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Abstract

A generalised Weber function is v (2) = n(z/N)/n(z) where 1(z) is the Dedekind
function and N is any integer (the original function corresponds to N = 2). We
give the complete classification of cases where some power 1 evaluated at some
quadratic integer generates the ring class field associated to an order of an imagi-
nary quadratic field. We compare the heights of our invariants by giving a general
formula for the degree of the relevant modular equation relating oy (z) and j(z).
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1 Introduction

Let K be an imaginary quadratic field of discriminant A < 0. We will be interested in
orders O of K having discriminant D = ¢?A < 0; the principal order is O and generated
by w. For such an order, let Kp denote the ring class field that is associated to it. It
is well-known that if j denotes the modular invariant, then Kp can be represented
as K(j(ew)), or Kp/K ~ K[X]/(Hp(X)) for some polynomial Hp called the class
polynomial. Since this polynomial has too large height, it is desirable to find smaller
defining polynomials.

There is a long history of such studies (Watson, Greenhill, etc.), going back at least
to Weber [20]; see e.g., [1, 19] for the links with the class number 1 problem. Many of
these concentrated on special functions f and special values «a such f(«) generates Kp,
called class invariant. Two approaches were used: fix a and vary f among the roots of
some associated modular polynomial; or fix f and vary «. The latter path is followed
here. The former is represented by the classical Weber functions and is continued in
[11, 12]. Results on n-quotients are given in [15, 14, 16] and also [11], but are limited
to a level prime to 6; our results coincide on the generalised Weber functions when the
level is prime to 6. Note that having one f(«) is not enough if one really wants all the
conjugates so as to be able to compute its minimal polynomial and in this respect, we
follow [17].

Shimura’s reciprocity law has become the main tool in the study of class invariants,
i.e., singular values of modular functions that generate class fields of imaginary-quadratic
fields [18, 12, 17]. For the sake of self-containedness, we briefly summarise the presen-
tation of [17], that is most suited for actual computations, in §2. In §3, we examine
the properties of generalised Weber functions wy. Our work will then be to give for
all N all the cases where 1% (o) generates Kp as well as a set of conjugates for doing
this, the tasks of §84 and 5. We will start by the canonical power s associated to N,



followed by divisors of s. §6 will insist on some particular values of N. Finally, §7 will
compute the height of our new invariants, using the degree of the associated modular
polynomial. This will enable us to compare their use extending [6]. A sequel to this
article will contain results on (5%, for integers k, thus extending the results of [11] in
the case where N is prime to 6.

2 Class invariants by Shimura reciprocity

In the following, we denote by f o M the action of matrices M = <CCL 2) el =

Sly(Z)/{£1} on modular functions given by

(foM)(2) = f(Mz) = f <az + b) |

cz+d

For n € N, let I'(n) = {<CCL 2) = <(1) (1)> (mod n)} be the principal congruence

subgroup of level n; for a congruence subgroup I such that I'(n) C TV C T, denote
by Cr the field of modular functions for I'. One of the most important congruence

subgroups is given by I''(n) = {(Z 2) = <* 2) (mod n)}

*

Definition 1 The set F,, of modular functions of level n rational over the n-th cyclo-
tomic field Q((y) is given by all functions f such that

1. f is modular for T'(n) and
2. the q-expansion of f has coefficients in Q((,), that is,

e ((a))

where ¢/™ = e2miz/n

The function field extension F,,/Q(j) has Galois group isomorphic to Gla(Z/nZ)/{£1},
where the isomorphism is defined by the following action of matrices on functions:

o (foM)(z) = f(Mz) as above for M € I'; this implies in particular that also the
g-expansion of f o M has coefficients in Q((,);

e fo <(1) 2) for ged(d,n) = 1 is obtained by applying to the g-expansion of f the
automorphism ¢, — ¢%;

e any other matrix M that is invertible modulo n may be decomposed as M =

M, <1 0> M (mod n) with ged(d,n) =1 and My, My € T', and

0 d
romne = (((eane(y §)) o)



Shimura reciprocity makes a link between the Galois group of the function field ¥,
and the Galois groups of class fields generated over an imaginary-quadratic field by
singular values of modular functions.

Theorem 2 (Shimura’s reciprocity law, Th. 5 of [17]) Let f € F,,, A <0 a fun-
damental discriminant and O the order of K = Q(v/A) of conductor c. In the following,
ai
Qs
a= g—; € H be a proper ideal of O, m another proper ideal of O of norm m prime to cn,
m' = mOg the corresponding ideal in the mazimal order of K and M € Gla(Z) a matriz

all Z-bases of ideals are written as column vectors. Let a = with basis quotient

of determinant m such that M <Zl> is a basis of am. If f does not have a pole in «,
2
then

o f(«a) lies in the ray class field modulo cn over K and

e the Frobenius map o(m’) acts as

F(@)7™) = (fomM ™) (Ma).

In the following, we are particularly interested in class invariants, that is, values
f(«) that lie not only in a ray class field, but even in a ring class field. Using Shimura’s
reciprocity law, [17, Th. 4] gives a very general criterion for class invariants, which is the
basis for our further investigations.

Theorem 3 Let f € Cro(, for some n € N be such that f itself and f oS have rational
q-expansions. Denote by o € H a root of the primitive form [A, B, C] of discriminant D
with ged(A,n) =1 and n | C. If o is not a pole of f, then f(«a) € Kp.

The conjugates of f(a) are then derived generically in a form that is well suited for
computations in [17, Prop. 3 and Th. 7].

Theorem 4 An n-system for the discriminant D is a complete system of equivalence
classes of primitive quadratic forms [A;, B;,Ci] = A;X? + B; X +C;, i =1,...,h(D), of
discriminant D = B2 — 4A;C;, such that ged(A;,n) = 1 and B; = By (mod 2n). Such
a system exists for any n. To these quadratic forms, we associate in the following the
quadratic numbers c; = #.

0 —
1 0
flan) € Kp, then a complete system of conjugates of f(cy) under the Galois group of
Kp is given by the f(ay), and the characteristic polynomial of f(aq) over K is

Let f € &, be such that f oS with S = has a rational q-expansion. If

h(D)

Hp[f] = H (X = flai)).

i=1
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3 The generalised Weber functions toy

In this section we examine the general properties of the function toy, with the aim in
mind of applying Theorem 3 to its powers.

Let z be any complex number and put ¢ = e
by [4]

2imz

. Dedekind’s n-function is defined

77(2) — q1/24 H (1 - qm)'

m>1
The Weber functions are [20, § 34, p. 114]

_ i nlz+1)/2)
f(Z) 548 n(z)

The modular invariant j is recovered via [20, § 54, p. 179]:

(2) = (7 —16)° _ (7' +16)° _ (3" +16)°
S e L

The functions —§24, {24 and f3* are the three roots of the modular polynomial
DG(F,j) = F> + 48 F? 4 F(768 — j) + 4096,

that describes the curve Xo(2).
For an integer N > 1, let the generalised Weber function be defined by

_ n(z/N)
n(z)

As shown in the following, there is a canonical exponent ¢ such that w'; is modular for
I'O(N). Its minimal polynomial ®% (F,j) over C(j) is a model for Xo(N). The other
roots of this polynomial can be expressed in terms of 7, too, a topic to which we come
back in §7.

We need to know the behaviour of toy under unimodular transformations, which can
be broken down to the transformation behaviour of 7(z/K) for K = 1 or N. This has
been worked out in [8, Th. 3].

Theorem 5 Let M = <CCL 2

Write ¢ = ¢,2M9) with ¢ odd; by convention, ¢, = A(¢) =1 if ¢ = 0. Define
a ab+c(d(1—a?)—a)+3c1 (a—1)+ 2 A(c) (a2 -1
E(M)=<E>C24 (d(1-a2)~a)+3e1 (a=1)+ §A(e) (a2 ~1).

) € I' be normalised such that ¢ > 0, and d > 0 if ¢ = 0.

