
MPRI – Cours 2-12-2

POLYTECHNIQUEECOLE F. Morain

Lecture II: discrete logarithm in generic groups

2011/10/11

F. Morain – École polytechnique – MPRI – cours 2-12-2 – 2009-2010 1/17

Contents

I. Introduction.

II. The Pohlig-Hellman reduction.

III. Baby steps giant steps.

IV. Pollard’s ρ.

V. Nechaev/Shoup theorem (à la Stinson).

F. Morain – École polytechnique – MPRI – cours 2-12-2 – 2009-2010 2/17

I. Introduction

Def. (DLP) Given G = 〈g〉 of order n and a ∈ G, find x ∈ [0..n[s.t.
a = gx.

Adaptive and non-adaptive: a is given beforehand, or only after
some precomputation have been done (see Adleman’s algorithm
later).

Goal: find a resistant group.

Rem. DL is easy in (Z/NZ,+), since a = xg mod N is solvable in
polynomial time (Euclid).

Relatively easy groups: (subexponential methods) finite fields,
curves of very large genus, class groups of number fields.

Probably difficult groups: (exponential methods only?) elliptic
curves.

F. Morain – École polytechnique – MPRI – cours 2-12-2 – 2009-2010 3/17

Variants of the DL problem

Decisional DH problem: given (g, ga, gb, gc), do we have
c = ab mod n?

Computational DH problem: given (g, ga, gb), compute gab.

DL problem: given (g, ga), find a.

Prop. DL ⇒ CDH ⇒ DCDH.

Thm. converse true for a large class of groups (Maurer & Wolf – see
Smith’s part).

More problems: ℓ-SDH (given g, gα, . . . , gαℓ

, compute gαℓ+1
).

Rem. Generalized problems on pairings.

F. Morain – École polytechnique – MPRI – cours 2-12-2 – 2009-2010 4/17

Generic groups

Rem. generic means we cannot use specific properties of G, just
group operations.

Known generic solutions:
• enumeration: O(n);

• Shanks: deterministic time and space O(
√

n);

• Pollard: probabilistic time O(
√

n), space O(1) elements of G.

Rem. All these algorithms can be more or less distributed.

F. Morain – École polytechnique – MPRI – cours 2-12-2 – 2009-2010 5/17

II. The Pohlig-Hellman reduction

Idea: reduce the problem to the case n prime.

n =
∏

i

pαi
i

Solving gx = a is equivalent to knowing x mod n, i.e. x mod pαi
i for all i

(chinese remainder theorem).

Idea: let pα || n and m = n/pα. Then b = am is in the cyclic group of
ordre pα generated by gm. We can find the log of b in this group,
which yields x mod pα.

Cost: O(max(DL(pα))) = O(max(DL(p))).

Consequence: in DH, n must have at least one large prime factor.

F. Morain – École polytechnique – MPRI – cours 2-12-2 – 2009-2010 6/17

III. Baby steps giant steps (1/2)

Shanks:
x = cu + d, 0 ≤ d < u, 0 ≤ c < n/u

gx = a ⇔ a(g−u)c = gd.

Step 1 (baby steps) : compute B = {gd, 0 ≤ d < u};

Step 2 (giant steps) :

• compute f = g−u = 1/gu;

• h = a;

• for c = 0..n/u
{will contain af c}
if h ∈ B then stop; else h = h · f .

End: h = af c = gd hence x = cu + d.

Number of group operations: Co = u + n/u, minimized for u =
√

n.

F. Morain – École polytechnique – MPRI – cours 2-12-2 – 2009-2010 7/17

Shanks (2/2)

In the worst case, Step 2 requires n/u membership tests.

B insertions membership tests
list u × O(1) n

u O(u)
sorted O(u log u) n

u O(log u)
hash table u × O(1) n

u O(1)

Prop . If membership test = O(1), then dominant term is Co, minimal
for u =

√
n ⇒ (deterministic) time and space O(

√
n).

Rem. all kinds of trade-offs possible if low memory available.

F. Morain – École polytechnique – MPRI – cours 2-12-2 – 2009-2010 8/17

IV. Pollard’s ρ

Prop . Let f : E → E, #E = m; Xn+1 = f (Xn) with X0 ∈ E. The
functional digraph of X is:

&%
'$

•
X0

•
X1

•
X2

•
Xµ−1

•
Xµ

•
Xµ+1

•
•

Xµ+λ−1

Ex1. If Em = G finite group with m elements, and a ∈ G of ordre N,
f (x) = ax and x0 = a, (xn) purely periodic, i.e., µ = 0, and λ = N.

Ex2. Em = Z/11Z, f : x 7→ x2 + 1 mod 11:

0 - 1 - 2 - 5 - 4 - 6
 	?6
7�

9

?

10
6

3 - 8�

F. Morain – École polytechnique – MPRI – cours 2-12-2 – 2009-2010 9/17

Epact

Thm. (Flajolet, Odlyzko, 1990) When m → ∞

λ ∼ µ ∼
√

πm
8

≈ 0.627
√

m.

