MPRI — Cours 2-12-2

Eg%POLYTECHNIQUE F. Morain % W INRITA

Lecture II: discrete logarithm in generic groups

2011/10/11

F. Morain — Ecole polytechnique — MPRI — cours 2-12-2 — 2009-2010

Contents

. Introduction.

[I. The Pohlig-Hellman reduction.
lll. Baby steps giant steps.

IV. Pollard’s p.

V. Nechaev/Shoup theorem (a la Stinson).

F. Morain — Ecole polytechnique — MPRI — cours 2-12-2 — 2009-2010 2117

l. Introduction

Def. (DLP) Given G = (g) of order nand a € G, find x € [0..n[s.t.
a=g~

Adaptive and non-adaptive: ais given beforehand, or only after
some precomputation have been done (see Adleman’s algorithm
later).

Goal: find a resistant group.

Rem. DL is easy in (Z/NZ, +), since a = xg mod N is solvable in
polynomial time (Euclid).

Relatively easy groups: (subexponential methods) finite fields,
curves of very large genus, class groups of number fields.

Probably difficult groups: (exponential methods only?) elliptic
curves.

F. Morain — Ecole polytechnique — MPRI — cours 2-12-2 — 2009-2010

Variants of the DL problem

Decisional DH problem: given (g, g%, g°, ¢°), do we have
¢ = ab mod n?

Computational DH problem: given (g, g%, g°), compute g?.
DL problem: given (g, @?), find a.
Prop. DL = CDH =- DCDH.

Thm. converse true for a large class of groups (Maurer & Wolf — see
Smith’s part).

More problems: ¢-SDH (given g, g%, ..., g® , compute g®).

Rem. Generalized problems on pairings.

F. Morain — Ecole polytechnique — MPRI — cours 2-12-2 — 2009-2010 4/17

Generic groups

Rem. generic means we cannot use specific properties of G, just
group operations.

Known generic solutions:
e enumeration: O(n);
e Shanks: deterministic time and space O(/n);
e Pollard: probabilistic time O(,/n), space O(1) elements of G.

Rem. All these algorithms can be more or less distributed.

F. Morain — Ecole polytechnique — MPRI — cours 2-12-2 — 2009-2010

ll. The Pohlig-Hellman reduction

Idea: reduce the problem to the case n prime.
n=]]p"
[

Solving g* = ais equivalent to knowing x mod n, i.e. X mod p;
(chinese remainder theorem).

" for all i

Idea: let p* || nand m= n/p®. Then b = a" is in the cyclic group of
ordre p* generated by g™. We can find the log of b in this group,
which yields x mod p®.

Cost: O(max(DL(p%))) = O(max(DL(p))).

Consequence: in DH, n must have at least one large prime factor.

F. Morain — Ecole polytechnique — MPRI — cours 2-12-2 — 2009-2010 6/17

lll. Baby steps giant steps (1/2)

Shanks:
x=cu+d,0<d<u 0<c<n/u
g‘=asalg ') =9"
Step 1 (baby steps) : compute B = {g%,0 < d < u};
Step 2 (giant steps) :
e compute f = g4 =1/g"%
e h=g

e forc=0..n/u
{will contain af ¢}
if h € B then stop; else h=h-f.

End: h=af® = g® hence x=cu+d.

Number of group operations: C, = u+ n/u, minimized for u = \/n.

F. Morain — Ecole polytechnique — MPRI — cours 2-12-2 — 2009-2010

Shanks (2/2)

In the worst case, Step 2 requires n/u membership tests.

B insertions | membership tests
list ux O(1) 2 O(u)
sorted O(ulogu) & O(logu)
hash table | ux O(1) 1 0(1)

Prop . If membership test = O(1), then dominant term is C,, minimal
for u = y/n = (deterministic) time and space O(/n).

Rem. all kinds of trade-offs possible if low memory available.

F. Morain — Ecole polytechnique — MPRI — cours 2-12-2 — 2009-2010 8/17

IV. Pollard’s p

Prop. Letf : E — E, #E = m; Xp11 = f(Xn) with Xo € E. The
functional digraph of X is:

X1

Xy

Xo X1 X X1
Xu+)\fl

Ex1. If E,, = G finite group with m elements, and a € G of ordre N,
f(x) = axand xo = a, (X,) purely periodic, i.e., x =0, and A = N.

Ex2. En=Z/117Z, f : X +— x? + 1 mod 11:
9

0—1—2—>5—4—>6+—7

U

3—10+—38

F. Morain — Ecole polytechnique — MPRI — cours 2-12-2 — 2009-2010

Epact

Thm. (Flajolet, Odlyzko, 1990) When m — oo

XNﬁN,/%nxo.esz?\/m.

