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Abstract. Recently, Kohel gave algorithms to compute the conductor
of the endomorphism ring of an ordinary elliptic curve, given the car-
dinality of the curve. Using his work, we give a complete description of
the structure of curves related via rational ¢-degree isogenies, a structure
we call a volcano. We explain how we can travel through this structure
using modular polynomials. The computation of the structure is possible
without knowing the cardinality of the curve, and that as a result, we
deduce information on the cardinality.

1 Introduction

Let E be an elliptic curve over a finite field F,, where ¢ = p” with p prime. By
Hasse’s theorem, the Frobenius 7 of the curve is an endomorphism of degree 2
with characteristic polynomial x(T') = T? — tT + ¢ where [t| < 2,/g. It is also
known since Deuring [6] that the endomorphism ring of F is either an order in an
imaginary quadratic field (the ordinary case) or an order in a quaternion algebra
(the supersingular case). Suppose that E is ordinary and let d, = t?> — 4q be the
discriminant of 7. We can write d, = ¢g>dx where dg is the discriminant of the
associated imaginary quadratic field K. To each f | g corresponds an order of
K and to each such order corresponds an isogeny class of elliptic curves having
this particular order as endomorphism ring.

Kohel has shown in his thesis [10] how all these curves are related via isogenies
of degree dividing g. Studying this correspondance more closely, we introduce
the complete structure of isogenies that we call a wolcano. Kohel’s approach
starts from ¢ and finds the conductor f of End(FE), using modular polynomials.
We revert this algorithm, using modular polynomials to find g and f. As a
consequence, we can come up with an algorithm for computing an elliptic curve
of any prescribed conductor & | g and in particular the maximal endomorphism
ring (k = 1), algorithm that is needed in [9].

After introducing some basic notations, we will recall the relevant facts about
Kohel’s work that describe the structure that grows “under” the isogeny cycles
introduced by Couveignes and Morain in [4], forming a volcano. Then we re-
call the relevant theory of modular polynomials and we are ready to “invert”
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Kohel’s theorem to see the situation from the modular side, which will lead to
our algorithm. We then give some applications. The first one is related to the
computation of ¢. For a prime £ | g, our algorithm gives the ¢-adic valuation of
t and this information can be used in Schoof’s algorithm. Also, we relate the
new structure to the trees that were invented in [3] and solve a problem raised
by Lercier in his thesis. We can also use this structure in the algorithm given in
[2] to compute the equation class of an order O. This method is based on the
computation of all the j-invariants of curves satisfying certain conditions. The
problem is that they never distinguish the curves having an endomorphism ring
equal to O from the others, problem that can be solved using the structure of
the volcanoes. Numerical examples are given to illustrate our work.

Although the general theory works for any characteristic, we concentrate on
examples where the characteristic is not 2 or 3. The modifications to be made
concern formulas for computing isogenous curves, but we do not insist on these
in this article.

2 Extending Kohel’s work

2.1 Prerequisites and notations

If an elliptic curve is not supersingular, then it is known that its ring of endomor-
phisms is an order in an imaginary quadratic field. Isogenous curves share the
same underlying field. In this article, we will consider a set of isogenous curves
and the relations between them, so that we can assume that we are dealing
with a fixed imaginary quadratic field K of discriminant dg and maximal order
Ok, which can be written as Z[wg] with wg = %. As is well known [1],
an order O in K is completely characterized by its conductor f or equivalently
its discriminant. As a matter of fact, O has finite index in Ok equal to f and
O = Z + fOk. The discriminant of O is simply D = f2dr. Remember also that
if O1 and Oy are two orders in K of respective discriminants Dy and D,, then
O, C O, iff there exists a positive integer k such that D; = k?D,.

The main focus of the article is the relationship between three orders in
K related to a given elliptic curve E: Ok, the order Z[r] generated by the
Frobenius map # and the endomorphism ring End(E) of E. These orders are
such that Z[r] C End(E) C O or equivalently, [Og : O] = f, [0 : Z[r]] = g et
[Ox : Z[a]) = g/F.

In his thesis [10], Kohel computes End(E) starting from the known value
of dy = t> — 4q = ¢?dx, where t was computed using a polynomial algorithm
for point counting [11,13,12,8]. In our case, we deduce from Kohel’s work a
structure that describes the relations between isogenous curves and their endo-
morphism rings.