For K € N write
ua +vKe =9 = ged(a, Kc) = ged(a, K).

Then

0(5)onr =< (i ;”)mn(&*(“‘;”“))

0
where the square root is chosen with positive real part.



. . , -1
Theorem 6 The function wy has a rational g-expansion. Denote by S = <O ) the

1 0
matriz belonging to the inversion z — —%. If N is a square, then oy oS has a rational
q-expansion. Otherwise, m?v 0 S has a rational q-expansion.

Lett = m measure how far N — 1 is from being divisible by 24, and let e | t.
Let the subscript 1 and the function A\ have the same meaning for a positive integer n

as in Theorem 5, that is, n = n1 2X with ny odd. If M = <Z N;0> € TO(N), then
toy o M = ey with

(Ny—1)(a—1) W2
o (]\%) Céi\/—l)(—bga+c(d(1—a2)—a))42171 et aeaeton )

In particular, if Ny is a square or e is even, then w%; is modular for I' (é) N1 (%N)
Otherwise, w9 is modular for I' (%Nl) N0 (éN) In both cases, wq C Ty € Foyn.

Proof: The g-expansion of wy is rational since that of n is. Let M = (Z Z) el'. By

Theorem 5 applied to K =1 and N, we have

0z+(ub+vNd) )

a v a b -1 T]( %
mNOM:E<A‘§C u>€< > Ve

n(z)

with § = ged(a, N) = ua + vNec.
In the special case M = S we obtain § = N, v =1, u = 0 and

n(Nz)
n(z)
which proves the assertion on the g-expansion of toy o S.

Assume now that M € I'(N). Letting b = Nbgy, we have 6 = 1, u = d and v = —by
since ad — bc = 1. Thus, (2) specialises as

mNoM:e<J\C;C b(?)z—:(i 2>_177(:(/z])v):sm]v(z)

mNOS:\/N

with

. < a ><a>_l (bo—b)a+c(N—1)(d(1—a2)—a)+3c1 (N1 —1)(a—1)+ 3 (A(Ne)—A(e)) (a2 1)

caN1/ \a 2 7

which proves (1).

We need to examine under which conditions € = 1. The Legendre symbol vanishes
when N7 is a square, e is even or a = 1 (mod N7). The exponent of (24 becomes divisible
by t(N — 1) and thus by 24 whenever ¢ divides by and c.



sct:fullpowers‘

In the case of odd N, we have A(IN) = 0 and N = Ny, and the condition on a implies
that the exponent of (4 is divisible by 4.
In the case of even N, the coefficient a is odd since det M = 1, and

ERTY 2
e = (Lpy(a e W )

For even e, there is nothing to show. If e is odd, then 8 | ¢ implies that a =1 (mod 8),
which finishes the proof. O

4 Full powers of oy as class invariants

To be able to apply Theorem 3 directly to powers of to, we are interested in the minimal
exponent s such that w%; is invariant under I'%(N) and ;0S5 has a rational g-expansion.
By Theorem 6, we have s = 2t if ¢ is odd and N is not a square, and s = ¢ otherwise.

4.1 Arithmetical prerequisites

We begin with the following purely arithmetical lemma.

Lemma 7 Let N be an integer. For a prime p, denote by v, the p-adic valuation. Let
D = A be a discriminant with fundamental part A. Then D admits a square root B
modulo 4N if and only if for each prime p dividing N, one of the following holds.

1 () =+1;
2. (%) = —1 and vp(N) < 2vp(c);
3. (%) =0 and vy(N) < 2vp(c) + 1.

Proof: The Chinese remainder theorem allows to argument modulo the different prime
powers dividing N. The argumentation is slightly different for p odd and even, and we
give some hints only for p = 2.

When A =1 mod 8, A admits a squareroot modulo any power of 2.

When A is even, then A = 8 or 12 (mod 16), and A is a square modulo 8, but not
modulo any higher power of 2. Therefore, ¢?A is a square modulo 4N if and only if
va(c?) 4+ 3 > vy (4N).

When A = 5mod 8, A has a square root modulo 4 but not modulo 8, so that
v2(c?) +2 > v3(4N) is needed in that case. O

In the following, arithmetical conditions on a prime p to be representable by the
principal form of discriminant D will be needed. We take the following form of Dirichlet’s
theorem from [2, Ch. 4] (alternatively, see [3, Chap 18, G]). For an integer p, let
x4(p) = (_Tl) and yg(p) = (%) The generic characters of D = A are defined as
follows:

(a) (%) for all odd primes ¢ dividing D;



thm-Dirichlet]

(b) if D is even:

(i) xa(p) if D/4=3,4,7 (mod B);
(ii) xs(p) if D/4 =2 (mod 8);
(iif) x4(p) - xs(p) if D/4 =6 (mod 8);
(iv) xa(p) and xs(p) if D/4 =0 (mod 8).

Note that if D is fundamental (i.e., ¢ = 1), then case (iv) cannot occur and in case (i),
we may have D/4 = 3,7 (mod 8) only.

Theorem 8 An integer p such that ged(p,2c¢D) = 1 is representable by some class of
forms in the principal genus of discriminant D if and only if all generic characters
X(p) have value +1. In particular, this condition is necessary for representability by the
principal class.

4.2 The fundamental theorem

Theorem 9 Let N be an integer and t = gm(]\?ﬁ If t is odd and N is not a square,

let s = 2t, otherwise, let s = t. Suppose D satisfies Lemma 7. Consider an N -system
of forms [A;, B, C;] with roots a; = Bﬂ”/_ such that B; = B (mod 2N). Then the
singular values w3 (o) lie in the ring class field Kp, and they form a complete set of
Galois conjugates.

Proof: Once the existence of B is verified, the form [1, B,C] with C' = BZ4_D is of
discriminant D and satisfies N | C. The assertion of the theorem is then a direct
consequence of Theorems 3 and 6. O

Sometimes, the characteristic polynomial of to}; is real, so that its coefficients lie in
Z instead of the ring of integers of Q(v/D). It is then interesting to determine the pairs

of quadratic forms that lead to complex conjugates.

Theorem 10 Under the assumptions of Theorem 9, let B =0 (mod N), which is pos-
sible whenever N is odd and N | D, or N is even and 4N | D. Then the characteristic
polynomial of w¥; is real. More precisely, if o; and o are roots of inverse forms of the
N-system, then wy (o) = w03 (ay).

Proof: Notice that B =0 (mod N) and B; = B (mod 2N) imply —B; = B (mod 2N),
so that [A;, —B;, Cy], the inverse form of [A4;, B;, C;], satisfies the N-system constraint;
thus 1w}, (o) = oy, (Bi;A‘i/ﬁ> = w3 (—a;). On the other hand, ¢(—a;) = ¢(a;), which

implies wy(—a;) = oy () since wy has a rational g-expansion. O



5 Explicit (Galois action

Throughout the remainder of this section, we assume that IV is a square or e is even,
so that f = %, and f oS have rational g-expansions by Theorem 6. Let o be a root
of the primitive quadratic form [A, B,C] of discriminant D with ged(A,N) = 1. By
Theorems 6 and 2, the singular value f(«) lies in the ray class field modulo c%N over K,
and the Galois action of ideals in O can be computed explicitly. We eventually need
to show that the action of principal prime ideals generated by elements in O is trivial,
which implies that the singular value lies in the ring class field Kp. Then Theorems 6
and 4 show that the conjugates are given by the singular values in a %N -system.

We are only interested in the situation that N | C. Notice that under ged(A4,N) =1
this is equivalent to 4N | 4AC = B? — D, or B> = D (mod 4N). The remainder of
this section is devoted to computing in this case the Galois action of principal prime
ideals () with 7 € O coprime to 6¢N on the singular values according to the arithmetic
properties of N and D. §6 applies these results to the determination of class invariants.

