MPRI – Cours 2-12-2

F. Morain

Lecture II: discrete logarithm in generic groups

2011/10/11

F. Morain – École polytechnique – MPRI – cours 2-12-2 – 2009-2010

I. Introduction

Def. (DLP) Given $G = \langle g \rangle$ of order *n* and $a \in G$, find $x \in [0..n[$ s.t. $a = g^x$.

Adaptive and non-adaptive: *a* is given beforehand, or only after some precomputation have been done (see Adleman's algorithm later).

Goal: find a resistant group.

Rem. DL is easy in $(\mathbb{Z}/N\mathbb{Z}, +)$, since $a = xg \mod N$ is solvable in polynomial time (Euclid).

Relatively easy groups: (subexponential methods) finite fields, curves of very large genus, class groups of number fields.

Probably difficult groups: (exponential methods only?) elliptic curves.

I. Introduction.

II. The Pohlig-Hellman reduction.

III. Baby steps giant steps.

IV. Pollard's ρ .

V. Nechaev/Shoup theorem (à la Stinson).

F. Morain – École polytechnique – MPRI – cours 2-12-2 – 2009-2010

Variants of the DL problem

Decisional DH problem: given (g, g^a, g^b, g^c) , do we have $c = ab \mod n$?

Computational DH problem: given (g, g^a, g^b) , compute g^{ab} .

DL problem: given (g, g^a) , find *a*.

Prop. $DL \Rightarrow CDH \Rightarrow DCDH$.

Thm. converse true for a large class of groups (Maurer & Wolf – see Smith's part).

More problems: ℓ -SDH (given $g, g^{\alpha}, \ldots, g^{\alpha^{\ell}}$, compute $g^{\alpha^{\ell+1}}$).

Rem. Generalized problems on pairings.

1/17

Generic groups

Rem. generic means we cannot use specific properties of *G*, just group operations.

Known generic solutions:

- enumeration: *O*(*n*);
- Shanks: deterministic time and space $O(\sqrt{n})$;
- Pollard: probabilistic time $O(\sqrt{n})$, space O(1) elements of *G*.

Rem. All these algorithms can be more or less distributed.

F. Morain - École polytechnique - MPRI - cours 2-12-2 - 2009-2010

III. Baby steps giant steps (1/2)

Shanks:

 $x = cu + d, 0 \le d < u, \quad 0 \le c < n/u$ $g^{x} = a \Leftrightarrow a(g^{-u})^{c} = g^{d}.$

Step 1 (baby steps): compute $\mathcal{B} = \{g^d, 0 \le d < u\};$

Step 2 (giant steps):

- compute $f = g^{-u} = 1/g^{u}$;
- h = a;

• for c = 0..n/u{will contain af^c } if $h \in \mathcal{B}$ then stop; else $h = h \cdot f$. End: $h = af^c = g^d$ hence x = cu + d.

Number of group operations: $C_o = u + n/u$, minimized for $u = \sqrt{n}$.

II. The Pohlig-Hellman reduction

Idea: reduce the problem to the case n prime.

 $n=\prod_i p_i^{\alpha_i}$

Solving $g^x = a$ is equivalent to knowing $x \mod n$, i.e. $x \mod p_i^{\alpha_i}$ for all i (chinese remainder theorem).

Idea: let $p^{\alpha} || n$ and $m = n/p^{\alpha}$. Then $b = a^m$ is in the cyclic group of ordre p^{α} generated by g^m . We can find the log of *b* in this group, which yields $x \mod p^{\alpha}$.

Cost: $O(\max(DL(p^{\alpha}))) = O(\max(DL(p))).$

Consequence: in DH, *n* must have at least one large prime factor.

F. Morain – École polytechnique – MPRI – cours 2-12-2 – 2009-2010

Shanks (2/2)

In the worst case, Step 2 requires n/u membership tests.