Let us fix the notations that will be used in the rest of the paper. Let E/F,
be an ordinary elliptic curve and j its j-invariant. Let O be the endomorphism
ring of E, D its discriminant and f its conductor. Let ¢ be a prime different
from p.



2.2 Kohel’s theorem

The following proposition justifies the use of f-isogenies of an elliptic curve to
determine its endomorphism ring O (and overall its conductor f).

Proposition 21 [10, Proposition 21] Let a : E — E' be an isogeny of prime
degree L. Then O contains O' or O' contains O in K and the index of one in
the other divides £.

This is equivalent to saying [0 : O'] = 1, £ or 3. We will use the following
language when speaking about f-isogenies. A “descending” f-isogeny, denoted
by |, is an {-isogeny a : Ey — E5 such that [0y : O2] = £ whilst an “ascending”
{-isogeny, denoted by 1, is an f-isogeny « : Ey — Es such that [Os : Oq] = L.
In the case where the endomorphim ring is preserved we say that we have an
“horizontal” f-isogeny, denoted by —.

Theorem 21 [10, Proposition 23] Table 1 classifies the possibilities for the ra-
tional £-isogenies of E defined over F,.

Case Number and type| Total number
[0k O[O0 Zx]] 1+ () - 1+ (D)
1+(2) -
([0 : Zx t (+1
| []]{é_(%) )
| [0k : Ot ][O : Zr]) 11 1
11
107 +1
10 2[x] { /) +
Table 1. Number and type of the £-isogenies depending on [Ok : O] and
[O : Z[n]].

2.3 Some lemmas about the classification of £-isogenies.

Table 1 gives the keys to understand how the endomorphism rings of isogenous
curves are related. We first deduce from these results the relation between an
l-isogeny a and its dual denoted by a.

Lemma 21 Let o : E — E' be an (-isogeny and & its dual. Then a is an
ascending (-isogeny iff & is a descending (-isogeny and « is an horizontal ¢-
isogeny iff & is an horizontal {-isogeny.

From these results, we can deduce some properties of the endomorphism
rings O and O' such that o : E — E' is an f-isogeny. With respect to £, we
distinguish two cases for the endomorphism rings: the case Z[n] maximal at £,
i.e. £1 ][Ok : Z[r]] or not.

The following lemma ensures that if Z[7] maximal at ¢, we can only find
horizontal /-isogenies.



Lemma 22 Let E be an elliptic curve such that Z[r] is mazimal at £. If there
ezists an £-isogeny of E, then this £-isogeny is an horizontal £-isogeny.

We suppose now that Z[r] is non-maximal at £.

Lemma 23 [7] If { | [Ok : Z[r]] and £ 1 [O : Z[r]], i.e. if £" || g with n > 1
then €™ || f, then the only £-isogeny o : E — E' is such that ¢ | [O' : Z[x]], i.e.
o

Lemma 24 [7] If « : Ey — E5 is a descending (-isogeny and ¢ | [Os : Z[r]],
then for every B : Ey — FE3 such that O3 # Oy, B is a descending (-isogeny.
Moreover, there are £ such £-isogenies.

In other words, if 8 # &, then § is a descending f-isogeny. Since F, has
£ 4+ 1 f-isogenies, & is an ascending f-isogeny and the £ others are descending
l-isogenies.

Let us now describe a very particular case.

Lemma 25 [7] If there exist two £-isogenies different up to isomorphism from
a curve E to a curve E', then they are both horizontal £-isogenies. We can also
conclude that £ splits in O.

This peculiar case gives us some informations about the imaginary quadratic
field the endomorphism ring is in.

Theorem 22 [13] Suppose there are two {-isogenies « and 8 distinct up to
isomorphism from E to the same curve E'. Then the discriminant D of the
endomorphism ring of E is such that |D| < 4¢2.

This set of lemmas gives us an idea of the graph of ¢-isogenies of the elliptic
curves having the same Frobenius map. It has a structure of a volcano truncated
at the level of Z[r]. The crater comes from the horizontal ¢-isogenies (if they
exist) that we can find when O is maximal at £ using Table 1 and the rest of the
volcanic structure comes from the fact that by Lemmas 23 and 24, we see that if
£ | [Ok : O] then E does not have any horizontal £-isogeny. Figure 1 summarizes
these ideas.

