MPRI - Cours 2.12.2

PeOLE’
POLYTECHNIQUE
Teck

CENTRE NATIONAL
DE LA RECHERCHE
SCIENTIFIQUE
ET EN AU

F. Morain

= BIINRIA

erche SACLAY - fLE

-DE-FRANCE

Lecture Il: Generic groups

2010/09/21

The slides are available on http://www.lix.polytechnique.fr/Labo/Francois.Morain/MPRI/2010

F. Morain — Ecole polytechnique — MPRI — cours 2.12.2 — 2010-2011 1/16

|. The discrete logarithm in a group

Def. (DLP) Given G = (g) of order n and a € G, find x € [0..n[ s.t.
a=g"

Goal: find a resistant group.

Rem. DL is easy in (Z/NZ,+), since a = xg mod N is solvable in
polynomial time (Euclid).

Relatively easy groups: (subexponential methods) finite fields,
curves of very large genus, class groups of number fields.

Probably difficult groups: (exponential methods only?) elliptic
curves.

F. Morain — Ecole polytechnique — MPRI — cours 2.12.2 — 2010-2011

2/16

Variants of the DL problem

Adaptive and non-adaptive: « is given beforehand, or only after
some precomputation have been done (see Adleman’s algorithm
later).

Decisional DH problem: given (g, g%, ¢°, g°), do we have
¢ = ab mod n?

Computational DH problem: given (g, g%, g’), compute g®.

DL problem: given (g, g%), find a.

Prop. DL = CDH = DCDH.

Thm. converse true for a large class of groups (Maurer & Wolf).
Y £+1

, g%, compute g¢ ).

More problems: ¢-SDH (given g, g°, ...

Rem. Generalized problems on pairings.

F. Morain — Ecole polytechnique — MPRI — cours 2.12.2 — 2010-2011 3/16

Generic groups

Rem. generic means we cannot use specific properties of G, just
group operations.

Known generic solutions:
e enumeration: O(n);
e Shanks: deterministic time and space O(/n);
e Pollard: probabilistic time O(y/n), space O(1) elements of G.

Rem. All these algorithms can be more or less distributed.

F. Morain — Ecole polytechnique — MPRI — cours 2.12.2 — 2010-2011

4/16




A) The Pohlig-Hellman reduction

Idea: reduce the problem to the case n prime.
n= le.o”
(o3

Solving g* = a is equivalent to knowing x mod 7, i.e. x mod p;
(chinese remainder theorem).

"for all i

Idea: let p® || n and m = n/p“. Then b = a™ is in the cyclic group of
ordre p® generated by g™. We can find the log of b in this group,
which yields x mod p©.

Cost: O(max(DL(p®))) = O(max(DL(p))).

Consequence: in DH, n must have at least one large prime factor.

F. Morain — Ecole polytechnique — MPRI — cours 2.12.2 — 2010-2011

5/16

B) Shanks (1/2)

x=cu+d,0<d<u, 0<c<n/u
g=asa(g") =g’
Step 1 (baby steps): compute B = {g¢,0 < d < u};
Step 2 (giant steps):
e computef =g " =1/g"
e h—=ua;

o forc=0.n/u
{will contain af*}
if h € Bthen stop;else h=h-f.

End: i = af¢ = g’ hence x = cu +d.

Number of group operations: C, = u + n/u, minimized for u = /n.

F. Morain — Ecole polytechnique — MPRI — cours 2.12.2 — 2010-2011

6/16

Shanks (2/2)

In the worst case, Step 2 requires n/u membership tests.

B insertions | membership tests
list ux O(1) n/uO(u)
sorted O(ulog) n/uO(log u)
hash table uO(1) n/u0O(1)

Prop. If membership test = O(1), then dominant term is C,, minimal
for u = \/n = (deterministic) time and space O(/n).

Rem. all kinds of trade-offs possible if low memory available.

F. Morain — Ecole polytechnique — MPRI — cours 2.12.2 — 2010-2011

7/16

C) Pollard’s p
Prop. Letf : E — E, #E = m; X,11 = f(X,) with Xp € E. The
functional digraph of X is:
Xyt

X

o o — — —
Xo Xi X> X1
Xpra—1

Ex1. If E,, = G is a finite group with m elements, and a € G of ordre
N, f(x) = ax and xy = a, (x,) is purely periodic, i.e., u = 0, and A = N.

Ex2. Soit E,, = Z/11Z, f : x — x* + 1 mod 11:
9

i

0—1—>2—>5—>4—6+7

U

3—10-—8

F. Morain — Ecole polytechnique — MPRI — cours 2.12.2 — 2010-2011

8/16




Epact

Thm. (Flajolet, Odlyzko, 1990) When m — oo

X~ﬁ~1/%x0.627\/ﬁ

Prop. There exists a unique ¢ > 0 (epact) s.t. u <e < A+ pand
X3, = X,. It is the smallest non-zero multiple of A that is > u:if 4 = 0,
e=Xandif 4> 0,e=[£]\

Thm.z ~ /2" ~ 1.03,/m.