\mathcal{B}	insertions	membership tests
list	$u \times O(1)$	$\frac{n}{u} O(u)$
sorted	$O(u \log u)$	$\frac{n}{u}O(\log u)$
hash table	$u \times O(1)$	$\frac{n}{u} O(1)$

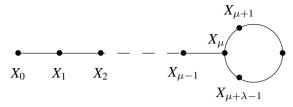
Prop. If membership test = O(1), then dominant term is C_o , minimal for $u = \sqrt{n} \Rightarrow$ (deterministic) time and space $O(\sqrt{n})$.

Rem. all kinds of trade-offs possible if low memory available.

5/17

IV. Pollard's ρ

Prop. Let $f : E \to E$, #E = m; $X_{n+1} = f(X_n)$ with $X_0 \in E$. The functional digraph of *X* is:



Ex1. If $E_m = G$ finite group with *m* elements, and $a \in G$ of ordre *N*, f(x) = ax and $x_0 = a$, (x_n) purely periodic, i.e., $\mu = 0$, and $\lambda = N$.

Ex2.
$$E_m = \mathbb{Z}/11\mathbb{Z}, f : x \mapsto x^2 + 1 \mod 11$$
:

$$0 \longrightarrow 1 \longrightarrow 2 \longrightarrow 5 \longrightarrow 4 \longrightarrow 6 \longleftarrow 7$$

$$3 \longrightarrow 10 \longleftarrow 8$$

F. Morain – École polytechnique – MPRI – cours 2-12-2 – 2009-2010

Application to the discrete log (à la Teske)

Compute the DL of $h = g^x$:

- Choose $y_0 = g^{\alpha_0} h^{\beta_0}$ for $\alpha_0, \beta_0 \in_R [0..n[;$
- Use a function *F* s.t. given $y = g^{\alpha}h^{\beta}$, one can compute efficiently $F(y) = g^{\alpha'}h^{\beta'}$;
- Compute the sequence $y_{k+1} = F(y_k)$ and the exponents $y_k = g^{\alpha_k} h^{\beta_k}$ until $y_i = y_j$.

When $y_i = y_j$, one gets

$$\alpha_i + \beta_i x \equiv \alpha_i + \beta_j x \bmod n$$

or

$$x \equiv (\alpha_j - \alpha_i)(\beta_i - \beta_j)^{-1} \mod n$$

(with very high probability $gcd(\beta_i - \beta_j, n) = 1$).

Epact

Thm. (Flajolet, Odlyzko, 1990) When $m \to \infty$

$$\overline{\lambda} \sim \overline{\mu} \sim \sqrt{\frac{\pi m}{8}} \approx 0.627 \sqrt{m}.$$

Prop. There exists a unique e > 0 (epact) s.t. $\mu \le e < \lambda + \mu$ and $X_{2e} = X_e$. It is the smallest non-zero multiple of λ that is $\ge \mu$: if $\mu = 0$, $e = \lambda$ and if $\mu > 0$, $e = \lceil \frac{\mu}{\lambda} \rceil \lambda$. **Thm.** $\overline{e} \sim \sqrt{\frac{\pi^5 m}{288}} \approx 1.03\sqrt{m}$.

Floyd's algorithm:

F. Morain – École polytechnique – MPRI – cours 2-12-2 – 2009-2010

Two versions

Storing a few points:

- Compute *r* random points $M_k = g^{\gamma_k} h^{\delta_k}$ for $1 \le k \le r$;
- use $\mathcal{H}: G \rightarrow \{1, \ldots, r\};$
- define $F(Y) = Y \cdot M_{\mathcal{H}(Y)}$.

Experimentally, r = 20 is enough to have a large mixing of points. Under a plausible model, this leads to a $O(\sqrt{n})$ method (see Teske).

Storing a lot of points:

(van Oorschot and Wiener) Say a distinguished has some special form; we can store all of them to speed up the process.

9/17

V. Nechaev/Shoup theorem (à la Stinson)

Encoding function: injective map $\sigma : \mathbb{Z}/n\mathbb{Z} \to S$ where *S* is a set of binary strings s.t. $\#S \ge n$.

