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ISOGENY CYCLES AND THE SCHOOF-ELKIES-ATKIN ALGORITHM

J.-M. COUVEIGNES, L. DEWAGHE, AND F. MORAIN

ABSTRACT. The heart of Schoof’s algorithm for computing the cardinality m of an elliptic curve
over a finite field is the computation of m modulo small primes £. Elkies and Atkin have designed
practical improvements to the basic algorithm, that make use of “good” primes £. We show how to
use powers of good primes in an efficient way. This is done by computing isogenies between curves
over the ground field. We investigate the properties of the “isogeny cycles” that appear.

1. INTRODUCTION

Let E be an elliptic curve over a finite field F, where ¢ = p", p prime. The curve is given by
some equation £(X,Y) = 0 in Weierstrass form

EX,Y) =Y 4+ a1 XY +azY — (X3 +agX? + ag X + ag)

so that a generic point on the curve is given by (X,Y) mod €. Let m be the number of points of F.
It is well known that m = ¢+ 1 —t, with ¢ an integer satisfying || < 2,/g. If ¢ is small the problem
of computing the cardinality of F is easy: one can simply enumerate all the points on F. When ¢
is moderately large, say ¢ &~ 10%" (see for example [5] for ¢ prime), one can use Shanks’s baby-steps
giant-steps method. When ¢ is larger, say ¢ up to 10°°°, one must use Schoof’s algorithm, or more
precisely the improvements of Atkin, Klkies and more recently Couveignes to the basic scheme.

From a historical point of view, the emphasis was first put on finite fields of large prime char-
acteristic. We note that Atkin gave some improvements to Schoof’s algorithm as early as 1986 [1],
coming up with the use of modular equations in 1988 [2]. In 1989, Elkies [13], described the use
of good primes, some details of which were given in [6]. Then, in 1992, Atkin [3] gave the major
improvements to Elkies’ scheme and made it very practical, his record (March 1994) being comput-
ing the cardinality of E7: Y? = X3 4+ 105X + 78153 modulo 1027 4+ 693. Other implementations
include that of Miiller [22] and of the third author [20], the record being the computation of the
cardinality of Fx : Y? = X* 4 4589X + 91128 modulo 10 4 153 (see [18, 20]). Recently, Schoof
has written an account of the relevant theory in [24]. Some algorithmic details are given in [20]
(see also [22]).

Elkies’ ideas for the computation of isogenies between elliptic curves, although quite efficient
when the characteristic is large do not apply as soon as we need to compute isogenies of degree
greater than the characteristic. This will happen each time the field we consider is not primitive. A
first solution to this problem was given by the first author replacing part of the modular formulae
by considerations on formal groups and their isomorphisms [7, 8]. Lercier and the third author have
implemented this algorithm for the case of ¢ = 2", r up to 1009 [18, 17]. The theoretical aspects
of the implementation for any p small are given in [17]. Note also that Lercier [16] has given a
different algorithm for the special case p = 2. More recently, the first author [9] has given a new
algorithm for all p.
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Schoof’s algorithm computes ¢t mod £ for sufficiently many small primes £, performing arithmetic
modulo polynomials of degree O(¢%). The basic algorithm can be extended to the case of prime
powers £ as well. In Elkies” improvements, a prime £ can be either good or bad. When £ is good,
one can compute t mod £ more rapidly than in Schoof’s basic approach, performing arithmetic
modulo polynomials of degree O(f). Moreover, one can in this case compute ¢ mod ¢” pretty much
as in Schoof’s case. However, one can do better in this case, and the purpose of this paper is to
explain how this can be done.

Though the methods to be described do not improve on the complexity of the whole algorithm,
they speed up the computations in practice and they are at the heart of the recent records.

We need to review first Schoof’s algorithm, then we give a rough explanation of the improvements
of Elkies and Atkin. After that, we explain the role of isogenies and deduce from that three
algorithms that enable one to compute £ mod £*. We note that our method has some common
points with that of [19], but in a different context.

2. A ROUGH DESCRIPTION OF THE SCHOOF-ATKIN-ELKIES IDEAS

2.1. The basic scheme. We refer to [23]. Let F be a non-supersingular elliptic curve defined over
F,. We recall that if m denotes the Frobenius action on the curve, then the ring of endomorphisms
of the curve contains Z[r] and 7 satisfies the following degree 2 equation

(1) m —tr4+q=0,

where ¢ is related to the cardinality of the curve by #F(F,) = ¢+ 1 — ¢ and satisfies [¢| < 2,/7.

Let £ be some prime number. Then 7 induces an automorphism of the ¢-torsion space E[¢] which
extends to Tate’s module Ty(F). Of course, equality (1) holds if we consider 7 as an element of
GL(E[(]) or GL(T;(F)). This remark leads to Schoof’s idea: compute ¢ modulo £ by looking at the
action of m on the (-torsion.

To achieve this goal, one first needs to compute the f-torsion polynomial of F, ff(X), using
the well known recurrence formulae (see for instance [17] for formulas valid in any characteristic).
Then, a nonzero {-torsion point on F is given by

(X,Y) mod (£(X,Y), fF (X)),

so that, for any residue A mod £, one can test whether the trace of 7 is A by checking the following
identity, written in homogeneous coordinates:

(X7, Y7 1) e A(X Y1) @ [q)(X,Y,1) = (0,1,0) mod (&, fF).

For some A the above equality will hold thus giving ¢ mod £. If one does the same computation for
enough primes /; (i.e., such that [], ¢; > 4,/q), then one knows the cardinality of F.

This leads to a polynomial time algorithm. From a practical point of view, the problem is the
size of the torsion polynomials. Indeed, f¥(X) is of degree O(¢?). In practice one cannot hope to
compute ¢t mod £ in this way for £ > 31, say.