To apply Shimura reciprocity in the formulation of Theorem 2, we need to explicitly

Aa) be an ideal
7

write down adapted bases for the different ideals. So let a = < A

A . . . . .
of O = < 1a> with basis quotient a. Without loss of generality, we may assume that

p=N(m)|C be suitably modifying a: Indeed, notice that the quadratic form associated
to o/ = a—24kN for some k € Z is given by [A, B',C'] = [A, B+2A(24kN), A(24kN)? +
B(24kN) + C]. This form still satisfies N | C’, and furthermore f(o/) = f(«) since f is
invariant under translations by 24N according to Theorem 6. Since p splits in O and is
prime to ¢, the equation AX? 4+ BX + C has a root  modulo p. Choosing k € Z such
that k = 2(24N)~! (mod p), which is possible since p { 6N, we obtain p | C’.

Let 7 = u + vA«a with u, v € Z. From

p=N(7) =u(u—vB) + v2AC (3)

and p | C we deduce that p divides u or v/ = u — vB. Using Aa@d = —Aa — B and
N(Aa) = AC, we compute

Sa— 7 Ao\ uAo +vAC [ wu vC A
Pa=T1 4 )= \ud—vA2a—vaB) ~\—vA w—oB A
So if p | u, the matrix M of Theorem 2 is given by
[ u vC \ _(p O : (3 v% 0
M_<—’UA ’LL—’UB>_<0 1>M1W1thM1_<—UA o EF(N)

since N | C and p{ N.
If f is invariant under M, ! the rationality of its g-expansion implies that

_ _ 1 0

9



so that

@) ® = fvte) = £ (o) = 7 () = fla,

For p | v/, we decompose in a similar manner

c
M = M, <(1) ](D:MQS(ZS ?)SwithM2:<_ZA v?)ePO(N),

u
p

and the rationality of the g-expansion of f oS allows to conclude if f is invariant under
Myt
So we need the transformation of f under

C
Mt = <”, _”F>
1 vA u )
p

Rewriting (1), it is given by f o M1_1 = ngf with

0= (N—1) <u/£ +A (3(1 — %) — u’>> F 30 A (N — 1)(u/ — 1)+

3AN)(w'? — 1)
Np p '

2
o

We obtain invariance provided e = 0 mod 24. (The treatment of M, Lis completely
analogous and omitted.) In the following, we classify the values of D and B for which
is 0 modulo some divisor of 24. It is natural to study separately § mod 3 and # mod 2¢
for 1 < £ < 3 depending on the value of N. We will give code names to the following
propositions for future use.

5.1 The value of § modulo 3
SSCT: eta

To be able to use some exponent e not divisible by 3, we need to impose 3 | . From the
reduction of (4) modulo 3, namely

C u
0=(N-1)w <u'——|—A<— 1—u —u'>> mod 3,
(V= Do (w4 (B0 )
we immediately see that 3 |  for N = 1 mod 3 without any further condition, which is
coherent with 3t s in this case.

For N # 1 (mod 3), we impose B2 = D (mod 4N) to obtain divisibility of C' by N
(see the discussion above), and define r € {0, 1,2} such that

C B?*-D

AN: v r (mod 3). (5)
o]
N

(mod 3), while 7 = 2 implies A = —$ (mod 3).

Notice that » = 1 implies A =

10



prop:NermodB‘

prop:NqumodS‘

5.1.1 The case N =0 mod 3

Proposition 11 (PROP30) Let N =0 (mod 3), B> = D (mod 4N) and r as in (5).
Then 3 | 0 if

(a) 3| D andr=1;
(b) D=1 (mod 3) and r = 2.
In these cases, B satisfies the following congruences modulo 3:
(¢) 3| B;
(b) 31B.

Proof: Since 3| N | C and 31p, u2 = v/ =1 (mod 3) by (3) and

C

0 =+v <N—p_A> mod 3.

(a) If 3| B, or equivalently 3 | D, then p = u? =1 (mod 3) in (3). The desired result
follows from (5).

(b) If 3 B, which is equivalent with D = 1 (mod 3), only the case 3 1 v needs to
be examined. Then u # v’ (mod 3) and p = 2 (mod 3), and again (5) allows to
conclude.

O

5.1.2 The case N =2 mod 3

Proposition 12 (PROP32) Let N = 2 (mod 3), B> = D (mod 4N) and r € {1,2}
as in (5). If D =r (mod 3), then 3|6 and 3 | B.

Proof: Notice that D = r (mod 3) is equivalent with 3 | B by (5). Then v’ =« (mod 3)
and

c A
0=uw | —+—(1—u? —A> mod 3).
(5 +50-uw-4) (noas
If 3 divides u or v, we are done.

Otherwise, u? = v?> = 1 (mod 3), which implies

0=+ (ng - A) (mod 3).
Writing p =1+ AC = 1 — r (mod 3), we see that this case is possible only for r = 2
and p =2 (mod 3), and thenAE—% (mod 3) and 3 | NQP—A. O

Note that the proposition does not hold for » = 0, since then 3 | D, 3 | B, 3 | AC,
and exactly one of A and C' is divisible by 3 (if both were, then [A, B, C] would not be
primitive), causing € # 0 mod 3 unless one of u or v is divisible by 3.

11
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prop:Dodd

1em:thetamod4|

5.2 The value of § modulo powers of 2

5.2.1 The case N odd

Since Ny = N and A(N) = 0, (4) becomes
0=(N—-1)p (mod8)

for

p=u <U/N£p +A <%(1 —u?) — u')) +3v1 A1 (v —1).

So 6 is divisible by 8 if N =1 (mod 8), which is the case in particular if N is a square.
Otherwise, e is supposed to be even, so ef) is divisible by 4; if N =1 (mod 4), ef is even
divisible by 8. So the only remaining case of interest is N = 3 (mod 4); then for e = 2
(mod 4), 8 | ef is equivalent with p even. We have

p=v(WC+ Au(l+u')+u)) +u +1mod 2.

Proposition 13 (PROP21) Let N be odd. If D is odd, then § = (N — 1)p (mod 8)
with p even.

Proof: Since B is odd, v/ = u+ v (mod 2).

If one of v, A and C is even, then u and «’ are odd by (3) (so that in fact v is even),
and p is even.

Otherwise, v, A and C are odd, ' =u+ 1 (mod 2) and p is even as well. O
5.2.2 The case N even

Let N = 2XN) N} with N; odd and A(N) > 1. We study divisibility of 6 by 2¢ for
increasing values of £. The value £ = 3 is of interest only when e is odd, in which case
N and thus Nj are squares. We start with an elementary remark.

Lemma 14 If2 | N | C, then

(a) u and u' are odd and

0= (N —1)o/ (N% - A> (mod 4); (6)

(b) moreover, if 4 | C, then 2 | vB.
Proof:

(a) wand v are odd by (3), so that «/*> = 1 (mod 8). Since Nj is odd, almost all terms
disappear from (4).

(b) We have p = u? 4+ v(—uB + vAC) = u(u — vB) mod 4. Since u is odd by (a), we
deduce that vB must be even.

12

eq:thetamod4
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O

As discussed above, N | C' is equivalent with B> = D (mod 4N). Then A% = Bz—]}D;

by gradually imposing more restrictions modulo powers of 2 times 4V, we fix A% modulo
powers of 2.

Proposition 15 (PROP20) When N is even, 6 is even in the following cases:
(a) B> =D + 4N (mod 8N);
(b) B> =D (mod 8N) and D =1 (mod 8).

Proof:

(a) The conditions imply that A(C'/N) is odd, and Lemma 14(a) allows to conclude
since p is odd.

(b) In that case A(C'/N) is even. Since A is prime to N, it is odd and therefore C'/N
is even, which implies in turn 4 | C. By Lemma 14(b), we get 2 | vB. Since D is
odd, B is odd and v is even, and (6) finishes the proof.

O

Divisibility of 6 by 4

We begin with a purely arithmetical lemma that will give us necessary conditions on the
parameters for the equation B2 = D + r(4N) mod (16N) to have a solution.

