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eAbstra
t. Re
ently, Kohel gave algorithms to 
ompute the 
ondu
torof the endomorphism ring of an ordinary ellipti
 
urve, given the 
ar-dinality of the 
urve. Using his work, we give a 
omplete des
ription ofthe stru
ture of 
urves related via rational `-degree isogenies, a stru
turewe 
all a vol
ano. We explain how we 
an travel through this stru
tureusing modular polynomials. The 
omputation of the stru
ture is possiblewithout knowing the 
ardinality of the 
urve, and that as a result, wededu
e information on the 
ardinality.1 Introdu
tionLet E be an ellipti
 
urve over a �nite �eld Fq , where q = pr with p prime. ByHasse's theorem, the Frobenius � of the 
urve is an endomorphism of degree 2with 
hara
teristi
 polynomial �(T ) = T 2 � tT + q where jtj � 2pq. It is alsoknown sin
e Deuring [6℄ that the endomorphism ring of E is either an order in animaginary quadrati
 �eld (the ordinary 
ase) or an order in a quaternion algebra(the supersingular 
ase). Suppose that E is ordinary and let d� = t2� 4q be thedis
riminant of �. We 
an write d� = g2dK where dK is the dis
riminant of theasso
iated imaginary quadrati
 �eld K. To ea
h f j g 
orresponds an order ofK and to ea
h su
h order 
orresponds an isogeny 
lass of ellipti
 
urves havingthis parti
ular order as endomorphism ring.Kohel has shown in his thesis [10℄ how all these 
urves are related via isogeniesof degree dividing g. Studying this 
orrespondan
e more 
losely, we introdu
ethe 
omplete stru
ture of isogenies that we 
all a vol
ano. Kohel's approa
hstarts from g and �nds the 
ondu
tor f of End(E), using modular polynomials.We revert this algorithm, using modular polynomials to �nd g and f . As a
onsequen
e, we 
an 
ome up with an algorithm for 
omputing an ellipti
 
urveof any pres
ribed 
ondu
tor k j g and in parti
ular the maximal endomorphismring (k = 1), algorithm that is needed in [9℄.After introdu
ing some basi
 notations, we will re
all the relevant fa
ts aboutKohel's work that des
ribe the stru
ture that grows \under" the isogeny 
y
lesintrodu
ed by Couveignes and Morain in [4℄, forming a vol
ano. Then we re-
all the relevant theory of modular polynomials and we are ready to \invert"? The se
ond author is on the leave from the Fren
h Department of Defense, D�el�egationG�en�erale pour l'Armement. This resear
h was partially supported by the Fren
hMinistry of Resear
h { ACI Cryptologie.



Kohel's theorem to see the situation from the modular side, whi
h will lead toour algorithm. We then give some appli
ations. The �rst one is related to the
omputation of t. For a prime ` j g, our algorithm gives the `-adi
 valuation oft and this information 
an be used in S
hoof's algorithm. Also, we relate thenew stru
ture to the trees that were invented in [3℄ and solve a problem raisedby Ler
ier in his thesis. We 
an also use this stru
ture in the algorithm given in[2℄ to 
ompute the equation 
lass of an order O. This method is based on the
omputation of all the j-invariants of 
urves satisfying 
ertain 
onditions. Theproblem is that they never distinguish the 
urves having an endomorphism ringequal to O from the others, problem that 
an be solved using the stru
ture ofthe vol
anoes. Numeri
al examples are given to illustrate our work.Although the general theory works for any 
hara
teristi
, we 
on
entrate onexamples where the 
hara
teristi
 is not 2 or 3. The modi�
ations to be made
on
ern formulas for 
omputing isogenous 
urves, but we do not insist on thesein this arti
le.2 Extending Kohel's work2.1 Prerequisites and notationsIf an ellipti
 
urve is not supersingular, then it is known that its ring of endomor-phisms is an order in an imaginary quadrati
 �eld. Isogenous 
urves share thesame underlying �eld. In this arti
le, we will 
onsider a set of isogenous 
urvesand the relations between them, so that we 
an assume that we are dealingwith a �xed imaginary quadrati
 �eld K of dis
riminant dK and maximal orderOK , whi
h 
an be written as Z[!K℄ with !K = dK+pdK2 . As is well known [1℄,an order O in K is 
ompletely 
hara
terized by its 
ondu
tor f or equivalentlyits dis
riminant. As a matter of fa
t, O has �nite index in OK equal to f andO = Z+ fOK. The dis
riminant of O is simply D = f2dK . Remember also thatif O1 and O2 are two orders in K of respe
tive dis
riminants D1 and D2, thenO1 � O2 i� there exists a positive integer k su
h that D1 = k2D2.The main fo
us of the arti
le is the relationship between three orders inK related to a given ellipti
 