2.2. Elkies’ ideas. The whole theoretical background for this section can be found in [15], par-
ticularly chapters 12 and 13. In order to simplify the exposition, we assume £ is an odd prime (the
case £ = 2 will be treated in section 6).

The center of Elkies’ ideas [13] is that if disc(7) = ¢* — 4¢ is a nonzero square modulo £ (the zero
case works as well but in a slightly different way, see section 6) then 7 has two rational distinct
eigenvalues 71 and 75 in Fy, and even in Z,. Then, Tate’s module decomposes as a sum of the two
corresponding rational eigenspaces

Ty(E)y=TF Tl
and the /-torsion as well. Such a prime / is called good, and bad in the other case. (Note that a
bad case has nothing to do with the pathological cases that will be introduced in section 6.)
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We know that there exist £+ 1 isogenies of degree ¢
EXE, 1<u<i+1

and we are looking for some explicit knowledge about these isogenies, such as their field of definition
or their kernel for example. The kernel of those isogenies are the one dimensional eigenspaces of
the f-torsion. Furthermore, their definition field is the definition field of their kernel. Indeed, F, is
just defined to be the quotient of F by the corresponding linear subspace. So, the existence of two
rational eigenvalues for the Frobenius implies the existence of two isogenies defined over the base
field, each isogeny being of degree £. We thus have two isogenous curves F;, for 1 = 1, 2, given by
some equations &(X,Y) = 0 together with two isogenies Iy : ¥ — Fy and I3 : F — Fj,, with kernel
TEN B[] and TF N E[f]. For P = (X,Y) mod £ a point on F, on each curve F;, i = 1,2, one has

_ kz(X) gi(X,Y) .
1Py = (h?(X)’ B3 (X) > mod &

where h; is a polynomial of degree (£ —1)/2. Therefore, the f-torsion polynomial will have two (not
necessarily irreducible) factors by and hy of degree (¢ —1)/2, each corresponding to an eigenvalue.

All along the paper, we represent the f-torsion on some elliptic curve as a parallelogram with
sides the “rational directions”. The picture for £ = 5 is given in Figure 1.

A, b

0 Aq
FiGURE 1. The 5-torsion structure

A nonzero point in 7 N E[f] is given by (X, Y) mod (£(X,Y), h1(X)), which is much nicer than
the above, because of the degree of hy. In view of those considerations, one would like to replace,
in Schoof’s algorithm, the torsion polynomial by some rational factor h; when it exists. Or, more
conceptually, the [/]-isogeny by some isogeny of degree .

We now need to compute the I;’s, and firstly the h;’s. Brute force factorization of ff would be
even more difficult than the whole Schoof’s method since we would need to compute

X @112 mod fF
for some integer d. We will explain next how to do compute [; efficiently.

2.3. Computing isogenies over C, It is easier to consider this particular case first. Details are
given in [3, 13, 6, 20, 22].

Suppose that we are dealing with a complex curve £ = C/(Z + 7Z), of invariant j(7) with
3(7) > 0. The curve E admits an equation of the form Y* = X* + AX + B. Let ®,(X,Y)
be the modular equation of index ¢, that is the algebraic relation between j(z) and j(fz) (with
© = exp(2inT)):

{41
(I)Z(Xv Y) = ZCT(Y)XT
r=1
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where the C,’s have integer coefficients and Cy1;(Y) = 1. Then one knows that F and E’ are
t-isogenous if and only if ®,(j(£’),j(F)) = 0. In other words, the j-invariant of the curves E’ that
-isogenous to E are the roots of ®,(X, j(#)) = 0.

Let p(z) denote the Weierstrass function of E:

_ 1 G 2k
p(z) = Z—2+;ckz

where the ¢;, are in Q(A, B): ¢; = —A/5,¢5 = —B/7, and for k > 3 :
k—2

3
Cp = ChCl—1—h-

For £ odd, the f-th division polynomial is then simply

Fx)y =t 1T (X = p((r+s7)/0)
0<r<(4-1)/2
0<s<t
r>0or 1<s<(4—1)/2

and is in fact in Q(A, B)[X]. This polynomial has a factor

(¢=1)/2
m(X)= T] (X-o(/0)
r=1
which has coefficients in an extension of degree £+ 1 of Q(A, B). We let
(¢=1)/2
=Y o(r/0)*
r=1

Elkies shows how to compute all p;’s using only pq, p and p3. He also shows that p; can be obtained
as a root of a degree £+ 1 equation, whereas py and p3 can be obtained from the coefficients A; and
By of the curve Fy = C/(3Z + 7Z) which is isogenous to E. We make the important remark that
the periods of K are the image of that of F/ by the Atkin-Lehner involution, W,(F (1)) = F(—1/¢7)
for any function F' (of weight 0), and in particular W, (j(7)) = j(=1/¢r) = j({T).

In Atkin’s approach, one uses any modular relation between j(z) and a function F(z) on T'g(f).
Atkin distinguishes between two types of modular equations: the “canonical” one and the “star”
one. In the first case, one uses the function F,(7) = £*(n(¢7)/n(7))?* where s = 12/ ged(12, ¢ — 1).
As Atkin shows, with this function, it is easy to compute j; = j(f7) using Fy = Fy(r) without
finding the roots of ®5(W,(F1),Y) = ®,(¢°/F1,Y), but on the other hand the valence of F; grows
linearly as a function of £. In the star case, one uses a function with smallest possible valence
on XJ(f) = Xo(£)/W,. This has the advantage of having a very small valence, but we have then
to compute the roots of ®}(W,(F}),Y) = ®;(F1,Y). One can compute all quantities py, Ay and
B; using algebraic relations as explained in the references. We will denote by W, any modular
equation.