Lemma 16 Let r € {0,1,2,3} and N be even. Given D, suppose the equation B =
D+4rN (mod 16N) admits a solution in B. Then either D = 1 mod 8 which implies B
is odd, or D is even and D satisfies one of the conditions of the following table depending
on N mod 8, which in turn gives properties of B.

rN mod 8 | condition on D | = D/4mod 8 | B/2
0 4 mod 32 1 odd
16 | D 0 even
2 24 mod 32 6 0 mod 4
28 mod 32 7 odd
8 mod 32 2 2 mod 4
4 16 | D 0 even
20 mod 32 5 odd
6 81| D 0 0 mod 4
12 mod 32 3 odd

Proof: Since B2 = D mod 8, the only possible value for odd D is D = 1 mod 8, giving

B odd. If D is even, then
2
(g) E€+erod8
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and since N is even, the above table makes sense.
Remembering that the only squares modulo 8 are {0, 1,4}, the table is easily con-
structed and left as an exercise to the reader. O
Now, we are ready to extend the result of Proposition 15 by considering B? =
D +r(4N) (mod 16N) with r € {1,3}, which yields AS = r (mod 4). Note that case
(b) cannot be extended and we leave the proof of this to the reader.

Proposition 17 (PROP44) Let N be even, and suppose B> = D + 4N (mod 16N)
has a solution. Then 0 is divisible by 4 if one of the following conditions is met:

(a) D=1 (mod 8);
(b) 16 | D;
(c) 2|| N and 4 || D.

Proof: If D is odd, the condition follows from Lemma 16. Then v’ = u — vB leads to
2|vand4]6.

Assuming D even, Theorem 8 implies that x4(p) = 1 (or, equivalently, p = 1
(mod 4)) when D/4mod 8 € {3,4,7,0}, which immediately settles case (b). When
D/4 is odd, we see that we cannot have the case 4 | N when comparing with the table
of Lemma 16, and this gives us (c).

In the other cases, when p = 3 mod 4, we get v odd since AC' = 2 mod 4 and there
is no reason to have § = 0 mod 4. O

Proposition 18 (PROP412) Let N be even, and suppose B> = D+12N (mod 16N).
Then 0 is divisible by 4 if one of the following conditions is met:

(a) D=1 (mod 8);
(b) 8|| D and 2 || N;
(c) 4]| D and 4| N.
In the cases of D even, B satisfies the following congruences modulo 4:
(b) 4| B;
(c) 2| B.

Proof: The proof for D odd as well as the case distinctions for D even are the same as
in Proposition 17. However, we now have A% = —1 (mod 4).

In the cases where x4(p) = 1 (i.e., D/4 € {3,4,7,0}), we get p = 1 (mod 4) and
ng — A =2 (mod 4). Since there is no compelling reason why v should be even, § may
or may not be divisible by 4.

So we have to turn our attention to the four other cases, i.e., D/4 € {1,2,5,6}, with
Lemma 16 in mind. If 4 | B, 8 || D and 2 || N, then 2 || C, and either v is even or p = 3
(mod 4). In both cases, Lemma 14 shows that 4 | 6. If 2 || B and 4 || D, suppose that
furthermore 4 | N. Then 4 | AC, and again v is even or p = 3 (mod 4). O
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Divisibility of § by 8

As discussed at the beginning of §5.2.1, for generating class fields we are only interested
in # mod 8 when N is a square, that is, A(N) is even and Nj is a square; in particular,
N; =1 (mod 8). Then the following generalisation of Lemma 14 is immediately seen to
hold:

Lemma 19 If N is an even square dividing C, then
0= (N—1)vd <c_ A (mod 8)
= Np .

From the results obtained for B2 = D +4rN (mod 16N) for r € {1,3}, it is natural
to look at B2 = D +4rN (mod 32N) for r € {1,3,5,7}. Then A =7 (mod 8).
Proposition 20 (PROPS8) Let N be an even square, and suppose B®2 = D + 4rN
(mod 32N). Then 0 is divisible by 8 if one of the following conditions holds:

(a) T=3 orr="7,and D=1 (mod 8);
(b) r=1, and 32| D;
(¢) r=25, and 16 || D.
In the cases of D even, B satisfies the following congruences modulo 8:
(b1) 4| B if 4 || N;
(b2) 8| B if 16 | N.
(c1) 4| B if 16 | N;
(c2) 8| B if4|| N.
Proof: Since 4 | N | C, we have p = u(u —vB) (mod 4) by (3).

For D odd, B is odd and v is even as seen in Proposition 17. If v is divisible by 4,
then 0 is divisible by 8 by Lemma 19. If 2 || v, then p = 3 (mod 4); if furthermore r = 3
(mod 4), then 4 | ]\% — A, and 8| 6 by Lemma 19.

In the remaining cases of the proposition, 16 | D, 4 | B, r =1 (mod 4) and p = 1
(mod 4). If v is even, Lemma 19 implies that 8 | #. From now on, we assume that v is

odd. Then p = u? — uvB + AC (mod 8), and we need to verify that 8 | ng — A
The results now follow from close inspection of

2
AC =rN (mod 8) and <§> = % + r% (mod 8).
Consider first the case 7 = 1 and 32 | D. By Theorem 8, we have x4(p) = xs(p) = 1,
which yields p = 1 mod 8 and implies the desired divisibility of ]\% — A by 8.
Consider now r = 5; it is sufficient to show that p = 5 (mod 8). If 16 || D and
16 | N | C, then B=4 (mod 8) and p=5 (mod 8). If 16 || D and 4 || N, then AC =4
(mod 8) and 32 | D + 4rN, whence 8 | B and p =5 (mod 8). O
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:specialization‘

6 Lower powers of tuy as class invariants

The aim of this section is to determine conditions under which singular values of lower
powers of toy than those given in Theorem 9 yield class invariants. When N is not
a square, only even powers are possible by Theorems 6 and 3. So we specialise the
propositions of §5 according to the value of N (mod 12). When N is a square, odd
powers may yield class invariants, and we need to distinguish more finely modulo 24.
Note that then N € {0,1,4,9,12,16} (mod 24).

Throughout this section, we use the notation of Theorem 9. The number « is a root
of the quadratic form [A, B, C| of discriminant D and N is an integer such that A is
prime to N and B is a square root of D modulo 4N according to Lemma 7, so that N | C.
The canonical power s such that w3 () is a class invariant, that is, o}, (a) € Kp, is
defined as in Theorem 9, and we wish to determine the minimal exponent e such that
% (c) is still a class invariant. The general procedure is as follows: Given the value of
N, we assemble the propositions of §5 (using their code names throughout) and deduce
from them conditions on B as well as the period of D for which class invariants are
obtained. In general, we can combine a condition on B related to # mod 3 and another
one related to # mod 2¢. The Chinese remainder theorem is then used to find compatible
values. When no particular condition modulo 3 or powers of 2 is imposed, that is, e and
s have the same 3-adic or 2-adic valuation, then Theorem 9 already leads to the desired
conclusion.

Once a power 1o}, («) is identified as a class invariant, its conjugates may be obtained
by an M-system for M = 2N containing [A, B, C] as shown through Theorems 4 and 6.
In more detail, one may proceed as follows:

1. Determine a form [A, B, C] with root « satisfying ged(A, M) = 1 and the constraint
on B so that % (a) is a class invariant; in general, one may choose A = 1.

2. Enumerate all reduced forms [a;, b;,¢;], i = 1,...,h(D) of discriminant D, num-
bered in such a way that [aq,b1,c¢1] = [A, B, C].

3. Let [A1,B1,C4] = [A,B,C]. For i > 2, find a form [4;, B;, C;] = [a;, b;, ¢;] such
that ged(A;, M) =1 and B; = B (mod 2M), using, for instance, the algorithm of
[17, Prop. 3].