The level of an elliptic curve in the volcano is the f-adic valuation of its
conductor. The height of the volcano is equal to the level of a curve with endo-
morphism ring isomorphic to Z[x] locally at /.

- - -
- <> <>



3 Modular equations and isogenies

We remind the reader that there exists a bivariate polynomial &,(X,Y") with
integer coefficients with the following property. Two elliptic curves E and E’
defined over F,, are related via a cyclic isogeny a of degree ¢ if and only if
#E = #E' and &,(j(E),j(E")) =0.

To find the curves related to E via an f¢-isogeny, we must solve the equation
¢¢(X,j(E)) = 0, which gives us their potential invariants. Suppose j* is one of
these roots. The curve E* we are looking for is known up to twist and we must
find an equation for it. Formulas for computing an equation of E* are given in
[13]. These formulas do not work in the case where j or j* are in {0,1728} or
0,/0X (j,5*) = 09,/0Y (4, j*) = 0. We will call such a curve a special curve (or
having a special endomorphism ring) and have a procedure detecting this, which
is costless, since testing whether d®,/0X (4,5*) = 0¥,/0Y (4,5*) = 0 costs one
polynomial ged.

For later use, we will suppose that we have a procedure ISOGENOUSCURVES(E,
£) that gives us the list of curves that are f-isogenous to a given curve E when
FE is not special.

4 Our algorithm

Let £ be a prime number different from p and A (E) denote the number of roots
of &(X,j(E)) in F,. Depending on Ny(E), we can determine some properties
of End(E) using Table 1. We summarize them in Table 2.

N¢(E)| Type of the ¢-isogenies (%) (dT”)
0 none 1[0k : Ol and €110 : Zw -1 -1

2 — (1[0 :O0)land £1[O : Zlx +1 +1
1 case 1: — L1110 : Zlr]land £ [Ok : O 0 0
case 2: T £1]O: Zlr]]and £ | [Og : O 0 0

1 D
case 1’:{ + ([é)) ? (][O : Z]r]] and £ 1 [Ok : O]|nothing known| 0
N

- (%)

{41 "
case 2”: ¢l ][0 : Zr]) and £ | [Ok : O] 0 0
Table 2. Properties of O depending on the number and type of the /-isogenies
of E.

Kohel [10] uses this approach as one of his methods to compute the endo-
morphism ring of the elliptic curve E. We use it to compute isogeny volcanoes.
4.1 Goal of the algorithm

Let £ be a given ordinary elliptic curve defined over a finite field F, and j(&)
its j-invariant. Let £ be a prime different from p. Starting from &, we want to



construct a partial isogeny volcano, that is we want to determine the type of the
crater of the isogeny volcano and determine a part of the volcano containing &,
plus a set of isogenous curves to £ containing a curve with endomorphism ring
isomorphic to Z[r] locally at £ and one with endomorphism ring isomorphic to
Ok locally at /.

We first give the skeleton of the algorithm and then detail every step.

4.2 Skeleton of the algorithm

The algorithm is divided into two parts. First, we determine whether Z[x] is
maximal at ¢ or not. If not, then we look for a curve E, in the crater of the
isogeny volcano (Figure 1), determine the type of the crater by determining
€ = (dTK) and then find the height of the volcano using what we call a full
descending path. Since special curves need a careful treatment, we signal these

with an EXIT statement, so as to ligthen the exposition.

Procedure COMPUTEPARTIALVOLCANO
Input: An elliptic curve £ and a prime £, £ # p.
Output: € = (dTK) and a list F of full descending paths of the volcano.

1. TF & is special THEN EXIT;

2. F +IsoGENOUSCURVES(E, £);

3. IF #F =0 THEN {e + —1; F « {£}; GOTO 5}
ELIF #F =2 THEN {e « +1; F «+ {£}; GOTO 5}
ELIF #F =1 THEN

— E'+ F[1];
— IF E’ is special THEN EXIT;
ELIF Ny(E') =1 THEN {e « 0; F « {£}; GOTO 5}
ELSE GOTO 4;
ELIF #F = ¢+ 1 THEN GOTO 4;
4. (Es, P,e,n,F) < FINDFULLDESCENDINGPATHS(E, £).
5. RETURN (¢, F).

