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I. Definition and group law

K field of characteristic 6= 2, 3. Elements of K3 − {(0, 0, 0)} are
equivalent iff

(x1, y1, z1) ∼ (x′1, y′1, z′1) ⇐⇒ ∃ λ 6= 0, x1 = λx′1, y1 = λy′1, z1 = λz′1.

Projective space: P2(K) = equivalence classes of ∼.

Elliptic curve defined for points in P2(K):

Y2Z = X3 + aXZ2 + bZ3 (1)

with 4a3 + 27b2 6= 0 (discriminant of E).

Def. E(K) = {(x : y : z) satisfying (1)}.

Prop. E(K) = {(0 : 1 : 0)} ∪ {(x : y : 1) satisfying (1)} = point at
infinity ∪ affine part.
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The group law

M1

•

M2•

S•

M3
•

x

y

M3 = M1 ⊕M2

λ =

{
(y1 − y2)/(x1 − x2)
(3x2

1 + a)/(2y1)
x3 = λ2 − x1 − x2
y3 = λ(x1 − x3)− y1

[k]M = M ⊕ · · · ⊕M︸ ︷︷ ︸
k times

Rem. Standard equation and group law formulas for any field. Can
be improved in many ways, see BS’s part.
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II. Curves over finite fields

Thm. (Hasse) #E(Fp) = p + 1− t, |t| ≤ 2
√

p.

Thm. (Deuring) given |t|, there exists E s.t. #E = p + 1− t.

Key advantage: enough groups of cardinality close
to p (e.g., primality proving).

Caveat:
• no general formula for #E except in some special cases, e.g.

E : Y2 = X3 + X has p + 1− 2u points when p = u2 + v2.
• no efficient way for finding E given t except in some special

cases (complex multiplication).

Rem. Generalizable to q = pn.
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Group structure

Thm. E(Fp) ' E1 × E2 of respective ordres m1 and m2 s.t. m2 | p− 1
and m2 | m1.

Prop. (Murty; Vlǎduţ) Almost always, E(Fp) is cyclic.

Consequence:
√

p− 1 < exp(E(Fp)) < (
√

p + 1)2.

Thm. (Schoof) For almost all curves E/Q, there exists CE > 0 s.t.

exp(E(Fp))√
p

> CE
log p

(log log p)2 .
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Computing the cardinality
Invent a method in time:

• O(p):

• O(p1/2):

• O(p1/4):

Algorithms:
• g = 1, p large: Schoof (1985). Õ((log p)5), completely practical

after improvements by Elkies, Atkin, and implementations by
M., Lercier, etc. New recent record (2010/07) A. Sutherland, for
p = 16219299585 · 216612 − 1 (5000dd), 1378 CPU days AMD Phenom II 3.0 GHz.

• p = 2: p-adic methods (Satoh, Fouquet/Gaudry/Harley; Mestre).
Completely solved.
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III. ECDLP

DLP in general resistant on an elliptic curve except

• supersingular curves (t = 0), due to the MOV reduction;
• anomalous curves (t = 1).

ECC112b: taken from
http://lacal.epfl.ch/page81774.html,
Bos/Kaihara/Kleinjung/Lenstra/Montgomery (EPFL/Alcatel-Lucent
Bell Laboratories/MSR) p = (2128 − 3)/(11 ∗ 6949), curve secp112r1

• 3.5 months on 200 PS3; 8.5× 1016 ec additions (≈ 14 full 56-bit
DES key searches); started on January 13, 2009, and finished
on July 8, 2009.

• half a billion distinguished points using 0.6 Terabyte of disk
space.
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IV. Maurer & Wolf (1/3)

Thm. Let G have cardinality p ≡ 3 mod 4 (a prime) and oracle O
which can compute gxy given any pair (gx, gy). Suppose we have
found E/Fp : Y2 = X3 + AX + B of generator P0 = (x0, y0) whose
cardinality m is smooth (hence DLP on E is easy). Then: one can
solve the DLP on G.

Proof. What we can compute with O:

• gP(x) for any polynomial P(x) ∈ Z[x];
• gxn

using O(log n) calls;

• g1/x = gxp−1
;

• gP(x)/Q(x) for any fraction;

• the Legendre symbol (x/p): g(x/p) = gx(p−1)/2
and compare to g or

g−1;

• g
√

x = gx(p+1)/4
;

• (gM3x , gM3y) s.t. M3 = M1 ⊕M2 on E and Mi = (gMix , gMiy).
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Maurer & Wolf (2/3)

INPUT: a.

OUTPUT: x s.t. a = gx.

Step 1: find e s.t. (x + e)3 + A(x + e) + B is a square by computing
(((x + e)3 + A(x + e) + B)/p) using O.

Step 2: compute g
√

(x+e)3+A(x+e)+B = gy, say. P = (x + e, y) is a point
on E, represented as (gx+e, gy). There exists k s.t. P = [k]P0.

Step 3: since m is smooth, k is easily found: if qα || m, then we can
compute [m/qα]P = (gw, gz) using the oracle. Since we know
[m/qα]P0, we can compute all its multiples (u, v) or (gu, gv) and
compare them to (gw, gz) to find k mod qα.

Step 4: recover P = (x + e, y) = [k](x0, y0) and therefore x.
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Maurer & Wolf (3/3)

Complementary remarks:

• Can be generalized to other groups G, other groups E.
• We may concentrate on breaking DL instead of DH (and

conversely).
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