2.4. Over F,. Let I be any elliptic curve. As above, the roots of W, (X, j(F)) define elliptic curves
over an extension field Fye which are f-isogenous to E over Fy. The splitting of W,(X,j(F)) is
described by Galois theory and can be of the form: (11r...r), in which case there are two curves
defined over F, — this is the good case; (r...r) — this is the bad case; (1¢) or (1...1) — two
pathological cases (see section 6). In each of the first two cases, r is the order of o/ where o and
3 are the roots of X2 —tX 4+ ¢=10in F, or Fpe.

Now suppose we are in the good case. We have to distinguish two cases: the first one (referred
to later on as CASELLARGE) is when one can use the Weierstrass equation form of F and p is large
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enough compared to £ to be able to use the formulas of section 2.3 that involve small denominators.
This in turn implies p > ¢f for some small constant ¢. The second case, CASESMALL, corresponds
to p < ¢f and encompasses the case p = 2 or p = 3 where we cannot use the Weierstrass normal
form. In this case, one must use Couveignes’s algorithms [7, 17, 9] or Lercier’s method [16] to
compute I;.

2.5. The algorithm in brief. We summarize the results given above as follows:
procedure FINDTMoDL(E, p, ¢)

1. compute a modular equation W, (X,Y);

2. if U,(X,j(F)) has two roots in F, then
(a) compute hy using the techniques described above;
(b) find the eigenvalue 7, 0 < 7 < £ such that

(Xqv Yq) = [T](Xv Y) mod (S(Xv Y)v hl(X))
in Fy;
(c) compute t = (1% 4 ¢)/7 mod £.
If Wy(X,j(F)) has 1 or £+ 1 roots, then we know that #* = 4¢ mod £ (see [3]). In the case where
U, has no roots, one can use restrictions on ¢ given by the splitting of W. See the references given
for more details.

3. WALKING ALONG THE RATIONAL CYCLES OF ISOGENOUS CURVES

3.1. Theory. We now suppose that # € G'L(T;) has two distinct rational eigenvalues 7, and 5.
We notice that, since the two isogenies /1 and [y are rational, they commute with 7. This implies
that on the isogenous curves, the eigenvalues of the krobenius are the same, so we can define
TZ-EJ for 4, j € {1,2} as the eigenspace of the Tate module of F; associated to the eigenvalue
;. Since the eigenspaces 751 and 7% are independent, I; induces a bijection between 772 and
the corresponding eigenspace on F; and reciprocally I, induces a bijection between 71 and the
corresponding eigenspace on F.

The existence of two distinct rational eigenvalues has another interesting consequence. It is that

FEy again has two rational isogenies of degree £, one associated to each of the two eigenvalues 7
and 3. We call I;; and I;; the isogenies from FE; associated to 7, and 7, respectively. On the
other hand, we know that, since Iy is rational, the dual isogeny I; must be rational as well (by
uniqueness of it). Therefore 1T equals either I or Ii2. Because I o I is the multiplication by
¢, the kernel of /] has intersection 0 with TlE1 (otherwise I o I; would have points of order % in
its kernel). Therefore, I{ is not I;; and so it is I13. We could express that by saying that the two
rational directions are not only independent but dual. We show all that on Figure 2.
Now, if E is a curve over F, such that ¢* — 4¢ is a nonzero square mod ¢ we can build two periodic
sequences of isogenous curves over F,. These sequences define two permutations Z; and Z; on the
set of elliptic curves over F,, classified up to F,-isomorphisms. The permutation Z; is generated by
the quotient of £ by 7; and the two permutations are inverse of each other:

I I I
Ey g Iy, By

I I Lo
E—2>E2ﬁ>E22ﬁ’

These series are computed in the following way. We use some modular equation W,(X,Y), as
in section 2. Let us call jo the invariant of £ and let us solve W,(X, jo) = 0 over F,. If we are in
the “good case” we have two rational distinct simple roots F} and F5, from which we compute two
curves F; and F; of respective invariants j; and js. Let us now solve the equation Wy(X,j;) =0
over F;. We find two rational distinct simple roots, one of them being W,(F;) and corresponding
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AQ‘ “““““““““““““““
Ay
0 Ay 0 A
E
Aol i
[21

FiGURE 2. Action of the isogenies

to the dual isogeny I;. We choose the other one and call it Fj, yielding F1,. We go on, solving
the equation Wy(X, j11) = 0, etc.

Since the field is finite, the two sequences of curves are periodic and they provide an explicit
description of the two rational subspaces of Tate’s module.

3.2. Example. Let p = 101 and consider all the (classes of) curves F for which (p+1)—-#F =1t =
3. There are 8 of them and the following table gives their invariant and a representative for each
clags. These curves were obtained by brute force, but they could have been obtained by noting that
32 — 4 x 101 = —395, implying that all curves have complex multiplication by the ring of integers
of Q(v/—395) and therefore their j-invariant are the roots of the 8-degree Weber polynomial as in
[4]. We note E = [a, b] for the curve of equation Y2 = X3 + aX + b.

J|E J|E J| B J|E

2| [68,79] || 10 | [19,59] || 15 | [56,41] || 20 | [27,18]
34 | [13,51] || 56 | [3,2] 82 | [53,37] || 90 | [49,100]

Starting from Fqy = [68,79], Jo = 2, using £ = 7, one first finds
(X, 2) = (F + 84)(F 4 64) (F° + 821 + 81F* + 49F° 4 32F?% 4 34 + 68) mod 101.
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We choose Fy = 17 and find 7y = 6. The permutation Z; is then given in

E J(E) | F(E)
(68,797 2| 17
[27,68] | 82| 14
[50,89] | 56| 33
[31,28]| 10 9
[45,15]| 34| 20
[47,87]| 90| 100
[42,63]| 20| 43
[97,32]| 15| 45
[56,31]| 2

The other permutation starts using F, = 37 and corresponds to 7, = 4.