4.3 Special curves.

If our original curve £ has its j-invariant equal to 0 or 1728, then we cannot
build any part of the volcano. We do not know how to distinguish the curves
that are isogenous to £ over F, from the ones which are only isogenous to £ over
the algebraic closure of F,. If we encounter such a curve during the construction
of the volcano, we know that this curve is in the crater of the volcano and we
can deduce from this a full descending path and e. But we will not be able to
construct the whole volcano.

If at any moment in the construction, we encounter a curve E having two
distinct f-isogenies to a curve E’, then we deduce that E is in the crater and the
type of the crater. We will not be able to construct the entire volcano since we
do not have the equation of E' but we can still get the complete subtree below
FE and therefore a full descending path.



4.4 The case Ny(€) # £+ 1.

e NVy(€) = 0: In this case, if we refer to Table 2, we see that there is no f-isogeny
from & to another elliptic curve and that £ is inert in Z[r]. We can also deduce
that OKé >~ End(g)é ~ Z[ﬂ'][.

e Ny(€) = 2: Referring to Table 2, we see that ¢ splits in Z[x]. This case has al-

ready been treated by Couveignes, Dewaghe and Morain ([4], [3]). Using Lemma
22, we know that for every elliptic curve E' such that a : £ — E' with o ¢-
isogeny then O’ ~ End(£). We can also deduce that Ok, ~ End(€), ~ Z[r],.

e Ny(€) = 1: In this case, ¢ ramifies in Z[r]. In Table 2, we see that this is a

dual case. By dual, we mean that we may be in a case where Z[r] is maximal at
£ or not. We need to distinguish those two cases. In order to do so, we will need
its isogenous curve E’' and A, (E').

Case 1: N((E') = 1. Suppose that Z[r] is not maximal at ¢. Referring to
Table 2, we know that £ { [End(€) : Z[n]], £ | [Or : O] and the f-isogeny
a : & = E' is an ascending f-isogeny. Therefore applying Lemma 23, we have
(][O : Z[x]]. Thus, referring to Table 1, Ny (E') = £+ 1, which contradicts what
we first found for Ny(E"). Therefore, Z[r] is maximal at £.

Case 2: N((E') = £+ 1. Suppose that Z[r] is maximal at ¢, i.e. £{ [End(£) :
Z[n]] and ¢ 1 [Ok : End(€)]. Referring to Table 2, we know that the ¢-isogeny
a : £ — E'is an horizontal f-isogeny and (Dg/¢) = 0. Therefore O’ has the
same conductor as End(€), i.e. £1 [0 : Z[x]], £ t [Ok : O'] and (D'/¢) = 0.
Referring to Table 1, we see that AVG(E') =1+ (DTI) = 1 which contradicts the

result we first found for Ny(E'). Therefore, Z[n] is not maximal at /.
In this case, we can already make some conclusion about O: Ok, % End(&),
and End(€)y ~ Z[r]y, i.e. there exists an n > 1 such that £" || g and £ || f.

4.5 The general case Np(€) = £+ 1.

By looking at the skeleton of the algorithm in Section 4.2, we see that this case
is the most interesting one.

From now on, we assume that F is of level r, r € N, and N¢(FE) equals £+ 1.
In fact, we have the equality N¢(E;) = £ + 1 until we find the ending point of
our recurrence that we recognize by N¢(E;) = 1.

This part of the algorithm is based on finding an elliptic curve Ey such that
E is in the crater, using descending paths. First we precise this notion.

Descending paths.

Definition 41 A descending path of an elliptic curve E is a path E = Eq —
E, = Ey— - = E,_ 1 — Ey, of elliptic curves such that the map E; — E; 41,
fori €0,...,m[, is a descending l-isogeny and £ 1 [Oy, : Z[r]]. We will say that
we have a full descending path if E is in the crater of the volcano.

Lemma 41 With the notations of Definition 41, if E is of level r then E; is of
level r + 1.



Proof: We prove this lemma by induction. Ey = E is of level r. Let us suppose
that the result is true for F;, with 0 < j < m. We know that the map F; — E;;1
is a descending (-isogeny. Therefore, since the level of F; is r+7, i.e. ("1 || [Ok :
0;] and by definition of a descending f-isogeny, then £+ || [Of : O;1]. Thus
Eji1isof level r+ (j +1). O

The main goal of finding a descending path starting from an elliptic curve E
is to locate the endomorphism ring of E in the volcanic structure (see Figure 1)
with respect to Z[x].