Prop. There exists a unique e > 0 (epact) s.t. p < e< A+ p and
Xoe = Xe. It is the smallest non-zero multiple of A that is > u: if 4 = 0,

e=Xandif u>0,e=[£]\
Thm. e~ /%™ ~ 1.03,/m.
Floyd’s algorithm:

X <- XO; Y <- X0; e <- 0
repeat

X< f£(X); Y < f(f(Y)); e <- e+l
until X =Y,

F. Morain — Ecole polytechnique — MPRI — cours 2-12-2 — 2009-2010

10117

Application to the discrete log (a la Teske)

Compute the DL of h = g*:
e Choose yo = g*°h™ for ag, 8o €r [0..N[;
e Use a function F s.t. given y = g*h?, one can compute
efficiently F(y) = g*'h?’;
e Compute the sequence yi;+1 = F(yk) and the exponents
Yk = ge<hScuntily; = ;.
Wheny; =y;, one gets

aj + X = o5 + Fxmod n

or
x = (aj — i)(f —)" mod n

(with very high probability ged(5 — 5, n) = 1).

F. Morain — Ecole polytechnique — MPRI — cours 2-12-2 — 2009-2010

Two versions

Storing a few points:
e Compute r random points My = g*h% for 1 < k <r;
euseH:G—{1,...,r};
o define F(Y) =Y - Myy).

Experimentally, r = 20 is enough to have a large mixing of points.
Under a plausible model, this leads to a O(,/n) method (see Teske).

Storing a lot of points:
(van Oorschot and Wiener)

Say a distinguished has some special form; we can store all of them

to speed up the process.

F. Morain — Ecole polytechnique — MPRI — cours 2-12-2 — 2009-2010

12/17

V. Nechaev/Shoup theorem (a la Stinson)

Encoding function: injective map o : Z/nZ — Swhere Sis a set of
binary strings s.t. #S> n.

Ex. G=(Z/9Z)* = (g),n=q— 1, 0 : x— gmod g, Scan be {0, 1}*
where q < 2°.

Wanted: a generic algorithm should work for any o, in other words it
receives o as an input.

Oracle O: given o(i) and o(j), computes o(ci + dj mod n) for any
given known integers c and d. This is the only operation permitted.

Game: given o1 = o(1) and o, = o(x) for random x, GENLOG
succeeds if it outputs x.

Ex. Pollard’s algorithm belongs to this class.

Reference: Cryptography, Theory and Practice, 2nd edition.

F. Morain — Ecole polytechnique — MPRI — cours 2-12-2 — 2009-2010

Stinson (2/5)

GENLOG produces (01,03, ...,0m) using O where
oi = o(Ci + xdi mod n),
with (c1,d;) = (1,0) and (¢, d2) = (0,1), (¢, di) € Z/nZ x Z/nZ.

Two cases: non-adaptive (choose ¢, di before receiving o(x)) or
adaptive.

Thm. Let 5 = Proba(GenlLog succeeds). For 5 > § > 0, one must
have m = Q(n'/?).

13/17 F. Morain — Ecole polytechnique — MPRI — cours 2-12-2 — 2009-2010 14/17

Stinson (3/5)

The non-adaptive case:

Step 1: (precomputations) GenLog chooses
C=A{(c,d),1<i<m}CZ/nZ xZ/nZ
Step 2: upon receiving o(x), computes all o; = o(c; + xd;).

Step 3: check whether o; = g for some (i,); since o is injective,
oi = oj iff ¢ + xdi = ¢ + xdj, return x.

Step 4: return a random value y.

F. Morain — Ecole polytechnique — MPRI — cours 2-12-2 — 2009-2010

Stinson (4/5)

Analysis:
Good(C) = {(¢ — ¢)/(di — d;)},#Good(C) =G <m(m—1)/2.
If x € Good(C), GenLog returns x, otherwise some'y.

« is the event “x € Good(C)™

Proba(5) Proba(/3| o:) Proba(a) + Proba(3|a)Proba(a)

g 1 n—g
1><H—|—7n_g>< o
G+1_mm-1)/2+1

n - n '

= if proba > § > 0, then mmust be Q(n%?). O

15/17 F. Morain — Ecole polytechnique — MPRI — cours 2-12-2 — 2009-2010 16/17

Stinson (5/5)

The adaptive case: For1<i<m,(= {0;,1<j<i}. Thenacan
be computed at time i if a € Good(G;). If a ¢ Good((;), then
a € Z/nZ — Good(C;) with proba 1/(n — #Good(C)).

And now, what? this result tells you (only) that if you want an
algorithm that is faster than Pollard’s p or Shanks, then you have to
work harder. ..

F. Morain — Ecole polytechnique — MPRI — cours 2-12-2 — 2009-2010 17/17