3.3. Application to Schoof’s algorithm. The factor of f(X) corresponding to 7F N K[(] is
h1, the denominator of I;. Now, if we want the factor of fg corresponding to TIE N E[f?], we
proceed in the following way. We first compute the polynomial hy; which is the denominator of
I11, in the same way we computed h; except that we replace K by FK; and pay attention not
to confuse [17 with I7 = [12. Indeed we consider the isogeny from F, associated with 1. Since
L(TPNE?) = TF 0By [f], one has o [, (TP N E[?]) = Op,, and therefore Ker(I,01,) C E[?].
In this way, we obtain a factor of fg as the numerator of hyy o I1. We can iterate this scheme and
compute a factor of degree £*=1(¢ — 1)/2 if £ is odd (see section 6.4 for £ = 2) of the polynomial
fﬁ and then, using Schoof’s idea compute the cardinality of E modulo £* rather than just £. This
allows us to take more advantage of the small good primes.

4. FIRST ALGORITHM AND ITS IMPLEMENTATION
4.1. Presentation of the algorithm. The algorithm runs as follows:

procedure CoMPUTETMODLN(FE, p, £, nmaz)
{computes t mod £" for n < nmaz when ¢ is an Elkies prime}
1. find the roots of W, (X) = W, (X, j(F))in Fy;
2. 1f U, has two distinct rational roots then
(a) compute the equation & (X,Y) = 0 of F; and I; and deduce from this a factor sy of fF
using Fh;
(b) find the eigenvalue 7q;
(c) for n :=2 to nmaz do
(i) (find next curve) find the root F, of W,(X, j(En_1))/(X — Wi(Fn=1)); deduce from
this the equation &, of F,;
(ii) compute the isogeny I, between F,,_; and F, and the factor A, of f;";
(iii) (compute new factor) set A to the numerator of h, o I,,_y o030 I; {at this point
h is a factor of f£ of degree ("~ (¢ —1)/2 };
(iv) (find eigenvalue mod¢™) find A, 0 < X < £ such 7, = 7,1 + M*~! is such that
(X0,¥0) = [r, 1 ](X, V) & N(E (X, V) in B[X, Y]/ (Ea(X, Y), h(X).

4.2. Computing hy and /;. One first solves W,(X,jo) = 0 in F, for a root F; and then one
computes j; as a root of We(W,(F7),Y) over F,. (Note that in the case ¢ = p large, one can do
better in the canonical case, see the references already given.) Each solution y yields a putative
factor hy(X) of fF(X) that is then checked by testing whether £(X,Y) = 0 mod (£(X,Y), hy).

The computation of h,, differs in the cases of p large and p small.
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4.2.1. The case CASELLARGE. In this case, we are dealing with curves of the form Y?=X34+AX+B.
We must distinguish the case £ =2 and £ odd.

In the case ¢ odd, one computes first h, (using the techniques described above) and then the
isogeny. The isogeny is of the form:

kl (X) g1 (/Ya Y)
nex = (5 )
where £1(X) is a polynomial of degree £ with coefficients in F,. Let p;(2) denote the Weierstrass
function of Ey. Then
k1(p(2))

1= )
Replacing g, ©1 and h; by their value, one deduces easily from this the coefficients of k. Alterna-
tively, one can use the improvements of the second author [11] to Vélu’s formulas [27] to compute
the fraction.

Examples. Let us take F : Y2 = X34+ 2X 43 over Fg7. We use the so-called “canonical” equation
of Xo(5), namely the relation between F5(z) = 5%(n(57)/n(7))® = 125(z + 62> + --+) and j(z),
which is
P(X,Y) = X®+30X°+315 X"+ 1300 X>+ 1575 X — (Y — 750) X + 125.
One computes jo = j(£) = 36 and ®£(X, 36) factors modulo 97 as
(X 4+ 25)(X + 10)(X* 4+ 92X° + 46 X * 4 67X + 49).
We choose Fy = 87 and find easily that j; is the root of ®E(5°/F1,Y) = 0 mod p that is j; = 48,
from which we deduce from that F; : Y2 = X3+ 96X + 83. We also find that
hi(X) = X*+ 16X + 30.

Now, one has

p(z) = 272 41922 + 552 + 8825 + 9128 + O(zlo),

p1(z) = 27243922 4+ 221 + 2225 48328 + O(zlo)
so that ,

01(2)h1(p(2))? = 27" +3227% +4327° 48327 4 93272 4 76 + O(2%)

from which we recognize that

ki(X)= X" +32X* +45X° + 92X* 4+ 18X + 35.
Now, we want to compute F1; and so we find

PE(X, 1) = (X +61)(X +5)(X*+61X°+58X%+ 13X +2) = 0 mod p.
We note that a solution to this is Wis(Fy) = 5%/F; = 36 mod p. We must discard this one, since we
would go back to Ey. So, we take I7; = 92 and find Ey; : Y2 = X3 4 95X + 66, together with
hi1(X) = X* 481X + 84

and

X° 465X+ 75X° +85X% 4+ 6X +71
X414+ 65X +36X2%2+28X + 72

A factor of f£(X) is then the numerator of A1 (I3 (X)) namely

X104 48 X2 + 77X 4+ 54X +38X° + 36X +40X2+ 3X2+ 90X + 5.

Let us turn our attention to the case £ = 2. The methods described by Atkin enable one to
compute the isogenous curve, but not the factor of the division polynomial. However, one can
compute the Weierstrass function of the isogenous curve and deduce from this the isogeny 7y as in
[26] using continued fractions and thus h;. Computational examples will be given in section 6.4.

In(X) =
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4.2.2. The case CASESMALL. In this case, we compute first the isogeny and deduce from this the
factor we are looking for. We refer to [7, 17] for more details. This is also true of the new methods
of Lercier and Couveignes. Note that computing isogenies of degree p in characteristic p can be
done using [14].