urve E: OK , the order Z[�℄ generated by theFrobenius map � and the endomorphism ring End(E) of E. These orders aresu
h that Z[�℄� End(E) � OK or equivalently, [OK : O℄ = f , [O : Z[�℄℄ = g et[OK : Z[�℄℄ = g=f .In his thesis [10℄, Kohel 
omputes End(E) starting from the known valueof d� = t2 � 4q = g2dK , where t was 
omputed using a polynomial algorithmfor point 
ounting [11, 13, 12, 8℄. In our 
ase, we dedu
e from Kohel's work astru
ture that des
ribes the relations between isogenous 
urves and their endo-morphism rings.Let us �x the notations that will be used in the rest of the paper. Let E=Fqbe an ordinary ellipti
 
urve and j its j-invariant. Let O be the endomorphismring of E, D its dis
riminant and f its 
ondu
tor. Let ` be a prime di�erentfrom p.



2.2 Kohel's theoremThe following proposition justi�es the use of `-isogenies of an ellipti
 
urve todetermine its endomorphism ring O (and overall its 
ondu
tor f).Proposition 21 [10, Proposition 21℄ Let � : E ! E0 be an isogeny of primedegree `. Then O 
ontains O0 or O0 
ontains O in K and the index of one inthe other divides `.This is equivalent to saying [O : O0℄ = 1, ` or 1̀ . We will use the followinglanguage when speaking about `-isogenies. A \des
ending" `-isogeny, denotedby #, is an `-isogeny � : E1 ! E2 su
h that [O1 : O2℄ = ` whilst an \as
ending"`-isogeny, denoted by ", is an `-isogeny � : E1 ! E2 su
h that [O2 : O1℄ = `.In the 
ase where the endomorphim ring is preserved we say that we have an\horizontal" `-isogeny, denoted by !.Theorem 21 [10, Proposition 23℄ Table 1 
lassi�es the possibilities for the ra-tional `-isogenies of E de�ned over Fq .Case Number and type Total number` - [OK : O℄ ` - [O : Z[�℄℄ 1 + � D̀ � ! 1 + � D̀ �` j [O : Z[�℄℄ (1 + � D̀ � !`� � D̀ � # `+ 1` j [OK : O℄ ` - [O : Z[�℄℄ 1 " 1` j [O : Z[�℄℄ (1 "` # `+ 1Table 1. Number and type of the `-isogenies depending on [OK : O℄ and[O : Z[�℄℄.2.3 Some lemmas about the 
lassi�
ation of `-isogenies.Table 1 gives the keys to understand how the endomorphism rings of isogenous
urves are related. We �rst dedu
e from these results the relation between an`-isogeny � and its dual denoted by �̂.Lemma 21 Let � : E ! E0 be an `-isogeny and �̂ its dual. Then � is anas
ending `-isogeny i� �̂ is a des
ending `-isogeny and � is an horizontal `-isogeny i� �̂ is an horizontal `-isogeny.From these results, we 
an dedu
e some properties of the endomorphismrings O and O0 su
h that � : E ! E0 is an `-isogeny. With respe
t to `, wedistinguish two 
ases for the endomorphism rings: the 
ase Z[�℄ maximal at `,i.e. ` - [OK : Z[�℄℄ or not.The following lemma ensures that if Z[�℄ maximal at `, we 
an only �ndhorizontal `-isogenies.



Lemma 22 Let E be an ellipti
 
urve su
h that Z[�℄ is maximal at `. If thereexists an `-isogeny of E, then this `-isogeny is an horizontal `-isogeny.We suppose now that Z[�℄ is non-maximal at `.Lemma 23 [7℄ If ` j [OK : Z[�℄℄ and ` - [O : Z[�℄℄, i.e. if `n k g with n � 1then `n k f , then the only `-isogeny � : E ! E0 is su
h that ` j [O0 : Z[�℄℄, i.e.`n�1 k f 0.Lemma 24 [7℄ If � : E1 ! E2 is a des
ending `-isogeny and ` j [O2 : Z[�℄℄,then for every � : E2 ! E3 su
h that O3 6' O1, � is a des
ending `-isogeny.Moreover, there are ` su
h `-isogenies.In other words, if � 6= �̂, then � is a des
ending `-isogeny. Sin
e E2 has` + 1 `-isogenies, �̂ is an as
ending `-isogeny and the ` others are des
ending`-isogenies.Let us now des
ribe a very parti
ular 
ase.Lemma 25 [7℄ If there exist two `-isogenies di�erent up to isomorphism froma 
urve E to a 
urve E0, then they are both horizontal `-isogenies. We 
an also
on
lude that ` splits in O.This pe
uliar 
ase gives us some informations about the imaginary quadrati
�eld the endomorphism ring is in.Theorem 22 [13℄ Suppose there are two `-isogenies � and � distin
t up toisomorphism from E to the same 
urve E0. Then the dis
riminant D of theendomorphism ring of E is su
h that jDj � 4`2.This set of lemmas gives us an idea of the graph of `-isogenies of the ellipti