Corollary 41 Let P be a descending path starting from E and let m = #P —1.
Then E is of level (n — m) where n is the height of the volcano.

Now that we have defined this notion and its interest, we will show how
to compute a descending path. We first give the algorithm and then prove its
correctness.

Procedure FINDDESCENDINGPATH
Input: A non special elliptic curve E such that £ | [Ok : Z[x]].
Output: A descending path starting from E.

1. F < IsOoGENOUSCURVES(E, £);
9. IF #F = 1 THEN {P[1] « {E}; io + 1; GOTO 6};
3. FORi:=1TO 3 DO
(a) Pli] < {E}YU{F[il}; Gli] < E; G'[i] « FIi];
(b) IF G'[i] is special THEN S[i] + § ELSE S[i] < 1s0GENOUSCURVES(G'[i], £);
4. g+ —1
5. WHILE (i = —1) DO
FOR i :=1 TO 3 DO (at this point, G'[4] is one of the curves isogenous
to G[i] and SJi] contains a list of curves isogenous to G'[i])
IF S[i] = § THEN use next i;
IF #S[i] = 1 THEN {ip + i; (we have found the base of the vol-
cano)}
ELSE
(a) IF (§(S[i][1])) = 4(G[i])) THEN {(we must not use the dual of
the preceding 1sogeny) Gli]) + G'[i]; G'[i] < S[i][2];};
ELSE {Gfi] < G'[i]; G'[i] + SIi)[1];};
(b) Pli] « Pl]U{G"[i]};

(c) IF G'[i] is special THEN S[i] < ) ELSE S[i] +-IsoGENOUSCURVES(G'[i], £);

6. RETURN PJig].

By Lemma 24, we know that whenever we have an f-isogeny a : E — E' that
is a descending f-isogeny, every (-isogeny 3 : E' — E' such that End(E") #
End(E) is a descending f¢-isogeny. Therefore, inductively, if we start a path of
f-isogenies with a descending /-isogeny, we will get a descending path.

To find such an f-isogeny to start the path, we will compute in parallel
three different paths starting from any three different curves isogenous to E.
Having three different starting curves ensures us of having a path starting with



a descending f-isogeny and therefore a non-empty path. Since a non-descending
path is composed of a path of non-descending ¢-isogenies and a descending path,
a non-descending path is longer than a descending path. Therefore, the first path
that stops is a descending path.

Lemma 42 The complexity of the algorithm FINDDESCENDINGPATH is O(mF({)),
where m is the height of E and F(f) the time to find three roots of a modular
polynomial.

Proof: To calculate each one of the three paths, it takes m + 1 partial factoriza-
tions of the modular equation. O

Why do we need a curve in the crater? If we have a curve E; in the crater
and a full descending path E;, - Ey — Ey — -+ = E,,_1 = E,,, we get the
height of the volcano and then using the algorithms that are given to find a
partial volcano, we can move easily in the volcano and construct the rest of it
if we want. To find such a curve Es; we need to know how to recognize that a
curve is in the crater.

Detecting the crater and thus determining e¢. From Table 2, we see that
a curve in the crater has 1 + (%) horizontal /-isogenies and £ — (%) descending
l-isogenies. We detect these three different cases in three different ways.
Suppose E is in the crater and let n be the height of the volcano. Then one
of the following conditions will be met.
e Case a: There is no horizontal ¢-isogeny. Considering the fact that we are in
the crater, we have £ + 1 descending f-isogenies. Then all the descending paths
starting from the £+ 1 isogenous curves to E have the same length. The following
graph characterizes this situation.
Ok, E 0
N
I 1
| | | |
Zx); n

The length of the descending paths is n — 1 because all the curves corre-

sponding to the £ + 1 roots of &,(X, j) are at level 1. We can also deduce that £
is inert in Ok and thus e = —1.
e Case b: There is exactly one horizontal /-isogeny and there are also ¢ descending
l-isogenies. Then one of the descending paths starting from the £ 4+ 1 isogenous
curves to E is of length n (let us say that this path starts on Ej) and the other
£ ones are of length (n —1). The following graph characterizes this situation and
makes the parallel with the normal situation.