4.2.3. Analysis. Let us compare the cost of finding ¢ mod £" and that of finding ¢ mod £. There are
essentially two "new” operations to perform. The first one is the computation of h,0/,_10---0ly0lq,
the second the cost of finding the eigenvalue. For this latter problem, the fast techniques of [21]
and [12] can be used. As far as the first problem is concerned, we evaluate

((hpolp_y)o-+)oly)ol;

so that the basic operation is the computation of the numerator of A(B/C) where A, B and C are
polynomials and A has degree d4. The best we can do is 3d 4 multiplications of polynomials, if we
can store the powers of C.

5. IMPROVEMENTS

For the sake of simplicity, we assume £ odd and that we are in CASELARGE. We will indicate
the suitable modifications for CASESMALL later on.

5.1. Using the best direction. It is easy to see that the algorithm works also if we replace hy by
one of its factors. Let dy denote the order of 7 in Fy, and let §; = d; if d; is odd, d;/2 otherwise
(we call &; the semi-order of 7). Then hy factorizes in F, as a product of (£ —1)/(26,) factors each
of degree 6; (see [3]).

Replacing h; by any one of these factors, we can compute a factor of degree §;¢"~! of fﬁ, by
lifting a factor of degree 4; of ff[n].

This approach suggests to take the direction of smallest semi-order. We can show that this is
not too costly by looking at the following picture:

By Ei

We summarize the relevant relations between these curves in the following proposition.

Proposition 5.1. The curve Fy is built using Fy and Ey using I'y. The curve Eq4 is isomorphic to
E. More precisely, if ¥ = [A, B], then Ky = [(*A,(6B] and iy : (X,Y) — (X/(%Y/{3). Moreover,
Ey2 can be built from Ey using Wi (F1) and pi1(F12) = —p1(E).

In this way, it is easy to build a factor of ffl in direction 2 from the knowledge of a factor of ff’
in direction 1. This remark enables us to add a step (b’) in algorithm CompuTETMODLN:

(b’) compute 7 and the semi-orders &; and dy; if 83 < & then replace (K, Ey, hi,m) by
(E1, Erg, haa, 7);

The remaining of the algorithm is not altered. Note that this time, we really work on Fy, which
is isogenous to F. In the sequel, we will give two other applications of this change of directions.
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5.1.1. The case CaseSMALL. Changing directions cannot be done as easily when p < 3. When
p = 2, we are dealing with curves of equation Y? + XY = X3 4 ag for which j(F) = 1/ag. Since
J(E12) = j(F), this leads to Fy2 = E. On the other hand, we do not know of any relationship
between the first coefficients of the division polynomials, so that the isogeny must be computed
from scratch, which can be costly when £ is large. When p = 3, £ = [ay, ag] has equation Y? =
X3+ ay X%+ ag, and one has Fy = [(%ay, (®as] which turns out to be E since for every odd prime
number £, one has £ = 1 mod 3.

5.2. A first improved strategy.

5.2.1. Presentation of the method. For the sake of simplicity, we will write Iy, for the n-th curve
in direction 1.

The idea described in algorithm CoMPUTETMODLN would require the factorization of hqy,(X)
for each n in order to be really worthwhile. One can do better, namely factor a polynomial once
for all. Let us look at the following picture.

I Iy I111
E = ~Fqq ~Fhn
20 i &)
Iis 1119 1112
Fis Ei12 Eii12

Let hqs be a factor of the polynomial féEl, obtained in the direction 7. Then the numerator of

1

hi1g 017 0 I119 yields a factor A1 of fg] also in the direction 7. Similarily, we get a factor hq119

of fgl” as the numerator of hyjg 0190 I1112.

We remark that all curves Fy, have the same cardinality and the same eigenvalue in the same
direction. Hence, computing ¢t mod £” can be done using any curve, and in particular the curve
Elxn-

The first improved algorithm runs as follows.

procedure COMPUTETMODLNBETTER(F, p, £, nmax)

1. find the roots of W, (X, j(F));
2. 1f U, has two distinct rational roots then
(a) compute a factor hy of ff;
(b) find the eigenvalue 7y and deduce 73 from it;
(c) renumber the directions in such a way that direction 2 is associated with the eigenvalue
79 of smallest semi-order; compute the factor A of smallest degree of hqy and set 87 = 7,
0 = do;
(d) for n :=2 to nmaz do
(i) (find next curve) compute Ky, Fiyxnz and 1y 2;
(ii) (compute new factor) set h to the numerator of hoi,_1 0 I1y, 2; {at this point his a

factor of féEan" of degree §("~1 };
(iii) (find eigenvalue mod¢™) find A, 0 < XA < £ such 8, = 6,y + A"~ " is such that
(X1, Y7) = [0,1] (X, Y) & [AJ("7HX, V) in By [X, Y]/ (Erxen(X, Y), A(X)).

5.2.2. Fzample. Let us consider once again the case F = [2, 3] modulo 97. Having found the factor
hi(X) = X%4+16X + 30, it is easy to check that 7 = 2 and therefore 75 = 1. We see that direction
2 is already the best one, so we do not have to renumber the directions. We compute

hiz = X* 4+ 17X 4+ 57 = (X + 56)(X + 58) mod 97.
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We find as above that E1; = [95,66]. The curve Fyj, is then [5* x 95,5% x 66] and we have

X5 4+63X44+50X%+33X24+3X 449
X4 4+63X3+3X24+12X 479

From this, we deduce that hq12 is the numerator of

(X +56) o (I112/5%)

[112 =

which is
X° 48X+ 77X° + 62X % 4 22X + 69.
We then look for the eigenvalue 1+ A5 and find that it is 1.
Going further, we compute Fy1; = [1,80] and
X5+ 28X44+3X34+19X2 421X 489
X4+ 28X34+5X2+42X + 75

L2 =

yielding hq112 as the numerator of
hiig 0 ([1112/52)
that is

h1112
4+40X16 + 60X1% + 12X 14 4 49X 13 4 28X 12 4 61 X1 428X 10 4 19X?