urves having the same Frobenius map. It has a stru
ture of a vol
ano trun
atedat the level of Z[�℄. The 
rater 
omes from the horizontal `-isogenies (if theyexist) that we 
an �nd when O is maximal at ` using Table 1 and the rest of thevol
ani
 stru
ture 
omes from the fa
t that by Lemmas 23 and 24, we see that if` j [OK : O℄ then E does not have any horizontal `-isogeny. Figure 1 summarizesthese ideas.The level of an ellipti
 
urve in the vol
ano is the `-adi
 valuation of its
ondu
tor. The height of the vol
ano is equal to the level of a 
urve with endo-morphism ring isomorphi
 to Z[�℄ lo
ally at `.
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3 Modular equations and isogeniesWe remind the reader that there exists a bivariate polynomial �`(X;Y ) withinteger 
oeÆ
ients with the following property. Two ellipti
 
urves E and E0de�ned over Fq , are related via a 
y
li
 isogeny � of degree ` if and only if#E = #E0 and �`(j(E); j(E0)) = 0.To �nd the 
urves related to E via an `-isogeny, we must solve the equation�`(X; j(E)) = 0, whi
h gives us their potential invariants. Suppose j� is one ofthese roots. The 
urve E� we are looking for is known up to twist and we must�nd an equation for it. Formulas for 
omputing an equation of E� are given in[13℄. These formulas do not work in the 
ase where j or j� are in f0; 1728g or��`=�X(j; j�) = ��`=�Y (j; j�) = 0. We will 
all su
h a 
urve a spe
ial 
urve (orhaving a spe
ial endomorphism ring) and have a pro
edure dete
ting this, whi
his 
ostless, sin
e testing whether ��`=�X(j; j�) = ��`=�Y (j; j�) = 0 
osts onepolynomial g
d.For later use, we will suppose that we have a pro
edure IsogenousCurves(E,`) that gives us the list of 
urves that are `-isogenous to a given 
urve E whenE is not spe
ial.4 Our algorithmLet ` be a prime number di�erent from p and N`(E) denote the number of rootsof �`(X; j(E)) in Fq . Depending on N`(E), we 
an determine some propertiesof End(E) using Table 1. We summarize them in Table 2.N`(E) Type of the `-isogenies � D̀ � �d�̀ �0 none ` - [OK : O℄ and ` - [O : Z[�℄℄ �1 �12 ! ` - [OK : O℄ and ` - [O : Z[�℄℄ +1 +1
ase 1:! ` - [O : Z[�℄℄ and ` - [OK : O℄ 0 01 
ase 2: " ` - [O : Z[�℄℄ and ` j [OK : O℄ 0 0
ase 1':(1 + � D̀ � !`� � D̀ � # ` j [O : Z[�℄℄ and ` - [OK : O℄ nothing known 0`+ 1 
ase 2':(1 "` # ` j [O : Z[�℄℄ and ` j [OK : O℄ 0 0Table 2. Properties of O depending on the number and type of the `-isogeniesof E.Kohel [10℄ uses this approa
h as one of his methods to 
ompute the endo-morphism ring of the ellipti
 
urve E. We use it to 
ompute isogeny vol
anoes.4.1 Goal of the algorithmLet E be a given ordinary ellipti
 
urve de�ned over a �nite �eld Fq and j(E)its j-invariant. Let ` be a prime di�erent from p. Starting from E , we want to




onstru
t a partial isogeny vol
ano, that is we want to determine the type of the
rater of the isogeny vol
ano and determine a part of the vol
ano 
ontaining E ,plus a set of isogenous 
urves to E 
ontaining a 
urve with endomorphism ringisomorphi
 to Z[�℄ lo
ally at ` and one with endomorphism ring isomorphi
 toOK lo
ally at `.We �rst give the skeleton of the algorithm and then detail every step.4.2 Skeleton of the algorithmThe algorithm is divided into two parts. First, we determine whether Z[�℄ ismaximal at ` or not. If not, then we look for a 
urve Es in the 
rater of theisogeny vol
ano (Figure 1), determine the type of the 
rater by determining� = �dK̀ � and then �nd the height of the vol
ano using what we 
all a fulldes
ending path. Sin
e spe
ial 
urves need a 
areful treatment, we signal thesewith an EXIT statement, so as to ligthen the exposition.Pro
edure ComputePartialVol
anoInput: An ellipti
 