Floyd’s algorithm:
X <= X0; Y <= X0; e <= 0;
repeat
X <= £(X); Y <= £(f(Y)); e <- e+l;
until X = Y;

F. Morain — Ecole polytechnique — MPRI — cours 2.12.2 — 2010-2011

9/16

Application to the discrete log (a la Teske)

Compute the DL of h = g*:
e Choose y, = g*h™ for ay, By €g [0..1[;
e Use a function F s.t; giyen y = g“h”, one can compute
efficiently F(y) = g h”’;
o Compute the sequence y;+1 = F(yx) and the exponents
Y = gak]’lﬁk until Yi =Yj-
When y; = y;, one gets

a; + Bix = aj + Bix mod n

or
x= (05 — a;)(Bi — Bj)_l mod n

(with very high probability ged(5; — 3;,n) = 1).

F. Morain — Ecole polytechnique — MPRI — cours 2.12.2 — 2010-2011 10/16

Two versions

Storing a few points:
e Compute r random points M; = g%h% for 1 < k < r;
euseH:G—{l,...,r};
o define F(Y) =Y - Myy).
Experimentally, » = 20 is enough to have a large mixing of points.
Under a plausible model, this leads to a O(1/n) method (see Teske).

Storing a lot of points:

(van Oorschot and Wiener)

Say a distinguished has some special form; we can store all of them
to speed up the process.

F. Morain — Ecole polytechnique — MPRI — cours 2.12.2 — 2010-2011

11/16

D) Nechaev/Shoup theorem (a la Stinson)

Encoding function: injective map o : Z/nZ — S where S is a set of
binary strings s.t. #S > n.

Ex. G = (Z/qZ)* = {g),n=¢q— 1,0 : x— g"mod ¢, S can be {0, 1}*
where g < 2¢.

Wanted: a generic algorithm should work for any o, in other words it
receives o as an input.

Oracle O: given (i) and o(j), computes o(ci &+ dj mod n) for any
given known integers ¢ and d. This is the only operation permitted.

Game: given o, = ¢(1) and o, = o(x) for random x, GENLOG
succeeds if it outputs x.

Ex. Pollard’s algorithm belongs to this class.

Reference: Cryptography, Theory and Practice, 2nd edition.

F. Morain — Ecole polytechnique — MPRI — cours 2.12.2 — 2010-2011 12/16




Stinson (2/5)

GENLOG produces (01,03, ...,0,) using O where
o; = o(c¢; + xd; mod n),
with (Cl,dl) = (1,0) and (Cz,dz) = (0, 1), (C,’,d,') S Z/I’ZZ X Z/I’ZZ

Two cases: non-adaptive (choose c;, d; before receiving o(x)) or
adaptive.

Thm. Let 5 = Proba(GenLog succeeds). For 5 > ¢ > 0, one must
have m = Q(nl/z).

F. Morain — Ecole polytechnique — MPRI — cours 2.12.2 — 2010-2011

13/16

Stinson (3/5)

The non-adaptive case:

Step 1: (precomputations) GenLog chooses
C={(cidi),1 <i<m}CZ/nZ x 7/nZ
Step 2: upon receiving o(x), computes all o; = o(c; + xd;).

Step 3: check whether o; = g; for some (i, j); since o is injective,
o = 0j iff ¢; +xd; = Cj —I—xdj, return x.

Step 4: return a random value y.

F. Morain — Ecole polytechnique — MPRI — cours 2.12.2 — 2010-2011 14/16

Stinson (4/5)

Analysis:

Good(C) = {(ci — ¢;)/(d; — d;)}, #Good(C) = G < m(m — 1)/2.

If x € Good(C), GenLog returns x, otherwise some y.

a is the event “x € Good(C)”:

Proba(3) = Proba(f| «)Proba(a) + Proba(3||@)Proba(a)
= 1x g + ! x 1= g
n n—¢g n
g+1 < mim—1)/2+1

n - n

= if proba > ¢ > 0, then m must be Q(n'/?). O

F. Morain — Ecole polytechnique — MPRI — cours 2.12.2 — 2010-2011

15/16

Stinson (5/5)

The adaptive case: For 1 <i<m,C; = {0j,1 <j <i}. Thenacan
be computed at time i if « € Good(C;). If a ¢ Good(C;), then
a € Z/nZ — Good(C;) with proba 1/(n — #Good(C;)).

And now, what? this result tells you (only) that if you want an
algorithm that is faster than Pollard’s p or Shanks, then you have to
work harder. ..

F. Morain — Ecole polytechnique — MPRI — cours 2.12.2 — 2010-2011 16/16