+29X® +60X7 4 86.X6 + 78X P + 48X * 4+ 54X? + 86 X7 + 22X + 22
and subsequently the eigenvalue is 101 mod 125.

= XP 449X L 75X B 4+ 26X22 454X +16X29 469X 480X 18 4 78X 17

11

5.3. Walking backwards. Let us come back to our picture between curves and let us start back-
wards in the cycle. We will note 4, 4, , .. 4, F a curve built backwards following first direction d,

then dj, etc. and a similar notation for isogenies.

ul ! I
me - B - B - F ~F
i_3 i_9 1_1 o
2114 o1l Iy 19
a1 nk Fy s

In this version, we are closer to the basic algorithm. We find that a factor of 1A of ft}QF’ is the

numerator of hy o1/. Similarily, we would get a factor of fl};F’
equivalently, as the numerator of 1hoq11.

as the numerator of hy o1/ 04,1 or

The final algorithm is given below. The invariant of the main loop is (¥, sy, Fy, h). We give the

algorithm in a compact form.

procedure CoMPUTETMoODLNBACKWARDS(FE, p, £, nmaz)

1. find the roots of W,(X, j(F));
2. if W, has two distinct rational roots then
(a) compute a factor hy of fE;
(b) find the eigenvalue 71 and deduce 72 from it;

(c) renumber the directions in such a way that direction 1 is associated with the eigenvalue
71 of smallest semi-order; compute a factor h of hy of smallest degree and set 8, = 7,

& = d;
(d) compute Fy using the second root of W, (X, j(F));
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(e) for n :=2 to nmaz do
at this point K is isogenous to F, via I and h contains a factor of degree 6("~2 of
p g g
Firr -}
(i) (find next curve) find { £ using proposition 5.1 and set | ' = W, (F});
(i) compute the isogeny 1/ between 1 £ and F;
(ili) (compute new factor) set h to the numerator of h o¢/; {at this point h is a factor of
félf of degree §¢"=1! };
(iv) (find eigenvalue modf™) find A, 0 < X\ < £ such that 6, = 6,_, + M"~! satisfies
(X2,¥0) = [0,,](X,¥) & (= (X, V) in B,[X,Y)/(E(X, ), h(X));
(v) (update data) if n < nmaz then
(A) compute the other root 5 F of W(X, j(;£)) by computing

ged (X? = X, Wy (X, 5 (1)) /(X = )

and deduce from this 9 F;
(B) set F2 = 21F, E2 = 21E and = lEa

Remarks.

1. We see that when we content ourselves with nmaz = 2, the computation of 1A is essentially
free since we alreay know F, (no computation of X? modulo a polynomial is needed).

2. In step (c), we might have to factor hy instead of hy. The first step for this is the computation of
X?mod hy. This quantity can be evaluated as the abscissa of 75 (X, Y) over F, [ X, Y]/ (&2(X,Y), ha),
which is faster.

3. There is another way of computing | F, which is slightly less efficient. It can be shown
that the formulas given in [20] can be inverted to give the corresponding coefficients. This works
particularily well if we know the invariant of £/ (because there is only one possible value, say).

5.3.1. Fzample. Again, let ¥ =[2,3], p =97, £ = 5. We already computed I} = 87, F; = [96, 83]
and 71 = 2, 72 = 1. Since we already know the value of I, = 72, we get Fy = [43,39] and
hy = X%+ 14X + 46.

We renumber the directions in such a way that direction 1 is the best one. We thus have
Ey =1[43,39]and hy = X?2+14X +46 = (X +17)(X+94), 7, = 1,8 = 1; F, = [96,83] and F, = 87.
We set h = X + 17. Walking the isogeny cycle backwards, using | ' = W5(F) = 5°/F, = 36 we
find that 1 £ =[9,71] and
X+ 13X 427X +69X°+52X +4

X4+ 13X3445 X2+ 30X + 61

from which 1y2h = X° 4+ 30 X* 4+ 54 X? 4+ 58 X? 4+ 77 X 4 71. Once this is done, we factor
PX,j(1F))/(X —36) = (X +5) (X*+61 X°+58 X%+ 13X +2) mod 97
and thus 91 F = 92, from which 51 F = [18, 81].
The following step yields 11 £ = [32,95] and
X°+15 X1+ 73 X%+ 96 X2+ 89X +12
X4+ 15X34+49 X2 4+79X +48

1

ul =

from which we deduce that
nh= X 48X 469 XB 434 X224 17 XH 420 X204 76 X947 X184 86 X174+22 X164 20 X1°

FI0X M +64 X+ 15 X2 4+66 X" +82X"0 130X+ 2 X8 4179 X7 4+ 25 X6
466 XP+52 X4+ 43 X3 +29X24+16 X + 44

is a factor of fé%E
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6. PATHOLOGICAL CASES

6.1. Presentation of the problem. We will make here the assumption that (¢,¢) = 1. The case
0| q is studied for example in [17].

Elkies’ approach works when 7 has rational F,-eigenvalues. We have seen above how to deal
with the case where the eigenvalues are distinct. The pathological cases corresponds to double
eigenvalues, which means that f(X) = X2 —¢X + ¢ is a square mod/.

We start with a few basic remarks concerning the action of the Frobenius endomorphism on
Tate’s module in the case where t? — 4¢ is zero modulo £. In such a situation one may expect to
achieve something provided at least t2 — 4¢ is a square in Z;. Since t2 — 4¢ is not zero (otherwise
the curve would be supersingular) we should then have t* — 4q is zero modulo ¢2. If t* — 4q is a
square in Zy, there do exist two distinct solutions of X? — tX + ¢ = 0 in Z, and two associated
eigenspaces of 1.