urve E and a prime `, ` 6= p.Output: � = �dK̀ � and a list F of full des
ending paths of the vol
ano.1. IF E is spe
ial THEN EXIT;2. F  IsogenousCurves(E ; `);3. IF #F = 0 THEN f� �1; F  fEg; GOTO 5gELIF #F = 2 THEN f� +1; F  fEg; GOTO 5gELIF #F = 1 THEN{ E0  F [1℄;{ IF E0 is spe
ial THEN EXIT;ELIF N`(E0) = 1 THEN f� 0; F  fEg; GOTO 5gELSE GOTO 4;ELIF #F = `+ 1 THEN GOTO 4;4. (Es; P; �; n;F) FindFullDes
endingPaths(E ; `).5. RETURN (�;F).4.3 Spe
ial 
urves.If our original 
urve E has its j-invariant equal to 0 or 1728, then we 
annotbuild any part of the vol
ano. We do not know how to distinguish the 
urvesthat are isogenous to E over Fq from the ones whi
h are only isogenous to E overthe algebrai
 
losure of Fq . If we en
ounter su
h a 
urve during the 
onstru
tionof the vol
ano, we know that this 
urve is in the 
rater of the vol
ano and we
an dedu
e from this a full des
ending path and �. But we will not be able to
onstru
t the whole vol
ano.If at any moment in the 
onstru
tion, we en
ounter a 
urve E having twodistin
t `-isogenies to a 
urve E0, then we dedu
e that E is in the 
rater and thetype of the 
rater. We will not be able to 
onstru
t the entire vol
ano sin
e wedo not have the equation of E0 but we 
an still get the 
omplete subtree belowE and therefore a full des
ending path.



4.4 The 
ase N`(E) 6= ` + 1.� N`(E) = 0: In this 
ase, if we refer to Table 2, we see that there is no `-isogenyfrom E to another ellipti
 
urve and that ` is inert in Z[�℄. We 
an also dedu
ethat OK` ' End(E)` ' Z[�℄`.� N`(E) = 2: Referring to Table 2, we see that ` splits in Z[�℄. This 
ase has al-ready been treated by Couveignes, Dewaghe and Morain ([4℄, [3℄). Using Lemma22, we know that for every ellipti
 
urve E0 su
h that � : E ! E0 with � `-isogeny then O0 ' End(E). We 
an also dedu
e that OK` ' End(E)` ' Z[�℄`.� N`(E) = 1: In this 
ase, ` rami�es in Z[�℄. In Table 2, we see that this is adual 
ase. By dual, we mean that we may be in a 
ase where Z[�℄ is maximal at` or not. We need to distinguish those two 
ases. In order to do so, we will needits isogenous 
urve E0 and N`(E0).Case 1: N`(E0) = 1. Suppose that Z[�℄ is not maximal at `. Referring toTable 2, we know that ` - [End(E) : Z[�℄℄, ` j [OK : O℄ and the `-isogeny� : E ! E0 is an as
ending `-isogeny. Therefore applying Lemma 23, we have` j [O0 : Z[�℄℄. Thus, referring to Table 1, N`(E0) = `+1, whi
h 
ontradi
ts whatwe �rst found for N`(E0). Therefore, Z[�℄ is maximal at `.Case 2: N`(E0) = `+1. Suppose that Z[�℄ is maximal at `, i.e. ` - [End(E) :Z[�℄℄ and ` - [OK : End(E)℄. Referring to Table 2, we know that the `-isogeny� : E ! E0 is an horizontal `-isogeny and (DE=`) = 0. Therefore O0 has thesame 
ondu
tor as End(E), i.e. ` - [O0 : Z[�℄℄, ` - [OK : O0℄ and (D0=`) = 0.Referring to Table 1, we see that N`(E0) = 1 + �D0` � = 1 whi
h 
ontradi
ts theresult we �rst found for N`(E0). Therefore, Z[�℄ is not maximal at `.In this 
ase, we 
an already make some 
on
lusion about O: OK` 6' End(E)`and End(E)` ' Z[�℄`, i.e. there exists an n > 1 su
h that `n k g and `n k f .4.5 The general 
ase N`(E) = ` + 1.By looking at the skeleton of the algorithm in Se
tion 4.2, we see that this 
aseis the most interesting one.From now on, we assume that E is of level r, r 2 N, and N`(E) equals `+1.In fa
t, we have the equality N`(Ei) = ` + 1 until we �nd the ending point ofour re
urren
e that we re
ognize by N`(Ei) = 1.This part of the algorithm is based on �nding an ellipti
 
urve Es su
h thatEs is in the 
rater, using des
ending paths. First we pre
ise this notion.Des
ending paths.De�nition 41 A des
ending path of an ellipti
 
urve E is a path E = E0 !E1 ! E2 ! � � � ! Em�1 ! Em of ellipti
 
urves su
h that the map Ei ! Ei+1,for i 2 [0; : : : ;m[, is a des
ending `-isogeny and ` - [Om : Z[�℄℄. We will say thatwe have a full des
ending path if E is in the 
rater of the vol
ano.Lemma 41 With the notations of De�nition 41, if E is of level r then Ei is oflevel r + i.