Ey

/

| | r+1

AL T | n

Horizontal case “Normal” case

Ok, E
! |
|

|
|
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We cannot confuse this case with the “normal” case of one ascending /-

isogeny and ¢ descending f-isogenies, because in the horizontal case, the differ-
ence between the length of the path starting on Ey and the other paths is 1
whereas in the “normal” case this difference is 2. We know also that ¢ ramifies
in Ok and therefore € = 0.
e Case c: There are two horizontal /-isogenies and there are also £ —1 descending
f-isogenies. Then two of the descending paths starting from the £ + 1 isogenous
curves to E are of length n (let us say that these two paths start on E; and Es)
and the other £ — 1 ones are of length n — 1. The following graph characterizes
this situation.

OKZ E1 E—E2 0
| | / | \ I |
| | | 1
| | | |
| | | | |
Z[r)e n

The difference with the preceding case is that we find two paths longer than
the others instead of just one. So no confusion with the “normal” case is possible.
We know also that £ splits in Ok and therefore e = +1.

How to find a curve in the crater. The algorithm finding a curve in the
crater is exactly the inverse of the one finding a descending path. We want to
construct an ascending path starting from £.

Definition 42 An ascending path of an elliptic curve E is a path E = Eq —
E_1 = E_y— = E_,_1)— E_s of elliptic curves such that the map E_; —
E_(iy1), fori €0,...,5—1[, is an ascending l-isogeny and £ { [Ok : O_].

We will say that we have a full ascending path if O, ~ Z[x],.

Lemma 43 Using the same notations as in Definition 42, if E is of level r then
E_; is of level r — 1.

Corollary 42 If the length of the ascending path starting on E isr+1, then E
1s at level r.

At every step of this algorithm, we want to find a curve at an inferior level
than E i.e. the unique ascending /-isogeny of E. To do so, we will compute a
descending path for every curve isogenous to E and compare their sizes. We
reiterate this until we detect a curve in the crater.

Procedure DETECTSURFACE
Input: A list of descending paths 8 and the curve E.,;.
Output: (¢, imaz, A, F) such that

e ¢ =0, imae such that #PB[ima.] is maximal and A = #PBlimaz)

¢ OR € = (di/?), imaz = —1 and A is the height of the volcano if we detect
that E.,, is in the crater;

e F is a list of (some) full descending paths.

1. e+ 0; F « 0;



2. Find iyq, such that #9[¢] is maximal;
I+ {Z S.t. i # imaz and #‘13[1] = #m[imax]jﬁ
4. /* Case where the crater is detected and (%) = —1 (case a) */
IF #I = ¢ THEN {e < —1; XA < #Blimaz]; imaz — —1; F < {{Ecur, B[1]} };

w

5. /* Case where the crater is detected and (%£) = +1 (case ¢)*/
IF #I = 1 THEN { ipass < I[1]; € < 13 X & #PBlimaes] — 1; G0 < any
index distinct from i,,0, and imaz2; F < {{Ecur;s Blio]}; Plimaz), Bléimaza) };
Z.mn,m — _1; }
6. IF #I =0 THEN
(a) IF imap = 1 THEN io « 2; ELSE ig « 1;
(b) IF #PBlimaz] — #P[io] = 1 /* Case where the crater is detected and
(dTK) =0 (case b) */
THEN {e < 0; A < #PBlimaa] — L F < {{Ecur, Blio]}, Blimaal} ;
imax <« _1; }
ELSE {\ ¢ #%Blimaz] — 15}
7. RETURN (€, imaz, A, F).

Procedure FINDFULLDESCENDINGPATHS

Input: A non-special elliptic curve E such that ¢ | [Ok : Z[r]].

Output: (Es, P,e,n,F) such that E, is in the crater, isogenous to E, P is an
ascendin path from E to E, € = (dx/{), n the height of the volcano and F is a
list of (some) full descending paths.