Then a floating point approximation of the class polynomial can be computed as

hp

IT (X = wi(e))
i=1
with a; = #. Using the algorithms of [10], one obtains a quasi-linear complexity
in the total size of the class polynomial.
Note that the conditions on B of §5 can be summarised as B2 = D+4rN (mod 4RN),
where r is defined modulo R and the only primes dividing R are 2 and 3. For the sake of

16



brevity, we denote such a condition by r:R and authorise writings such as 1,2:3 for sig-
nalling that » € {1,2} (mod 3). So if no particular condition beyond B2 = D (mod 4N)
is required, this is denoted by 0:1.

We will give more details for the first non-trivial cases and be briefer in the sequel,
since the results rapidly become unweildy. We add numerical examples for these cases.

6.1 The case N odd
6.1.1 N Z0mod3

This is the simplest case. We may use PROP32, PROP21 or both of them. Whenever
N =2 (mod 3) and 31 D, then PROP32 applies; moreover, the resulting condition 3 | B
is automatically satisfied, and we gain a factor of 3 in the exponent. Similarly if D is
odd, then PROP21 applies without any restriction on B, and we gain a factor of 2 in
the exponent.

Nmod12 | s | B | D e || proposition(s)
5| 6| 13| D=1mod3 || 2 | PROP32
51 6 23| D=2mod3 | 2| PROP32
7] 4]0 | 21D 2 | PROP2L
1112 01|2¢D 6 | PROP21
11112 | 1:3 | D=1mod 3 || 4 || PROP32
11112 | 23| D=2mod3 | 4 | PROP32
11112 | 1:3 | D=1mod6 || 2 || PROP324+PROP21
11112 | 2:3 | D=5mod6 | 2 | PROP32+PROP21

Letting D = c?A, we put w = /A/4if 4 | A and w = (1 + v/A)/2 otherwise. Here are
some numerical examples:

N| f | =D| Hplf]

5l | 11|X-w-1

5| w2 41X —-1-2w

7] w2 3/ X —3w+1

11 | 39| X+ (27w — 73) X3 + (1656w — 8914) X2
+ (7947 w — 139058) X — 515016 w + 1000693
11w} | 8| X+T7+6w

11w | 28| X +8w-—T7

1| 11|X-2w+1

1wy | 7|X-2w+3

6.1.2 The case N =3 (mod 12)

The situation becomes more intricate when ged(N,6) # 1. For N = 3 (mod 12), we
have s = 12, and N cannot be a square. Therefore we need an even exponent e. Since
already the full power m}\? can only be used when D is a square modulo 4N, we only
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have to consider D € {0,1,4,9} (mod 12). Then PROP30 applies; moreover, PROP21
applies whenever D is odd, resulting in the following table.

Nmod12 | s | B | Dmod 12 || e || propositions(s)
3112 0:1(1,9 6 || PROP21
312 1:31]0,9 4 | PROP30(a)
312 23| 1,4 4 || PROP30(b)
312 139 2 | PROP30(a)+PROP21
3012|231 2 || PROP30(b)+PROP21

The entries in the first and last line for D = 1 (mod 12) may seem redundant; but
note that they induce differently severe restrictions on B. The entry D = 1 (mod 12)
in the third line, as well as D =9 (mod 12) in the second line, are redundant, however:
Since PROP21 does not induce any additional restriction on B, the lower exponent is
available for precisely the same quadratic forms. In the following, we will present only
tables that have been reduced accordingly.

However, the previous table does not yet contain the full truth. A line in the table
means that if there is a solution to B2 = D4+4rN (mod 4RN) with D in the given residue
class Dy modulo 12, then rof; yields a class invariant. Examining this equation modulo
the part of 4RN that contains only 2 and 3 yields further restrictions. Write N = NgN’
such that the only primes dividing Ng are 2 and 3 and ged(N’,6) = 1. Then we need
to ensure that D + 4rN = D is a square modulo N’; this is guaranteed by Lemma 7,
since otherwise we would not even consider the full power w%;,. We furthermore need to
examine under which conditions

D + 4NgrN' is a square modulo 4RNg and D = Dy (mod 12).

Concerning the second to last line, for instance, the condition becomes
N
D+ 12 5 is a square modulo 36 and D =9 (mod 12).

Thus, D+12 % =9 (mod 36), and depending on % mod 3, only one value of D (mod 36)
remains.

For N = 3, for instance, or more generally % =1 (mod 3), we obtain the following
class invariants.

B | Dmod36 | e
0:1 | 0,12 12
0:1 19,21 6
1:3 | 24 4
2:3 | 4,16,28 4
1:3 | 33 2
2:3 | 1,13,25 2
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To illustrate this, we give the following table of examples:

N| f | =D | Hplf]

wi? | 24| X2 162X + 729

w§ | 15| X2-3Q2w—-1)X-27
i | 12X -3

ro4 8| X —1-2w

m§ 31X —-—w-1

w3 | 11| X —w

LW W w w ww

6.1.3 The case N =9 mod 12

We have s = 3 for squares in that family (for instance, N = 32") and may then reach
. Otherwise, s = 6, and the only possible smaller exponent is 2.

N|s|B |D e || propositions(s)
9mod 12, #00 | 6 || 1:3 | Omod 3 || 2 || PROP30a
9mod 12, 20 | 6 || 2:3 | 1 mod 3 || 2 || PROP30b
9mod 12, =0 ]3| 1:3 | 0mod 3 || 1 || PROP30a
9mod 12, =0 | 3| 223 | 1mod 3 || 1 || PROP30b

We give two examples, one for N = 21, the second for N = 9. For the former, we find

B | D mod 252

0:1 10,9, 21, 36, 57, 72, 81, 84, 93, 120, 144, 156, 165, 189, 225, 228
1:3 | 60, 105, 141, 168, 177, 204, 240, 249

2:3 | 1, 4, 16, 25, 28, 37, 49, 64, 85, 88, 100, 109, 112, 121, 133, 148,
169, 172, 184, 193, 196, 205, 217, 232

NN O

N| f |—=D| Hplf]

21 [ S, | 24| X? + (108 + 102w) X — 6345 + 2754 w
21 | w2, 3| X+w+4

21 |12, | 20| X2+ (—2+4w)X — 19— 4w

For N =9, we get:

B | D mod 108

0:1 |9, 36

1:3 | 0, 45, 72, 81

2:3 | 1, 4, 13, 16, 25, 28, 37, 40, 49, 52,
61, 64, 73, 76, 85, 88, 97, 100

= W

N | f | =D | Hplf]

9|rmg| 72] X2 18X +27
9 g | 27| X-w-—1

9| g 81 X —-1—w
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6.2 The case N even

A look at §5 immediately shows the complexity of the results when N is even. We
distinguish the cases A = 1 (in which N cannot be a square) and A > 2 with N a square

or not.

6.2.1 The case A =1

Three values are concerned, namely N mod 12 € {2,6,10}. We have s = 24 for N mod
12 € {2,6}, whereas s = 8 for N = 10 (mod 12).

Nmod12 | s | B D e || proposition(s)