Ex. $G = (\mathbb{Z}/q\mathbb{Z})^* = \langle g \rangle$, n = q - 1, $\sigma : x \mapsto g^x \mod q$, S can be $\{0, 1\}^{\ell}$ where $q < 2^{\ell}$.

Wanted: a generic algorithm should work for any σ , in other words it receives σ as an input.

Oracle \mathcal{O} : given $\sigma(i)$ and $\sigma(j)$, computes $\sigma(ci \pm dj \mod n)$ for any given known integers *c* and *d*. This is the only operation permitted.

Game: given $\sigma_1 = \sigma(1)$ and $\sigma_2 = \sigma(x)$ for random *x*, GENLOG succeeds if it outputs *x*.

Ex. Pollard's algorithm belongs to this class.

Reference: Cryptography, Theory and Practice, 2nd edition.

F. Morain – École polytechnique – MPRI – cours 2-12-2 – 2009-2010

Stinson (3/5)

The non-adaptive case:

Step 1: (precomputations) GenLog chooses

 $\mathcal{C} = \{(c_i, d_i), 1 \leq i \leq m\} \subset \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$

Step 2: upon receiving $\sigma(x)$, computes all $\sigma_i = \sigma(c_i + xd_i)$.

Step 3: check whether $\sigma_i = \sigma_j$ for some (i, j); since σ is injective, $\sigma_i = \sigma_j$ iff $c_i + xd_i \equiv c_j + xd_j$, return *x*.

Step 4: return a random value *y*.

Stinson (2/5)

GENLOG produces $(\sigma_1, \sigma_2, \ldots, \sigma_m)$ using \mathcal{O} where

 $\sigma_i = \sigma(c_i + xd_i \bmod n),$

with $(c_1, d_1) = (1, 0)$ and $(c_2, d_2) = (0, 1)$, $(c_i, d_i) \in \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$.

Two cases: non-adaptive (choose c_i , d_i before receiving $\sigma(x)$) or adaptive.

Thm. Let $\beta = \text{Proba}(\text{GenLog succeeds})$. For $\beta > \delta > 0$, one must have $m = \Omega(n^{1/2})$.

F. Morain – École polytechnique – MPRI – cours 2-12-2 – 2009-2010

Stinson (4/5)

Analysis:

 $\mathsf{Good}(\mathcal{C}) = \{(c_i - c_j)/(d_i - d_j)\}, \#\mathsf{Good}(\mathcal{C}) = \mathcal{G} \le m(m-1)/2.$

If $x \in \text{Good}(\mathcal{C})$, GenLog returns *x*, otherwise some *y*.

 α is the event " $x \in \text{Good}(\mathcal{C})$ ":

$$Proba(\beta) = Proba(\beta \| \alpha) Proba(\alpha) + Proba(\beta \| \overline{\alpha}) Proba(\overline{\alpha})$$
$$= 1 \times \frac{\mathcal{G}}{n} + \frac{1}{n - \mathcal{G}} \times \frac{n - \mathcal{G}}{n}$$
$$= \frac{\mathcal{G} + 1}{n} \le \frac{m(m - 1)/2 + 1}{n}.$$

 \Rightarrow if proba $> \delta > 0$, then *m* must be $\Omega(n^{1/2})$. \Box

13/17

Stinson (5/5)

The adaptive case: For $1 \le i \le m$, $C_i = \{\sigma_j, 1 \le j \le i\}$. Then *a* can be computed at time *i* if $a \in \text{Good}(C_i)$. If $a \notin \text{Good}(C_i)$, then $a \in \mathbb{Z}/n\mathbb{Z} - \text{Good}(C_i)$ with proba $1/(n - \#\text{Good}(C_i))$.

And now, what? this result tells you (only) that if you want an algorithm that is faster than Pollard's ρ or Shanks, then you have to work harder...

F. Morain – École polytechnique – MPRI – cours 2-12-2 – 2009-2010