1. E.yr < E;
2. F +ISOGENOUSCURVES(E¢yr, £);
3. P« {Ecur};
4. IF #F = 1 THEN {E.,, < F[1]; IF E.,, is special THEN EXIT; ELSE
{P+ PU{F[1]};}}
ig + 0;
6. WHILE ig # —1 DO
(a) F «+ISOGENOUSCURVES(Ecyr, £);
(b) FOR i:=1TO £+ 1 DO
IF F[i] is special THEN EXIT;
B[i] + FINDDESCENDINGPATH(Fi]);
(c) (&0, A, F) <~ DETECTSURFACE(‘B);
(d) IF ig # —1 THEN {E.., < FTio]; P < PU{Ecur};}
7. Es + Eeyr;
8. RETURN (E;, P,c, \, F);

ot

Lemma 44 The complezity of the algorithm FINDFULLDESCENDINGPATHS is
O(n2UF (L)), with F(£) the time to calculate all the roots of a modular polynomial.

Proof: To go from level u to level u — 1, we need to calculate £ + 1 descending
paths. This takes O(ulF ({)) operations, for a total of X}_; uF () = @}'(ﬁ).
Therefore it takes O(n?(F({)) operations to compute an ascending path. O

The following theorem gives the complexity of the algorithm to compute a
partial volcano.



Theorem 41 [t takes O(n?(F({)) operations to compute a partial volcano of

£-isogenies, with n < % and F (L) the time to calculate all the roots of a

modular polynomial.

Proof: The whole algorithm is based on the computation of an ascending path
starting from &. O

5 Number of isogeny volcanoes

We define the endomorphism class of E denoted by C(E) to be a set of curves
isogenous but non isomorphic having the same endomorphism ring O. There
exists a bijection between C'(O) and C(E). If there exists a unique f-isogeny
volcano then we can compute the set of h(O) elliptic curves in C(E) using this
volcano. Therefore we use properties of h(O) to compute the number of /-isogeny
volcanoes.

Theorem 51 The number of different volcanoes of (-isogenies is h(f'*dg)/ord(l)
where ord([) is the order of the ideal | which is a prime ideal of norm £.

Proof: We treat separately the different types of volcanoes.

Case where (4£) = —1. In this situation, every (-isogeny volcano is of the

form:

{+1curves . ——"__ 7 N = _

r — 1 levels

. —
¢ different curves

In this type of volcano we have found £"+ ¢"~1 of the h(O) curves isogenous to E
having the same endomorphism ring O. We have h(m?D) = % [Lm (1 - (%
where O and Oy are the orders of discriminant D and m2D ([5, Coro 7.28])
and when D is different from —4 and —3, [OF : O3] is equal to 1. In our case
we consider m = ¢" where r is the f-adic valuation of the conductor f of 0. We
set f = f'0". Then h(f2dx) = h(f>D)¢" (1 - (2) 1) = n(f*D)er(1 +1/¢) =
h(f">D)(¢" + £7~1). Then there are h(f'>D) distinct volcanoes of this type.
Case where (dTK) = 0. In this situation, every f-isogeny volcano is of the

form:

f curves _ 7 ____f ___2>
r levels

. —
¢ different curves
In such a volcano, we get 20" curves in C(E). In this case, it is also clear that
there are h(f'*Dg)/2 distinct volcanoes (reusing the preceding notations).

Case where (%£) = 1. We get a volcano of the form:



r — 1 levels

O __1L 1) -

¢ different curves
For each one of the graph under the crater we get (¢—1)¢"~* curves in C(E). We

now have to determine the size of the crater. If we consider the set of the curves
in the crater lifted in C, we get the following cycle &g — & — -+ &1 = Es ~ &
where &; ~ C/a;. Since we consider f-isogenies we have a; = a;11[ where [ is a
prime ideal of norm £. Therefore ag = a; = [°ag i.e. [® is a principal ideal of Ok
and thus s is the order of [ in Ok and s is the size of the crater. Therefore the
number of different volcanoes we can build is h(f'*dg)/ord(l) where ord(l) is
the order of the ideal [ which is a prime ideal of norm /.

Using the type of decomposition of the ideal /O, we can generalise this last
formula to all the types of volcanoes. [

6 Application to point counting

First, we suppose that £ # 2 and that we have not encountered a special curve
(for these cases see [7]).