Proof: We prove this lemma by indu
tion. E0 = E is of level r. Let us supposethat the result is true for Ej , with 0 � j < m. We know that the map Ej ! Ej+1is a des
ending `-isogeny. Therefore, sin
e the level of Ej is r+j, i.e. `r+j k [OK :Oj ℄ and by de�nition of a des
ending `-isogeny, then `r+j+1 k [OK : Oj+1℄. ThusEj+1 is of level r + (j + 1). �The main goal of �nding a des
ending path starting from an ellipti
 
urve Eis to lo
ate the endomorphism ring of E in the vol
ani
 stru
ture (see Figure 1)with respe
t to Z[�℄.Corollary 41 Let P be a des
ending path starting from E and let m = #P�1.Then E is of level (n�m) where n is the height of the vol
ano.Now that we have de�ned this notion and its interest, we will show howto 
ompute a des
ending path. We �rst give the algorithm and then prove its
orre
tness.Pro
edure FindDes
endingPathInput: A non spe
ial ellipti
 
urve E su
h that ` j [OK : Z[�℄℄.Output: A des
ending path starting from E.1. F  IsogenousCurves(E; `);2. IF #F = 1 THEN fP [1℄ fEg; i0  1; GOTO 6g;3. FOR i := 1 TO 3 DO(a) P [i℄ fEg [ fF [i℄g; G[i℄ E; G0[i℄ F [i℄;(b) IFG0[i℄ is spe
ial THEN S[i℄ ; ELSE S[i℄ IsogenousCurves(G0[i℄; `);4. i0  �15. WHILE (i0 = �1) DOFOR i := 1 TO 3 DO (at this point, G0[i℄ is one of the 
urves isogenousto G[i℄ and S[i℄ 
ontains a list of 
urves isogenous to G0[i℄)IF S[i℄ = ; THEN use next i;IF #S[i℄ = 1 THEN fi0  i; (we have found the base of the vol-
ano)gELSE(a) IF (j(S[i℄[1℄) = j(G[i℄)) THEN f(we must not use the dual ofthe pre
eding isogeny) G[i℄ G0[i℄; G0[i℄ S[i℄[2℄;g;ELSE fG[i℄ G0[i℄; G0[i℄ S[i℄[1℄;g;(b) P [i℄ P [i℄ [ fG0[i℄g;(
) IFG0[i℄ is spe
ial THEN S[i℄ ; ELSE S[i℄ IsogenousCurves(G0[i℄; `);6. RETURN P [i0℄.By Lemma 24, we know that whenever we have an `-isogeny � : E ! E0 thatis a des
ending `-isogeny, every `-isogeny � : E0 ! E00 su
h that End(E00) 6'End(E) is a des
ending `-isogeny. Therefore, indu
tively, if we start a path of`-isogenies with a des
ending `-isogeny, we will get a des
ending path.To �nd su
h an `-isogeny to start the path, we will 
ompute in parallelthree di�erent paths starting from any three di�erent 
urves isogenous to E.Having three di�erent starting 
urves ensures us of having a path starting with