224 | 1:2 — 12 || PROP20a
21241 0:2 1 mod 8 12 || PROP20b
2124 1:3 1 mod 3 8 || PROP32
224 | 23 2 mod 3 8 || PROP32
2024 | 1:4 1, 4 mod 8; 0 mod 16 6 || PROP44
2124 34 1 mod 8; 8 mod 16 6 | PROP412ab
2124 | 1:2n1:3 | 1 mod 3 4 || PROP20a+PROP32
224 | 1:2n2:3 | 2mod 3 4 || PROP20a+PROP32
2|24 | 0:2n1:3 | 1 mod 24 4 || PROP20b+PROP32
2124 0:2n2:3 | 17 mod 24 4 || PROP20b+PROP32
2|24 || 1:4n1:3 | 1, 4 mod 24; 16 mod 48 2 || PROP44+PROP32
2124 | 1:4n2:3 | 17, 20 mod 24; 32 mod 48 || 2 || PROP444+PROP32
2|24 | 3:4n1:3 | 1 mod 24; 40 mod 48 2 || PROP412ab+PROP32
2|24 | 3:4n2:3 | 17 mod 24; 8 mod 48 2 || PROP412ab+PROP32
624 | 1:2 — 12 || PROP20a
6|24 0:2 1 mod 8 12 || PROP20b
6|24 1:3 0 mod 3 8 || PROP30a
6|24 | 2:3 1 mod 3 8 || PROP30b
6|24 14 1, 4 mod 8; 0 mod 16 6 || PROP44
6|24 | 34 1 mod 8; 8 mod 16 6 | PROP412ab
6|24 | 1:2n1:3 | 0 mod 3 4 || PROP20a+PROP30a
6124 | 1:2n2:3 | 1 mod 3 4 || PROP20a+PROP30b
6|24 || 0:2Nn1:3 | 9 mod 24 4 || PROP20b+PROP30a
6|24 | 0:2n2:3 | 1 mod 24 4 || PROP20b+PROP30b
6|24 | 1:4n1:3 | 9, 12 mod 24; 0 mod 48 2 || PROP44+PROP30a
6|24 || 1:4N2:3 | 1, 4 mod 24; 16 mod 48 2 || PROP44+PROP30b
6 | 24 || 3:4N1:3 | 9 mod 24; 24 mod 48 2 || PROP412ab+PROP30a
6|24 | 3:4n2:3 | 1 mod 24; 40 mod 48 2 || PROP412ab+PROP30b

10| 8| 1:2 — 4 || PROP20a

10| 81 0:2 1 mod 8 4 || PROP20b

10| 8| 14 1, 4 mod 8; 0 mod 16 2 || PROP44

10| 8| 34 1 mod 8; 8 mod 16 2 || PROP412ab
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The case N = 2 corresponds to Weber’s classical functions. We present the case
N = 6 in more detail, illustrating the complexity of the process.

B D mod 288 e
0:1 0, 36, 96, 132, 144, 180, 240, 276 24
1:2 60, 252 12
1:3 48, 84, 192, 228 8
2:3 4, 16, 52, 64, 100, 112, 148, 160, 196, 208, 244, 256 8
3:4 24, 72, 168, 216 6
1:4 9, 33, 81, 105, 153, 177, 225, 249 6
1:4 108, 204 6
1:2N1:3 | 156 4
1:2 N 2:3 | 28, 124, 220 4
3:4 N 1:3 | 120, 264 2
1:4 N 1:3 | 57, 129, 201, 273 2
1:4N1:3 |12 2
3:4 N 2:3 | 40, 88, 136, 184, 232, 280 2
1:4 N 2:3 | 1, 25, 49, 73, 97, 121, 145, 169, 193, 217, 241, 265 | 2
1:4 N 2:3 |76, 172, 268 2

N| f | =D | Hplf]

6 |2t | 12| X + 186624

6 | og? | 36 | X2 — 3888w X + 1259712

6| w8 | 60|X?%+ (432w — 720) X + 20736
6

6

6

r§ | 32| X2+ (112 + 64w) X — 1088 — 3584w

g | 72| X2 216 X — 5832

g | 39 | X4+ (3w —42) X3 + (486w + 108) X2

+ (—648w + 9072) X + 6561 w — 45198

6| ¢ | 84| X%+ (324 +60w) X3 + 14688 X2

+ (69984 — 12960 w) X + 46656

6| g | 132 | X+ (144 — 12w) X3 + 2196 X2

+ (5184 + 432w) X + 1296

6| wg | 68X+ (—32+4w)X?+ (—204 — I6w) X?
+ (1152 — 144 w) X — 752 + 256 w

6| g | 24| X2-wX -6

6| w2 | 15| X2+ (—2w—2)X+3w—3

6| w2 | 276 | X8+ (—12 —4w) X7 + (132 + 6w) X©
—144 X° — 576 X* — 864 X3 + (4752 — 216 w) X2
+(—2592 + 864 w) X + 1296

6| w? 8| X+2+w

23 [ X3 —6X°+ (~w+15) X +w—15

6| w2 | 20| X2+(2-2w)X —4-—2w

(=)
3
oN
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6.2.2 The case \ > 2

We have to study three values of N mod 12, namely, 0, 4 and 8, for which s = 24, 8,
and 24, respectively. The cases N = 0 or 4 authorise squares, so that the results become

somewhat lengthy.
When N =4 mod 12, we find

N|s|B |D e || proposition(s)
4mod12 | 8 || 1:2 | — 4 || PROP20a
4mod12 | 8 | 1:2 | 1 mod 8 4 || PROP20b
4mod12 | 8| 1:4 | 1 mod 8 2 || PROP44a
4mod12 | 8 | 1:4 | 0 mod 16 2 || PROP44b
4mod12 | 8 | 3:4 | 1 mod 8 2 || PROP412a
4mod12 | 8| 3:4 | 4 mod 8 2 || PROP412c

4mod 12, =0 | 8 || 3:8 | 1 mod 8 1 || PROPS8a
4mod 12, =0 | 8 || 7:8 | 1 mod 8 1 || PROPS8a
4mod12, =0 | 8 | 1:8 | 0 mod 32 1 || PROPS8Db
4mod 12, =0 | 8 || 5:8 | 16 mod 32 || 1 || PROPS8c

When N = 8 mod 12, it cannot be a square, and the results are:

Nmod12 | s | B D e || proposition(s)
8124 | 1:2 — 12 || PROP20a
8124 | 1:2 1 mod 8 12 || PROP20b
8124 | 14 1 mod 8 6 | PROP44a
8124 | 14 0 mod 16 6 | PROP44b
8124 || 3:4 1 mod 8 6 || PROP412a
8124 | 34 4 mod 8 6 || PROP412c
8124 || 1:3 1 mod 3 8 || PROP32
8124 | 2:3 2 mod 3 8 || PROP32
8124 | 1:2Nn1:3 | 1mod3 4 || PROP20a+PROP32
8124 | 1:2Nn2:3 | 2mod 3 4 || PROP20a+PROP32
8124 | 1:2N1:3 | 1 mod 24 4 || PROP20b+PROP32
8124 1:2Nn2:3|17mod24 || 4 | PROP20b+PROP32
8124 | 1:4N1:3 | 1mod24 2 || PROP44a+PROP32
8124 | 1:4N2:3 | 17mod 24 2 || PROP44a+PROP32
8124 | 1:4N1:3 | 16 mod 48 2 || PROP44b+PROP32
8124 || 1:4 N 2:3 | 32 mod 48 2 || PROP44b+PROP32
8124 | 3:4Nn1:3 | 1mod 24 2 || PROP412a+PROP32
8124 | 3:4N2:3| 17mod 24 2 || PROP412a+PROP32
8124 | 3:4N1:3 | 4mod 24 2 || PROP412¢+PROP32
8124 | 3:4N2:3| 20mod 24 2 || PROP412c+PROP32