If NV¢(€) is equal to 1 or £+ 1, then we can deduce that ¢ ramifies in Z[n] i.e.
(%) = 0 and therefore we immediately know that ¢> = 4¢ (mod ¢). Our idea is
to explain how a more precise result can be found, namely the ¢-adic valuation
of t? — 4¢ that we note v,. We will determine n such that ¢ || g, i.e. the height of
the isogeny volcano, and since t* — 4q = g%dx, we get t> = 4¢q (mod ¢>"19) and
therefore vy > 2n+4§. The value of 4 is determined by the Legendre symbol (dTK)
If it is equal to 0, then we deduce that ¢ | dg, therefore § = 1. Otherwise, § = 0.
By definition of the fundamental discriminant dg, we have in fact vy = 2n + 0
(except maybe in the case ¢ = 2, see [7]).

6.1 Finding t mod £

In general (that is except in the cases where we happened to find a special case),
our algorithm has given us ¢> = 4¢ mod ¢*, we may want t mod ¢”. Suppose
£ # 2. Then there are only two squareroots of 4¢ modulo £”. To find the sign
of ¢, it is enough to find the sign of ¢; = ¢ mod /. Finding ¢; is done via the
determination of an eigenspace of m and the associated eigenfactor of the ¢-th
division polynomial ¥, d la Elkies. This will determine the eigenvalue, which
turns out to be ¢ /2 mod ¢ in that case.

6.2 Finding t mod ¢v+!

Now that we have t mod ¢, is it possible to find t mod £**1? When (dg /{) # +1,
we cannot do anything, since we already explored all possible isogenies. In the



case where (di/f) = +1, the head of the volcano is an isogeny cycle and the
ideas of [4] apply there too (see [7]).

Further applications are given in [7]. In particular, we solve a problem of
Lercier encountered in [11].

7 Numerical examples

The reader can find a more complete set of examples in [7].

Example 1 (Normal case, £ splits in Ok i.e. (dTK) = +1): Let p = 10009

and £ = [7478,1649]. The j-invariant of £ is je = 83. Using £ = 3, we find
Eo1 - Eop» - Ep3 Eo 4 Eo 5 - Eos

1 / | 1 1
Ei Ei» £ Eis Eijs

1 e / | \ 1
E>y Esp Esxz FExs Esxs Eaxg Eax

Therefore, n = 2, (%) = 1 thus § = 0 and ¢> = 4p (mod 3*) and in fact
t = 34 mod 3*. Moreover, in this case, we are able to construct at the surface a
cycle of isogenies. We get the following graph:

Eo1>Eg 2> Eg 3> Ega> Eo 5> Eoe> Eo,7

Using this cycle, we find that ¢ = —47 mod 3°. As a matter of fact, t = —47.
Example 2 (Incomplete case for ¢ = 2 from [3]): Let p = 1009 and
& =[1,3]. The j-invariant of £ is jg = 269. For £ = 2, one gets
Ep Ey»

| |
/ £ /\////El,2\ E 3
2,1 Es»

I
Ey3 Eys Eaps
s ~ s ~ I I

|
Es E;» E;s3 Es4 Esjs Ess Esr

E

Therefore, n = 3, (%) = 0 thus § = 2 and ¢* = 4p (mod 2°). As a matter
of fact, t = —50, therefore dxg = —24, g = 2 and (—50)% = 4 x 1009 (mod 27).
In this case, we only get a lower bound of the valuation.

Example 3 (Case where the curve E; has j-invariant equal to 0):
Let p = 1009 and £ = [363,690]. The j-invariant of £ is je = 433. Consider
{=3:

’ Curve with j—invariant equal to 0

|

// E,

| \

Es1 & Es3
~ ~ / I \ ~ ~

| |
Esy Es» Es3 Esa Es 5 Ess Es7r Esg Esg

Therefore, n = 3, (dTK) =0 thus 6 = 1 and #*> = 4p (mod 37). As a matter
of fact, t = 43.
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Conclusion

We have found an answer to several problems encountered while implementing
various algorithms for elliptic curves over finite fields. The volcanon structure is
an important point of view on the isogeny class of a curve and may therefore
become an important tool for that type of studies. It would be interesting to
study more closely the relationships between distinct volcanoes of same prime
£. Another direction would be to look at volcanoes of composite indices.

Acknowledgments. We would like to thank D. Kohel for useful discussions
on isogenies and for anticipating some of the results on the volcano structure.
Special thanks also to P. Gaudry for useful remarks concerning this work.
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