a des
ending `-isogeny and therefore a non-empty path. Sin
e a non-des
endingpath is 
omposed of a path of non-des
ending `-isogenies and a des
ending path,a non-des
ending path is longer than a des
ending path. Therefore, the �rst paththat stops is a des
ending path.Lemma 42 The 
omplexity of the algorithm FindDes
endingPath is O(mF(`)),where m is the height of E and F(`) the time to �nd three roots of a modularpolynomial.Proof: To 
al
ulate ea
h one of the three paths, it takes m+1 partial fa
toriza-tions of the modular equation. �Why do we need a 
urve in the 
rater? If we have a 
urve Es in the 
raterand a full des
ending path Es ! E1 ! E2 ! � � � ! Em�1 ! Em, we get theheight of the vol
ano and then using the algorithms that are given to �nd apartial vol
ano, we 
an move easily in the vol
ano and 
onstru
t the rest of itif we want. To �nd su
h a 
urve Es we need to know how to re
ognize that a
urve is in the 
rater.Dete
ting the 
rater and thus determining �. From Table 2, we see thata 
urve in the 
rater has 1 + � D̀ � horizontal `-isogenies and `� � D̀ � des
ending`-isogenies. We dete
t these three di�erent 
ases in three di�erent ways.Suppose E is in the 
rater and let n be the height of the vol
ano. Then oneof the following 
onditions will be met.� Case a: There is no horizontal `-isogeny. Considering the fa
t that we are inthe 
rater, we have `+ 1 des
ending `-isogenies. Then all the des
ending pathsstarting from the `+1 isogenous 
urves to E have the same length. The followinggraph 
hara
terizes this situation.OK`
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We 
annot 
onfuse this 
ase with the \normal" 
ase of one as
ending `-isogeny and ` des
ending `-isogenies, be
ause in the horizontal 
ase, the di�er-en
e between the length of the path starting on E0 and the other paths is 1whereas in the \normal" 
ase this di�eren
e is 2. We know also that ` rami�esin OK and therefore � = 0.� Case 
: There are two horizontal `-isogenies and there are also `�1 des
ending`-isogenies. Then two of the des
ending paths starting from the `+ 1 isogenous
urves to E are of length n (let us say that these two paths start on E1 and E2)and the other `� 1 ones are of length n � 1. The following graph 
hara
terizesthis situation. OK`
�
�
�
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�
� 1Z[�℄` nThe di�eren
e with the pre
eding 
ase is that we �nd two paths longer thanthe others instead of just one. So no 
onfusion with the \normal" 
ase is possible.We know also that ` splits in OK and therefore � = +1.How to �nd a 
urve in the 
rater. The algorithm �nding a 
urve in the
rater is exa
tly the inverse of the one �nding a des
ending path. We want to
onstru
t an as
ending path starting from E .De�nition 42 An as
ending path of an ellipti
 
urve E is a path E = E0 !E�1 ! E�2 ! � � � ! E�(s�1) ! E�s of ellipti
 
urves su
h that the map E�i !E�(i+1), for i 2 [0; : : : ; s� 1[, is an as
ending `-isogeny and ` - [OK : O�s℄.We will say that we have a full as
ending path if O` ' Z[�℄`.Lemma 43 Using the same notations as in De�nition 42, if E is of level r thenE�i is of level r � i.Corollary 42 If the length of the as
ending path starting on E is r+1, then Eis at level r.At every step of this algorithm, we want to �nd a 
urve at an inferior levelthan E i.e. the unique as
ending `-isogeny of E. To do so, we will 
ompute ades
ending path for every 
urve isogenous to E and 
ompare their sizes. Wereiterate this until we dete
t a 
urve in the 
rater.Pro
edure Dete
tSurfa
eInput: A list of des
ending paths P and the 
urve E
ur.Output: (�; imax; �;F) su
h that� � = 0, imax su
h that #P[imax℄ is maximal and � = #P[imax℄� OR � = (dK=`), imax = �1 and � is the height of the vol
ano if we dete
tthat E
ur is in the 
rater;� F is a list of (some) full des
ending paths.1. � 0; F  ;;



2. Find imax su
h that #P[i℄ is maximal;3. I  fi s.t. i 6= imax and #P[i℄ = #P[imax℄g;4. /* Case where the 
rater is dete
ted and �dK̀ � = �1 (
ase a) */IF #I = `THEN f� �1; � #P[imax℄; imax  �1;F  ffE
ur;P[1℄gg;g5. /* Case where the 
rater is dete
ted and �dK̀ � = +1 (
ase 
)*/IF #I = 1 THEN f imax2  I [1℄; �  1; �  #P[imax℄ � 1; i0  anyindex distin
t from imax and imax2; F  ffE
ur;P[i0℄g;P[imax℄;P[imax2℄g;imax  �1; g6. IF #I = 0 THEN(a) IF imax = 1 THEN i0  2; ELSE i0  1;(b) IF #P[imax℄ � #P[i0℄ = 1 /* Case where the 
rater is dete
ted and�dK̀ � = 0 (
ase b) */THEN f�  0; �  #P[imax℄ � 1; F  ffE
ur;P[i0℄g;P[imax℄g ;imax  �1; gELSE f� #P[imax℄� 1;g7. RETURN (�; imax; �;F).Pro
edure FindFullDes
endingPathsInput: A non-spe
ial ellipti
 