Finally, for N = 0 mod 12, we obtain the following results:
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N| s| B D e || proposition(s)
12 | 24 || 1:2 — 12 || PROP20a
12 | 24 || 1:2 1 mod 8 12 || PROP20b
12124 || 1:4 1 mod 8 6 || PROP44a
12 | 24 || 14 0 mod 16 6 || PROP44b
12 | 24 || 3:4 1 mod 8 6 || PROP412a
12 | 24 || 3:4 4 mod 8 6 || PROP412¢
12124 || 1:3 0 mod 3 8 || PROP30a
12 | 24 || 2:3 1 mod 3 8 || PROP30b
12124 | 1:2N1:3 | 0mod 3 4 || PROP20a+PROP30a
12124 | 1:2Nn2:3 | 1mod3 4 || PROP20a+PROP30b
12124 || 1:2N 1:3 | 9mod 24 4 || PROP20b+PROP30a
12124 || 1:2N 2:3 | 1 mod 24 4 || PROP20b+PROP30b
12 124 || 1:4 N 1:3 | 9 mod 24 2 || PROP44a+PROP30a
12124 || 1:4 N 2:3 | 1 mod 24 2 || PROP44a+PROP30b
12 124 || 1:4 N 1:3 | 0 mod 48 2 || PROP44b+PROP30a
12124 || 1:4 N 2:3 | 16 mod 48 2 || PROP44b+PROP30b
12 124 || 3:4 N 1:3 | 9mod 24 2 || PROP412a+PROP30a
12124 || 3:4N1 2:3 | 1mod 24 2 || PROP412a+PROP30b
12 | 24 || 3:4 N 1:3 | 12 mod 24 2 || PROP412¢+PROP30a
12124 | 3:4 N 2:3 | 4 mod 24 2 || PROP412¢+PROP30b
12| 24 || 3:8 1 mod 8 3 || PROPS8a
12 | 24 || 7:8 1 mod 8 3 || PROP8a
12|24 || 1:8 0 mod 32 3 || PROP8b
12 | 24 || 5:8 16 mod 32 3 || PROPS8c
12124 || 3:8 N1 1:3 | 9mod 24 1 || PROP8a+PROP30a
12 1 24 || 3:8 N 2:3 | 1 mod 24 1 || PROP8a+PROP30b
12 24 || 7:8 N 1:3 | 9 mod 24 1 || PROP8a+PROP30a
12124 || 7:8 1 2:3 | 1 mod 24 1 || PROP8a+PROP30b
12 | 24 || 1:8 N 1:3 | 0 mod 96 1 || PROP8b+PROP30a
12 | 24 || 1:8 N 2:3 | 64 mod 96 1 || PROP8b+PROP30b
12 | 24 || 5:8 N 1:3 | 48 mod 96 1 || PROP8c+PROP30a
12 | 24 || 5:8 N 2:3 | 16 mod 96 1 || PROP8c+PROP30b
For N = 4, these results translate as follows:

B | D mod 128 e

0:1 | =4 (mod 32) |8

1:2 | 16, 32, 80, 96 4

3:4 | =20 (mod 32) | 2

1:4 | 64 2

3:8 | =1 (mod 8) 1

1:810 1

5:8 | =48 (mod 64) | 1
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N| f |-D|Hplf]

4 f| 28X —48w +32

4|wj| 32| X?-8wX —16

4|2 12| X —2w

43| 64| X%+ (—4—4w) X +4w

4 104 71X —w

4lroy | 128 | X4+ (-4 —2w) X3+ 6w X2+ (8—4w)X —4
4 g | 16]X—1-w

The precise results for N = 16 are the following:

B | D mod 512 e
0:1 | =16 (mod 128) | 8
1:2 | 64, 128, 320, 384 | 4
3:4 | =4 (mod 32) 2
1:4 | 256 2
3:8 | =1 (mod 8) 1
1:8 | 0, 192, 448 1
5:8 | =80 (mod 128) | 1
N| f | -D]|Hplf]
16 | wfs | 112 | X2 + (12288 w — 8192) X — 196608 w — 917504
16 | tofg | 128 | X4 4 (128 + 192w) X3 + 6656 w X2
+ (—32768 + 49152 w) X — 65536
16 | w2 | 28| X +2w—4
16 | 25 | 256 | X4 + (16 — 48w) X3 + (—288 + 288 w) X2
+ (768 — 256 w) X — 256w
16 | o6 71X —-—w-—1
16 |16 | 64| X2 —4X +4
16 | togg | 48 | X2 +4X +4

6.3 Reality of class polynomials

The argumentation of the proof of Theorem 10 carries over to the lower powers of oy
and shows that the characteristic polynomial is real whenever for some form [A, B, C]
in the Z N-system the inverse form [A, —B, C] satisfies the congruence constraints of the
system as well. This is precisely the case when B is divisible by £ /N. In particular, this
implies that N | D, and inspection of the previous results proves the following theorem.

Theorem 21 Under the assumptions of §6, the characteristic polynomial of oS, is real
whenever N | D and SN | B. For e < s, this is possible only in the following cases:

(a) N odd:
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N| s|| B |D
5mod12 | 6| 1:3 | 1mod3
5mod12 | 6| 2:3 | 2mod3

11mod 12 | 12 || 1:3 | 1 mod 3
11mod12 | 12 || 2:3 | 2mod 3
3mod12 | 12 || 1:3 | O mod 3
9mod 12, #00 | 6| 1:3 | 0 mod 3
9mod 12, =0 | 3| 1:3 | 0 mod 3

=N R R RN N

(b) 2|| N and 8 || D

(¢) 4| N and 16 | D

Proof: We start again from B? = D + 4rN mod 4RN and note that in fact R = s/e
that we suppose > 1. As usual, write R = 2*(®) R; with R; odd and in fact R, | 3. Then
the hypotheses of the theorem translate as B = NRB’ and

or

N2R2B’? = D'N + 4rN mod 4RN

NR?B” = D' + 4r mod (4R).

If 3 | R, then this implies D’ = —r mod 3. We can now concentrate on the power of 2
dividing R. We write as usual:

(a)

AMNF2MR) Ny R2B" = D' + 4r mod (2MBIF2Ry). (7)

Suppose N is odd and not a square and R is odd (thus R € {1,3} and s | 12).
Then (7) implies
NR?B"™ = D' + 4r mod 4R.

Reducing modulo 4 does not give us more conditions on (B, D’). If R = 3, then
D' = —rmod3or D=—rN mod 3.

The case R even is only possible for 2 || R, since 4 | R would imply e odd. Then
(7) translates
22N R?B” = D' + 4r mod 2°R;

or D' =4D".
If N is even, then A(N) > 1. If R is odd then (7) gives
PN N R?B” = D' + 4r mod (22R).

If A(N) > 2, this implies 4 | D'. If A(N) = 1, we get 2N R2B’®> = D’ mod 4 so
that 2 | D'.

If R is even, then D’ = 4r mod 8.
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lem:v

O

We end this section with related results concerning the functions v/ D 4. Since VD

is an integer of K, a singular value v/ D %, () is a class invariant whenever 1, (a) is and

integrality of the class polynomial carries over. In some cases, however, the additional
factor v/D may lead to rational class polynomials.

Lemma 22 Under the assumption that 4 | s, let v = 3(1\274_1). Let a = _BJQJ with

N | B. Then twy(a)*/? € iR (resp. R) if vE is odd (resp. vE is even).
Proof: Write

s/2
()2 = (q1/(24zv)_1/24(1 L. )) — s (ND/(UBN) (1) = q—v/(2N)(1+Z erg").
r>0

The dominant term is

—u/(2N) _ T B mVI|D]
q exp <Z2UN>eXp <U 9N )

and if N | B, then the first term is a power of i, leading to the result. O

Theorem 23 Under the hypotheses of Lemma 22, if m]\/(oz)s/2 1$ a class invariant, then
Hp[vD m%Q] (resp. HD[m%2]) lies in Z[X].

Proof: Let f = \/l_)m%Q or f = m%Z, respectively, depending on whether v% is odd
or even. The lemma shows that f(«a) is real, which implies that its minimal polynomial
F is defined over Q: f(a) = f(a) is also a root of F, so that F' = F by the minimality
of F, and F has coefficients in K NR = Q. Since Hp = FEp:E{F (@] this proves the
desired result. O

For instance, we may apply this theorem to the cases N € {2,3,4,7}, in which
Propositions 13 or 15 hold:

N D B
2 | 12 mod 16 | 2
3| 9mod 12 | 3
7 | 21 mod 28 | £7
4 | Omod 32 | +4

As numerical examples, we find:
H_35[m5)(X) = X? 4+ 6V/—35X — 27,

H_35[v/=35w5)(X) = X? — 306X + 1377.
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7 Heights and comparison with other invariants

Let f be a modular function yielding class invariants and ®[f](F,J) the associated
modular polynomial such that ®[f](f,7) = 0. It is shown in [6] that asymptotically for
|D| — oo, the height of the class invariant f(«) is ¢(f) times the height of j(«), where

 deg (@[]
)= Gegr(@Lf]) )

depends only on f. It is then clear that ¢(f") = ¢(f)" for rational r. So to obtain c(to%;),
it is sufficient to determine the degrees of the modular polynomials of the full power to3;,
where s is as defined in Theorem 9.

