroot of

η = A + B
√

6

using brute force: η = ξ2 = (x + y
√

6)2, or:
{

x2 − 6y2 = ±1
x2 + 6y2 = A

which readily gives x2 = (A± 1)/2 which is easily solved over Z.

Over a general number field, computing units is in general difficult,
and some workaround has been found.
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A bit of complexity

SNFS: N = re ± s with r and s small.
Choose an extension of degree d. Put k = de/de, m = rk and
c = srkd−e s.t. md ≡ c mod N. Put f (X) = Xd − c and use
K = Q(X)/(f (X)) = Q(θ).

N(a− bθ) = bdf (a/b).

For 0 ≤ α ≤ 1 and β > 0, we define
LN [α, β] = exp((β + o(1))(log n)α(log log n)1−α), sometimes
simplified to LN [α].

Thm. The computing time is LN [1/2,
√

2/d].

Thm. Let d vary with N as:

d = K(logN)ε(log logN)1−ε.

Optimal values are ε = 1/3, K = (2/3)−1/3

LN [1/3, exp(2(2/3)2/3)].
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GNFS

For a general N, we need f (X) representing N and f is not sparse,
nor “small”.
Basic thing is to write N in base m for m ≈ N1/d and

f (X) = Xd + ad−1Xd−1 + · · ·+ a0.

Conj. GNFS has cost LN [1/3, (64/9)1/3] for optimal d as function of
N.

Some problems:
• A lot of effort was put in searching for

f (X) = adXd + ad−1Xd−1 + · · ·+ a0

with ai ≈ N1/(d+1) and ai “small” with many properties.
• Properties related to units and/or factorization solved using

characters (Adleman). See LNM 1554 for details.
• As usual, linear algebra causes some trouble.
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RSA-768 with NFS

• Who? Thorsten Kleinjung, Kazumaro Aoki, Jens Franke, Arjen K.
Lenstra, Emmanuel Thomé, Joppe W. Bos, Pierrick Gaudry, Alexander
Kruppa, Peter L. Montgomery, Dag Arne Osvik, Herman te Riele,
Andrey Timofeev, and Paul Zimmermann.

• Sieving: August 2007 til April 2009 (about 1500 AMD64 years),
several countries/continents. 64 334 489 730 relations (38%
INRIA, 30% EPFL, 15% NTT, 8% Bonn, 3.5% CWI, 5.5%
others).

• Linear algebra (after filtering): 192 796 550× 192 795 550 (total
weight 27 797 115 920) using 155 core years in 119 calendar
days (block Wiedemann in parallel).
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Conclusions

• A broad view of integer factorization.

• Programs are now available (cado-nfs, GMP-ECM).

• discrete log algorithms as companions to integer factorization.
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