urve E su
h that ` j [OK : Z[�℄℄.Output: (Es; P; �; n;F) su
h that Es is in the 
rater, isogenous to E, P is anas
endin path from E to Es, � = (dK=`), n the height of the vol
ano and F is alist of (some) full des
ending paths.1. E
ur  E;2. F  IsogenousCurves(E
ur; `);3. P  fE
urg;4. IF #F = 1 THEN fE
ur  F [1℄; IF E
ur is spe
ial THEN EXIT; ELSEfP  P [ fF [1℄g;gg5. i0  0;6. WHILE i0 6= �1 DO(a) F  IsogenousCurves(E
ur; `);(b) FOR i := 1 TO `+ 1 DOIF F [i℄ is spe
ial THEN EXIT;P[i℄ FindDes
endingPath(F [i℄);(
) (�; i0; �;F) Dete
tSurfa
e(P);(d) IF i0 6= �1 THEN fE
ur  F [i0℄; P  P [ fE
urg;g7. Es  E
ur;8. RETURN (Es; P; �; �;F);Lemma 44 The 
omplexity of the algorithm FindFullDes
endingPaths isO(n2`F(`)), with F(`) the time to 
al
ulate all the roots of a modular polynomial.Proof: To go from level � to level � � 1, we need to 
al
ulate ` + 1 des
endingpaths. This takes O(�`F(`)) operations, for a total of �n�=1�F(`) = n(n+1)2 F(`).Therefore it takes O(n2`F(`)) operations to 
ompute an as
ending path. �The following theorem gives the 
omplexity of the algorithm to 
ompute apartial vol
ano.



Theorem 41 It takes O(n2`F(`)) operations to 
ompute a partial vol
ano of`-isogenies, with n � log2(jdKj)log2(`) and F(`) the time to 
al
ulate all the roots of amodular polynomial.Proof: The whole algorithm is based on the 
omputation of an as
ending pathstarting from E . �5 Number of isogeny vol
anoesWe de�ne the endomorphism 
lass of E denoted by C(E) to be a set of 
urvesisogenous but non isomorphi
 having the same endomorphism ring O. Thereexists a bije
tion between C(O) and C(E). If there exists a unique `-isogenyvol
ano then we 
an 
ompute the set of h(O) ellipti
 
urves in C(E) using thisvol
ano. Therefore we use properties of h(O) to 
ompute the number of `-isogenyvol
anoes.Theorem 51 The number of di�erent vol
anoes of `-isogenies is h(f 02dK)=ord(l)where ord(l) is the order of the ideal l whi
h is a prime ideal of norm `.Proof: We treat separately the di�erent types of vol
anoes.Case where �dK̀ � = �1. In this situation, every `-isogeny vol
ano is of theform: `+ 1 
urves r � 1 levelsO ` di�erent 
urvesIn this type of vol
ano we have found `r+`r�1 of the h(O) 
urves isogenous to Ehaving the same endomorphism ringO. We have h(m2D) = h(D)m[O�1 :O�2 ℄ Qpjm �1� �Dp � 1p�where O1 and O2 are the orders of dis
riminant D and m2D ([5, Coro 7.28℄)and when D is di�erent from �4 and �3, [O�1 : O�2 ℄ is equal to 1. In our 
asewe 
onsider m = `r where r is the `-adi
 valuation of the 
ondu
tor f of O. Weset f = f 0`r. Then h(f2dK) = h(f 02D)`r �1� � D̀ � 1̀� = h(f 02D)`r(1 + 1=`) =h(f 02D)(`r + `r�1). Then there are h(f 02D) distin
t vol
anoes of this type.Case where �dK̀ � = 0. In this situation, every `-isogeny vol
ano is of theform: ` 
urves r levelsO ` di�erent 
urvesIn su
h a vol
ano, we get 2`r 
urves in C(E). In this 
ase, it is also 
lear thatthere are h(f 02DK)=2 distin
t vol
anoes (reusing the pre
eding notations).Case where �dK̀ � = 1. We get a vol
ano of the form:



b

b

b b

b

b`� 1 
urves r � 1 levelsO ` di�erent 
urvesFor ea
h one of the graph under the 
rater we get (`�1)`r�1 
urves in C(E). Wenow have to determine the size of the 
rater. If we 
onsider the set of the 
urvesin the 
rater lifted in C , we get the following 
y
le E0 ! E1 ! � � � Es�1 ! Es ' E0where Ei ' C =ai . Sin
e we 
onsider `-isogenies we have ai = ai+1l where l is aprime ideal of norm `. Therefore a0 = as = lsa0 i.e. ls is a prin
ipal ideal of OKand thus s is the order of l in OK and s is the size of the 
rater. Therefore thenumber of di�erent vol
anoes we 
an build is h(f 02dK)=ord(l) where ord(l) isthe order of the ideal l whi
h is a prime ideal of norm `.Using the type of de
omposition of the ideal `OK , we 
an generalise this lastformula to all the types of vol
anoes. �6 Appli
ation to point 
ountingFirst, we suppose that ` 6= 2 and that we have not en
ountered a spe
ial 
urve(for these 
ases see [7℄).If N`(E) is equal to 1 or `+1, then we 
an dedu
e that ` rami�es in Z[�℄ i.e.�d�̀ � = 0 and therefore we immediately know that t2 � 4q (mod `). Our idea isto explain how a more pre
ise result 
an be found, namely the `-adi
 valuationof t2�4q that we note �`. We will determine n su
h that `n k g, i.e. the height ofthe isogeny vol
ano, and sin
e t2 � 4q = g2dK , we get t2 � 4q (mod `2n+Æ) andtherefore �` � 2n+Æ. The value of Æ is determined by the Legendre symbol �dK̀ �.If it is equal to 0, then we dedu
e that ` j dK , therefore Æ = 1. Otherwise, Æ = 0.By de�nition of the fundamental dis
riminant dK , we have in fa
t �` = 2n+ Æ(ex
ept maybe in the 
ase ` = 2, see [7℄).6.1 Finding t mod `�In general (that is ex
ept in the 
ases where we happened to �nd a spe
ial 
ase),our algorithm has given us t2 � 4q mod `� , we may want t mod `� . Suppose` 6= 2. Then there are only two squareroots of 4q modulo `� . To �nd the signof t, it is enough to �nd the sign of t1 � t mod `. Finding t1 is done via thedetermination of an eigenspa
e of � and the asso
iated eigenfa
tor of the `-thdivision polynomial 	` �a la Elkies. This will determine the eigenvalue, whi
hturns out to be t1=2 mod ` in that 
ase.6.2 Finding t mod `�+1Now that we have t mod `� , is it possible to �nd t mod `�+1? When (dK=`) 6= +1,we 
annot do anything, sin
e we already explored all possible isogenies. In the




ase where (dK=`) = +1, the head of the vol
ano is an isogeny 
y
le and theideas of [4℄ apply there too (see [7℄).Further appli
ations are given in [7℄. In parti
ular, we solve a problem ofLer
ier en
ountered in [11℄.7 Numeri
al examplesThe reader 
an �nd a more 
omplete set of examples in [7℄.Example 1 (Normal 
ase, ` splits in OK i.e. �dK̀ � = +1): Let p = 10009and E = [7478; 1649℄. The j-invariant of E is jE = 83. Using ` = 3, we �ndE0;1 E0;2 E0;3 E0;4
jjjjjjj E0;5 E0;6E1;1 E1;2

uu
E

uu
u II

I E1;4 E1;5E2;1 E2;2 E2;3 E2;4 E2;5 E2;6 E2;7Therefore, n = 2, �dK̀ � = 1 thus Æ = 0 and t2 � 4p (mod 34) and in fa
tt � 34 mod 34. Moreover, in this 
ase, we are able to 
onstru
t at the surfa
e a
y
le of isogenies. We get the following graph:E0;1 // E0;2 // E0;3 // E0;4 // E0;5 // E0;6 // E0;7ssUsing this 
y
le, we �nd that t � �47 mod 35. As a matter of fa
t, t = �47.Example 2 (In
omplete 
ase for ` = 2 from [3℄): Let p = 1009 andE = [1; 3℄. The j-invariant of E is jE = 269. For ` = 2, one getsE0;1
ddddddddddddddddddddddd E0;2E

kkkkkkk
SSSSSSS E1;2

uu II
E1;3E2;1

uu II
E2;2

uu II
E2;3 E2;4 E2;5E3;1 E3;2 E3;3 E3;4 E3;5 E3;6 E3;7Therefore, n = 3, �dK̀ � = 0 thus Æ = 2 and t2 � 4p (mod 28). As a matterof fa
t, t = �50, therefore dK = �24, g = 23 and (�50)2 � 4� 1009 (mod 29).In this 
ase, we only get a lower bound of the valuation.Example 3 (Case where the 
urve Es has j-invariant equal to 0):Let p = 1009 and E = [363; 690℄. The j-invariant of E is jE = 433. Consider` = 3: Curve with j�invariant equal to 0E1

ccccccccccccccccccccccccc

[[[[[[[[[[[[[[[[[[[[[[[[[E2;1
uu II

E
fffffffffffffff

XXXXXXXXXXXXXXX E2;3
uu IIE3;1 E3;2 E3;3 E3;4 E3;5 E3;6 E3;7 E3;8 E3;9Therefore, n = 3, �dK̀ � = 0 thus Æ = 1 and t2 � 4p (mod 37). As a matterof fa
t, t = 43.



8 Con
lusionWe have found an answer to several problems en
ountered while implementingvarious algorithms for ellipti
 
urves over �nite �elds. The vol
anon stru
ture isan important point of view on the isogeny 
lass of a 
urve and may thereforebe
ome an important tool for that type of studies. It would be interesting tostudy more 
losely the relationships between distin
t vol
anoes of same prime`. Another dire
tion would be to look at vol
anoes of 
omposite indi
es.A
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