7.1 Modular polynomials for v},

Since %, is modular for I'Y(N) by Theorem 6, we have

Y o=amyl= [[ (F—wkoM).
MEeTO(N)\T

So degp ®F = ¥(N) = N[, prime, p|v (1 + %) The degree in J is obtained by examin-
ing the g-developments of the conjugates to3; o M of .

Proposition 24 (Oesterlé) The cosets of TO(N)\T' can be split into the following three

families:
1 v
I/: <
T < 0 1 ),0_1/<N,

0 -1
s=(1 )
kE kK —1
Mk,k’:<1 i >

with 1 < k < N, ged(k,N) > 1 and 0 < k' < p(k) where u(k) is the smallest integer for
which ged(pu(k)k — 1, N) = 1.

Using (2), we find

Proposition 25
(wyoT)(z) =rn(z+1v)%,0<v <N,

wico )0 = (VI L)

7 (5kZ+0k,k’)
NT5
(03 o My 1) (2) = | G v/Ok Tﬁ:)k ;

where 6 = ged(k, N), Cprr 15 a 24-th root of unity and c i is a rational integer.
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The proposition shows in particular that all conjugates of w3, have integral and that
%, and %, o S have rational g-expansions. The g-expansion principle now implies that
% € Z[F, J], cf. [5, §3]

Theorem 26 s
deg; Oy = ﬁ(N — 14 S(N))

where

S(N) = ) i) (1- %) )

k:1<k<N,1<8p=gcd(k,N)<vVN

Proof: Consider ® as a polynomial in F' with coefficients in Z[J]. Following the same
reasoning as in [8], we see that the coefficient of highest degree in J is obtained when
all conjugates are multiplied together whose g-expansions have strictly negative order;
since the g-expansion of j starts with ¢~!, the degree in J is then the opposite of this
order. The wy(z 4 v)® have negative order _5(2117]—\[1) and contribute a total of —5(1\274_1).
The function to}; o S has positive order. The conjugates coming from Mj, ;- have order

2
o (%’“ — 1), which is negative whenever §; < v N. O
Let us note a list of useful corollaries.

Proposition 27 When N =/¢" for a prime £ and n > 1, then

=Dt —1) ifn=2m,
S(N)_{ (0 —1)? if n=2m+1.

Proof: The only d; occurring in (9) are of the form ¢" with r < n/2. For all correspond-
ing k we have u(k) = 1, and the proof follows from counting the k. O

Proposition 28 When N =/{" for a prime £ and n > 1, then

(e —1)? if n=2m+1,
S(N)—{ (gm_l)(€m+1_1) z'fn:2m+2-

Proof: The k occurring in (9) are the (k; + Cko)¢" with 1 < kp < ¢, 1 < r < m and
0 < kg < "1 (so that k < N); they yield 6, = ¢ and u(k) = 1. Hence,

S(N) — f:(g _ 1)€n—r—1 (1 _ £2r—n) — (En—m—l _ 1) (Em o 1) ]

r=1

Corollary 29 When N is prime or the square of a prime, then deg; ®§ = %.

Proposition 30 When N = pips for two primes py > p1, then S(N) = p2 — p1.
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Proof: The case p; = ps is already proven. So it remains to consider p; < VN < pa,
and the integers k contributing to S(N) are the kp; with 1 < k < py;. Among these,
only one is such that ged(k — 1, N) # 1, namely the k with & = 1/p; (mod ps); for this
one, p(k) = 2. Therefore

S(N)=((p2—2)-1+1-2) <1_pﬁ%> = pa — P1.

O
With some more effort, the constant coefficient ®%;(0,J) could be obtained as the
product of all conjugates, but it is not needed in the following.

7.2 Heights

Knowing the degrees of the modular polynomials, we can compare class invariants ob-
tained from w$; among themselves and with others using (8). Of special interest is the
infinite family of invariants obtained in [7] from the double 7-quotients

oo (PG E)Y

ag
L R ’
n (55 ) nz)
. . . . o 24
where pj, py are (not necessarily distinct) primes and o = AL D pa=T))" These
functions yield class invariants whenever (pgl) = (p%) = 1, and in some cases when

(pgl) =0or (p%) = 0, see [7, Cor. 3.1]. The degrees of their modular polynomials have
been worked out in [8, Th. 9], and we summarise the results in the following table, in
which ¢ and p; # py are supposed to be prime numbers.

f c(f) deg; D
e e({—1 s(£—1
oy, _24((£+1)) (24 :
¢, et-1) Colif (>3
o€ e(p2—1) s(p2=1)(p1+1)
p1p2 24(p2+1) 24
e e(N=145(N)) | s(N—1+5(N))
N (V) 21
e e(f—1)2 o(0—1)2
Wy 120(0+1) 12
1€ e(pr—1)(p2—1) | o(p1—1)(p2—1)
P1,p2 | 12(p1+1)(p2+1) 12

Notice that asymptotically for ¢ or p;, ps — oo, the factors ¢(f) tend to 61/—22 for

1o (here, e is necessarily even), {5 for the double 1 quotients and 5 for wf,. For any
discriminant D, there are suitable choices of primes in arithmetic progressions modulo D
such that e/2 = 1 resp. e = 1 are reachable, and ¢(f) may become arbitrarily close to

% resp. i. However, at the same time, the degrees of ®4; in F' and J tend to infinity,
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which may be undesirable in complex multiplication applications where the modular
polynomial needs to be factored over a finite field.

In Table 7.2, we list in decreasing order of attractiveness the functions f together
with the factors 1/¢(f) they allow to gain in height compared to j and with the degree
of the modular polynomial in J, thus completing the tables of [6] and [9, p. 21]. We limit
ourselves to functions gaining a factor of at least 13 and with degree in J at most 20.
The function v is in fact the Weber function f;, and leads to the same height as the
other two Weber functions { and fs.

tab:comparison

Table 1: Comparison of class invariants: height factor and degree in J

2

to2 oy 2 73 02,97 tog _ o5 W16
1 481 376 © 147/a8 — 361 361 326
> 1025 > w313 _ 1049 > 1081 > 0,2 > 1032 > 0,2
30,1 28,2 28,2 27,12 132/5,5 26,7 51/2,12
> w337 . W2 > 103,61 > 05,7 — m% — m% — mﬁ
76/3,6 76/3,15 124/5,10 24,2 24,1 24,6 24,1
2 2 2
_ o3 05,13 __ 0513 o7, 05,19 105,31 105 37
= 241 7 204 T 2l C 144/714 © 206 © 96/510 1912
— Wiy o wrip o WEg o wrap oWl omwm@ o _ w)
19,6 56/3,6 93/5,10 18,8 18,8 18,8 18,1
— mg — m%o > 11,13 > 3,7 — m%s — mgl — mio
181 18,4 84/5,10 16,2 16,18 16,6 16,18
— owf . owig o wi w? — w5 g > wi;
16,18 16,6 16,12 16,1 16,1 16,6 108/7,14
> Wsas wz; — w2, — w3, — w7, — w3, — w3,
91/6,12 72/5,10 72/5,20 72/5,10 72/5,5 72/5,10 72/5,15
: 3
> Wi wgs T > wi, > Mar 135 _ iy
14,16 14,18 14,1 96/7,14 27/2,4 27/2,8 27/2,16
— iy > 3 19 — 7. 19 — w2, — iy > 55
27/2,4 40/3,6 40/3,12 40/3,18 40/3,3 144/11,11

8 Conclusions

We have given all possible powers of oy to generate Kp. We may obtain smaller
invariants if we authorize 24-th roots of unity to enter the game. This was already done
by Weber for N = 2 (the classical f-functions) and by Gee in [13] for N = 3.

This is the case for D = —40 for which we find that Qm% is an invariant, leading to
the minimal polynomial

X2 4 (-54+2w) X +3—4w.
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The needed theorems will be the subject of Part II of the present work.
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