Prop. There exists a unique e > 0 (epact) s.t. µ ≤ e < λ + µ and
X2e = Xe. It is the smallest non-zero multiple of λ that is ≥ µ: if µ = 0,
e = λ and if µ > 0, e = ⌈µ

λ⌉λ.

Thm. e ∼
√

π5m
288 ≈ 1.03

√
m.

Floyd’s algorithm:

X <- X0; Y <- X0; e <- 0;
repeat

X <- f(X); Y <- f(f(Y)); e <- e+1;
until X = Y;

F. Morain – École polytechnique – MPRI – cours 2-12-2 – 2009-2010 10/17

Application to the discrete log (à la Teske)

Compute the DL of h = gx:

• Choose y0 = gα0 hβ0 for α0, β0 ∈R [0..n[;

• Use a function F s.t. given y = gαhβ , one can compute
efficiently F(y) = gα′

hβ′

;

• Compute the sequence yk+1 = F(yk) and the exponents
yk = gαk hβk until yi = yj.

When yi = yj, one gets

αi + βix ≡ αj + βjx mod n

or
x ≡ (αj − αi)(βi − βj)

−1 mod n

(with very high probability gcd(βi − βj, n) = 1).

F. Morain – École polytechnique – MPRI – cours 2-12-2 – 2009-2010 11/17

Two versions

Storing a few points:
• Compute r random points Mk = gγk hδk for 1 ≤ k ≤ r;

• use H : G → {1, . . . , r};

• define F(Y) = Y · MH(Y).

Experimentally, r = 20 is enough to have a large mixing of points.
Under a plausible model, this leads to a O(

√
n) method (see Teske).

Storing a lot of points:
(van Oorschot and Wiener)
Say a distinguished has some special form; we can store all of them
to speed up the process.

F. Morain – École polytechnique – MPRI – cours 2-12-2 – 2009-2010 12/17

V. Nechaev/Shoup theorem (à la Stinson)

Encoding function: injective map σ : Z/nZ → S where S is a set of
binary strings s.t. #S ≥ n.

Ex. G = (Z/qZ)∗ = 〈g〉, n = q − 1, σ : x 7→ gx mod q, S can be {0, 1}ℓ

where q < 2ℓ.

Wanted: a generic algorithm should work for any σ, in other words it
receives σ as an input.

Oracle O: given σ(i) and σ(j), computes σ(ci ± dj mod n) for any
given known integers c and d. This is the only operation permitted.

Game: given σ1 = σ(1) and σ2 = σ(x) for random x, GENLOG

succeeds if it outputs x.

Ex. Pollard’s algorithm belongs to this class.

Reference: Cryptography, Theory and Practice, 2nd edition.

F. Morain – École polytechnique – MPRI – cours 2-12-2 – 2009-2010 13/17

Stinson (2/5)

GENLOG produces (σ1, σ2, . . . , σm) using O where

σi = σ(ci + xdi mod n),

with (c1, d1) = (1, 0) and (c2, d2) = (0, 1), (ci, di) ∈ Z/nZ × Z/nZ.

Two cases: non-adaptive (choose ci, di before receiving σ(x)) or
adaptive.

Thm. Let β = Proba(GenLog succeeds). For β > δ > 0, one must
have m = Ω(n1/2).

F. Morain – École polytechnique – MPRI – cours 2-12-2 – 2009-2010 14/17

Stinson (3/5)

The non-adaptive case:

Step 1: (precomputations) GenLog chooses

C = {(ci, di), 1 ≤ i ≤ m} ⊂ Z/nZ × Z/nZ

Step 2: upon receiving σ(x), computes all σi = σ(ci + xdi).

Step 3: check whether σi = σj for some (i, j); since σ is injective,
σi = σj iff ci + xdi ≡ cj + xdj, return x.

Step 4: return a random value y.

F. Morain – École polytechnique – MPRI – cours 2-12-2 – 2009-2010 15/17

Stinson (4/5)

Analysis:

Good(C) = {(ci − cj)/(di − dj)},#Good(C) = G ≤ m(m − 1)/2.

If x ∈ Good(C), GenLog returns x, otherwise some y.

α is the event “x ∈ Good(C)”:

Proba(β) = Proba(β‖α)Proba(α) + Proba(β‖α)Proba(α)

= 1 × G
n

+
1

n − G × n − G
n

=
G + 1

n
≤ m(m − 1)/2 + 1

n
.

⇒ if proba > δ > 0, then m must be Ω(n1/2). �

F. Morain – École polytechnique – MPRI – cours 2-12-2 – 2009-2010 16/17

Stinson (5/5)

The adaptive case: For 1 ≤ i ≤ m, Ci = {σj, 1 ≤ j ≤ i}. Then a can
be computed at time i if a ∈ Good(Ci). If a 6∈ Good(Ci), then
a ∈ Z/nZ − Good(Ci) with proba 1/(n − #Good(Ci)).

And now, what? this result tells you (only) that if you want an
algorithm that is faster than Pollard’s ρ or Shanks, then you have to
work harder. . .

F. Morain – École polytechnique – MPRI – cours 2-12-2 – 2009-2010 17/17