Remember that T, is the limit

E[f] « E[f*] « E[{*] « ....

One may ask why one chooses such a fancy definition instead of the more natural union of all F[¢*].
The point is that 7 is a dimension 2 free module on Z, whereas UF[¢*] is a module of infinite type.
In particular any base of 1y over Z, cannot be made of torsion points!

Now that we have eigenspaces in T; we may expect that we are done. But there is indeed a
problem. We are working in the finite quotients E[(*¥] of T, and these are not vector spaces apart
for the first one which is a vector space over Fy. Therefore the existence of roots of X? —tX + ¢
modulo £* (for example those obtained by reducing the roots in Z, modulo £*) does not imply the
existence of corresponding invariant spaces in E[(¥]. Here we have to be more precise. We call a
full subspace of E[(*] any submodule which is complete under division by £ in E[¢*] (if it is non
zero, it must contain an element of order £¥). In general, the images in E[¢*] of the eigenspaces I
and F, of = will not be full subspaces but just cyclic subgroups with cardinality a divisor of £*.
We call them pseudo-eigenspaces.

In order for 7 to have rational eigenvalues in Z/{"Z,n > 2, it is necessary that f(X') have roots
in Z/0"Z. Define the equation

(R,) f(X)=0mod ("

and denote by &), the set of solutions. We give some results concerning this equation in the next
section.

Once we know that X, # (), this does not mean 7 has full eigenspaces. This problem and the
way to study it is given next.

6.2. Solving X% —tX 4 ¢ = 0 mod £". Equation (R,) has solutions for all n if and only if f(X)
has roots in Zjy.
Obviously, X, # 0 if and only if the discriminant A = #? — 4¢ is a square modulo £".

Lemma 6.1. Let us write A = {5 where £15.

If n < a, the square roots of A are 0 and the (™6 forn/2 <m < n and 1< 4§ < L.

If n > a, A is a square modulo (" if and only if a is even and A/L* is a square modulo ("~ and
equivalently a square modulo (. In that case, let p be any squareroot modulo £"~; the other (non
distinct) roots are (%/?(£p + st"=%) for 0 < 5 < (2.

For any particular instance of (t,¢), one may build a tree in the following way. Level 0 is the
root. Level 1 contains all solutions to (Ry). Then, any level ¢ > 2 contains the roots of (R;) that
are built from roots at level i — 1. We draw an arrow from a node N at level : — 1 to a node N’ at
level 7 if and only if N’ = N mod ¢*~'. This tree may be finite or infinite, and have one or more
infinite path(s). The infinite paths correspond to the existence of f-adic roots to the equation.
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Examples. Take (t,¢) = (—2,1009) and £ = 3. Then the tree is simply that of Figure 3. We have
A =32 x (—448) and —448 is not a square modulo 3.

()

N —-——

1N

2 5 8

Ficure 3. Tree associated with X2 + 2X + 1009 mod 3

As for (t,q) = (34,1009) and ¢ = 3, the first five levels are given in Figure 4. Note that the
equation X2—34X +1009 = 0 has two distinct solutions in Zs3. The discriminant A of this equation
is 32 x (—320). We have —320 = 12 mod 3. Write —320 = 1 + 3u. Then a 3-adic root of A is given
by the development of

3(14 3u)'/? = 3gu - 28—7u2 +O(u?).

We deduce from this the two 3-adic roots of X2 — 34X +1009 = 0: they are respectively congruent
to 14 and 20 modulo 3%.

N -—

2 5 8
2 11 20 5 14 23
20 47 74 14 41 68

FiGURE 4. Tree associated with X2 — 34X + 1009 mod 3"

In the case £ = 2, one can refine some of the results. We summarize the results for small n below.

Proposition 6.1. Fquation (Ry) has solutions modulo 2 if and only if t = 0 mod 2 and in this case
X1 = {1}. Equation (R3) has solutions if and only if t = ¢+ 1 mod 4, in which case Xy = {1,3}.



For n = 3, one gets
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t q Xg t q Xg
0]{1,3,5} 0 4 [{1,5,7} 0

7 {1,3,5,7} 3 {1,3,5,7}
21 {3,7} [ 6| {3,5} 0

1 {1,5} 1 {3,7}

5 {3,7} 5 {1,5}
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We have also an interesting criterion.

Proposition 6.2. Assume n > 3. Ift = 0 mod 4 and x, is a solution of (R,,), then there exists
€ € {0,1} such that x, +2"~'¢ is a solution of (Rp41)-

Proof: We write:
flz, +2"71) = f(2,) + 2" 1€(22, — t) mod 271!
or
0= K +&(z, —t/2) mod 2.
But since (R,,) has a solution, z,, = 1 mod 2 and the result follows since #/2 is supposed to be even.
O

6.3. Testing for eigenspaces. A pathological case is detected because t2 — 4¢ is zero modulo /,
which in turn is equivalent to the fact that the modular equation W,(X, j(F)) has splitting (1£) or
(11...1).

Selecting one of the roots, Fy, we construct F; and the following step is to find the roots of
U =W, (X,j(E1))/(X = Wy(F1)). It is easy to see that, by Galois theory, ¥ has either 0 or £ roots
modulo p. In the first case, we cannot do anything more. In the second case, we select a root of
this polynomial and go on. In some cases, this root does not work and we have to try another one.
In this way, we build a tree which is very similar to the congruence tree described above. We can
build this tree using a backtracking procedure, which is quite simple and that we do not want to
describe.

Note that for our purposes, we are happy with one long path in the tree and not all the tree.

Example. We take £/ = [1,4] and Figo9. The splitting of ®5(X, j(£)) is (13) and we compute the
tree of Figure 5. Using this, we find that ¢ = 34 mod 3*. As a matter of fact, ¢ = 34 and this tree
corresponds to the congruence tree of Figure 4.

We note the following. Suppose we stop at level n = 2. Then, to each solution of X% — 34X +
1009 = 0 mod 3? corresponds a factor of degree 3 of fy/ fs:

21 X3 +916 X2+ 671X + 477
51 X34+997X? + 522X + 804
8| X3 +377X2%2+ 940X + 618.

Remarks.
1. Notice that the fact that 7 has no Fy-eigenspace does not imply that fsm (X) has no factor of
degree ¢"~1(¢ — 1)/2. For instance, for £ = [1, 3] modulo p = 1009, one has

fo_yg (X +10 X2 4379 X +217) (X° +490 X? + 274 X + 713)

f3
X (X7 +302 X%+ 839X +401) Py P,P3 mod p
where P; has degree 3%. More generally, f3n/fsn-1 has 3"~! factors of degree 3”~! and 3"~! factors
of degree 3".

2. Suppose now that we cannot compute Fy; from Fy. Then it is not useful to try to find | F,
since it isomorphic to K7 and we would gain nothing.
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[1, 4]
I
303

Y
[991, 787]

862 /673\ 35

[12, 122] [704, 835] [718, 108]

/\ /\
1001 134 678 169 134 678

U - LN

[209, 417] [862, 2][1001, 754] [617, 421] [2, 799] [611, 541]
™ TN
862 673 412 862 35 412
Ve v N Ve y N
[197, 998]122, 545]573, 713] [934, 814][53, 886][755, T15]

FiGUrE 5. Tree associated to E = [1,4], p = 1009, ¢ = 3.

6.4. The case ¢ = 2. We assume 2 { q. The case { = 2 is always pathological, since when
®5(X,Y) splits, it has either 0, 1 or 3 root(s) in F,. What we have said before, including the
backtrack approach, is still valid. However, some different results can be stated.

We note the important result.

Theorem 6.1. Assume q odd and n > 2. If © has an eigenvalue modulo 2", then fL(X) has a
factor of degree 272,

Proof: We note first that if 7 has an eigenvalue modulo 2”7, then ¢t = ¢ + 1 mod 4 by Proposition
6.1. Therefore F/ has a point of order 4 and f; a linear factor. The result follows by composition
of isogenies. O

The computation of the isogeny is very explicit here, using Vélu’s formulas [27].

Proposition 6.3. Assume that F : Y? = X3 + a3 X? + a4 X + ag has a rational point of order 2,
noted P = (z0,0). Let G be the group generated by P. Let t = 3x% + 2a27¢ + a4 and w = zot.
Then an equation of E/G is Fy : Y = X3 + Ay XE 4+ A4 Xy + Ag where Ay = ay, Ay = a4 — 5t,
Ag = ag — 4ast — Tw. Moreover, the abscissa of the isogeny Iy : F — Fq is given by
t
Xi=hL(X)=X+ .

r — I

We can deduce the value of zg from that of F’ using the following idea.

Proposition 6.4. Let j be the invariant of E, and F be a root of ®5(X, j) = 0. Assume firstp =13
and £ : Y% = X3+ ay X%+ ag. Rewrite this in the form Y = X3 — ¢jX? + 352, using c = —ay/j.
Then the abscissa of the point of 2-division is

(£ +1)°
.

Tog=2¢C
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(Note that we cannot have F' = 0.) Suppose p > 3 and j # 1728. Write the equation of K : Y? =
X3+ a4 X + ag in the form

3c?y X4 2c35 .
1728 — 5 1728 — 5
with ¢ = 3as4/(2a¢). The abscissa of a point of 2 torsion is
F+16
F-8
Proof: the results follow from elementary resultant computations. O
Example. Let p =101, Fy = [77,69]. One finds that ®§ factors as

®5(X,22) = (X? 4 80X + 74)(X + 69) mod 101
and thus F; = 32. One finds Fy = [58,34], J; = 98 and the isogeny is
I - X?4+4X 424
X +4

and X + 4 is indeed a factor of X3 4 77X 4 69. We compute

®5(X,98) = (X + 74)(X 4 98)(X + 78) mod 101.

We discard X = 27 = 2'?/1 as usual and we have to choose between 3 and 23. It turns out that
we must take Iy = 23, thus obtaining Fy; = [42,43] and

X% 450X + 84
I = X
+50

Now, we compute the numerator of I; + 50 and find it is (X + 27)2 and X 4+ 27 is indeed a factor
of fFo. After that, Iy, = 54, Fy1; = [85,11] and a factor of £ is X + 86 so that a factor of fI
is X?+90X + 65.

In some other cases, we have to do more computations, as shown by the following example. Take
F =1,3] modulo p=1009. In Figure 6, we give the tallest subtree of the tree of curves.

As a matter of fact, we cannot go deeper than 6 levels. This means we can compute ¢ mod 27,
but not ¢t mod 2%, which is coherent with the fact that + = —50 and that X2 4 50X + 1009 mod 2"
has no roots for n > 8 (for the solution of such an equation, see for example [25, 11, th. 4.]).

Y?=X%+4

g = —C

7. REMARKS AND CONCLUSIONS

We have shown how to use small prime powers in Schoof’s algorithms. The use of small prime
powers has proven very useful for the practicality of algorithm SEA. This raises interesting questions
concerning isogeny cycles. Qur approach works also for the new approach used by the first author
for extending Atkin’s ideas to small characteristic [7, 16, 9]. This is certainly the case for the first
algorithm we gave and when the characteristic is different from 2 and 3. It remains to find the
formulas for the Atkin-Lehner involution used in the other two algorithms.
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Y
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|
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Y
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649/\379
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PN
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