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Sampling and reconstruction: goals and issues

Assume the sample is dense
enough, the recontruction should
be homeomorphic and (geometri-
cally) close to the original shape

The sampling should be dense
where curvature is high

The only curvature parameter
does not suffice




Various reconstruction techniques

Delaunay-based

- Crust / Power Crust

- Cocone

- Gabriel / a-shape / (-skeleton
- flow complex

Implicitization
- Local polynomial fitting

- Natural Neighbors (Voronoi-based)
- Radial Basis Functions

Projection operators

- Moving Least Squares
- Extremal surfaces

For arbitrary dimensions and co-dimensions

- Unions of balls / nerves
- Witness Complex




Various reconstruction techniques
Ball Pivoting (Bernardini et al.)

Delaunay-based Lo o S
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Implicitization
- Local polynomial fitting

- Natural Neighbors (Voronoi-based) ' :
- Radial Basis Functions / q
Projection operators S

- Moving Least Squares
- Extremal surfaces

For arbitrary dimensions and co-dimensions

- Unions of balls / nerves
- Witness Complex




General assumptions
we assume S 1s a smooth curve

(closed, compact, twice differentiable 1-manifold without boundary)

S can have multiple connected components

S cannot have: endpoints, branches, self-intersections

Goal: compute a polygonal reconstruction ot S from P
(a graph connecting consecutive points of P on 5)
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Quality of the reconstruction: topological equivalences

¥ 6

These three surfaces are homeomorphic (they all have genus 1)

There exists a continuous bijection between surfaces, whose inverse is also continuous

homeomorphisms are weak equivalences (they do not take into account the ambient space)

isotopic surfaces (unknotted torus) knotted torus

© ® ©6

There exists a family of deformations which contin-
uously transform the surfaces




Simplicial complezres

abstract simplicial complex K (set of simplices)

V = {’Uo,vl, c e ,”Un_l}
E={{i, 7}, {k1},...}
b= {{ivja k}v {jaia l}a o }

inclusion property: not valid simplicial complex
peEKand o Cp—0€ K

intersection property:

given two simplices 01,05 of K, the intersection
o1 U oy 18 a face of both

O-simplex 1-simplex 2-simplex 3-simplex valid SlmpllClal Complex
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What Delaunay has to do with reconstruction

— a faithful approximation of the curve appears as a subcomplex of the Delaunay

— this should hold whenever the point cloud is sufficiently densely sampled along the curve

Q What is this good subcomplex? Can it be defined in some canonical way?
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Restricted Delaunay triangulation
Def: Dels(P) := {o € Del(P) | c*NS # 0}




Restricted Delaunay triangulation
Def: Dels(P) := {o € Del(P) | c*NS # 0}




Medial axis

Def: My is the closure of the set of points of R? that have > 2 nearest neighbors
on S.

Def (equivalent): locus of centers of maximal inscribed circles (spheres)




e-samples

Def: P is an e-sample of S if Vx € S, min{||lz —p|| | p € P} <e.

-




Shapes with positive reach [rederer 1958]

Def: Ms is the closure of the set of points of RY that have > 2 nearest neighbors on S.
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Shapes with positive reach [rederer 1958]

Def: Ms is the closure of the set of points of RY that have > 2 nearest neighbors on S.

Def: Vx € S, lfs(x) = min{||jz — m|| | m € Ms}

Def: 95 = min{d(x, Ms) | z € S}
Property 1:
The segment of length [fs(x) be-

tween x and the medial axis Mg is
perpendicular to Mg

Property 2:
[fs(x) is Lipschitz continuous

fs(z) —1fs(y)| < d(ma,my)




Shapes with positive reach [rederer 1958]
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Shapes with positive reach [rederer 1958]
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(convex) (CH1 but not C?) (C* but not C11)

x — 3 sin




Shapes with positive reach (Cont'd)

— Fundamental properties: (see [Federer 1958])

Tangent Ball Lemma: Vz € S, Ve € n, S, ||z — ¢|| < lfs(z) = B(e, ||z —¢||) NS = 0.




Shapes with positive reach (Cont'd)

— Fundamental properties: (see [Federer 1958])

Tangent Ball Lemma: Vz € S, Ve € n, S, ||z — ¢|| < lfs(z) = B(e, ||z —¢||) NS = 0.

Topological Ball Lemma:

If S is a k-manifold, then VB(c,r) s.t.
B(e,r)N Mg =0, B(e,7) NS is either
empty or a topological k-ball.




A first (topological) proof

Tangent Ball Lemma: Vz € S, Ve € n, S, ||z — ¢ < lfs(z) = B(c, ||z —¢|) NS = 0.




Second (topological) proof

Topological Ball Lemma (for curves)
If S is a smooth curve, given a disk B(c,r) (intersecting S in at least two points)

either B(c,r) NS is a topological 1-ball (arc of curve).

or B(c,r) N Mg # () (the intersection has several connected components)

if B(c,r) NS is a topological we are done




Second (topological) proof

Topological Ball Lemma (for curves)
If S is a smooth curve, given a disk B(c,r) (intersecting S in at least two points)

either B(c,r) NS is a topological 1-ball (arc of curve).

or B(c,r) N Mg # () (the intersection has several connected components)

otherwise, B(c,r7) N'S has at least 2 con-
nected components f; and fo

assume that the closest point p to
the center ¢ is unique (otherwise,
we are done, by definition of me-
Jial axis)
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Second (topological) proof

Topological Ball Lemma (for curves)
If S is a smooth curve, given a disk B(c,r) (intersecting S in at least two points)

either B(c,r) NS is a topological 1-ball (arc of curve).

or B(c,r) N Mg # () (the intersection has several connected components)

let x a point moving from c to g

at the beginning the closest com-
sonent of x is f;

at the end the clos-
est component to x

1S f2
there is a point x € Mg
with two closest neigh-

bors on distinc compo-
nents

q € fo closest point




Medial axis and Voronoi vertices

Property (for curves in the plane)
Given a set of points P C S, any Voronoi disk B (maximal empty disk centered at a Voronoi
vertex) must intersect the medial axis Mg




Medial axis and Voronoi vertices

Remark (for curves in the plane)
If P is an e-sample of S (smooth), then all Voronoi vertices converge to the medial
axis (as € — 0)

‘.. -




Medial axis and Voronoi vertices

Remark (for curves in the plane)
If P is an e-sample of S (smooth), then all Voronoi vertices converge to the medial
axis (as € — 0)

> 2 :

when § is not smooth some Voronoi vertices may not converge
to the medial axis (as € — 0)




Medial axis and Voronoi vertices

Remark (for curves in the plane)
If P is an e-sample of S (smooth), then all Voronoi vertices converge to the medial
axis (as € — 0)

i NS

Remark (surfaces in 3D)
Not all Voronoi vertices are close to the medial axis

close to the medial axis

far from the medial axis




Approximation power of the restricted Delaunay

1. the underlying shape § is a closed curve or surface with positive reach os

2. the point cloud P is an e-sample of S with € € O(ps).

Theorem: [Amenta et al. 1998-99]
If S is a curve or surface with positive reach, and if P is an e-sample of S

with € < ps (curve) or € < 0.1ps (surface), then:
e Dels(P) is homeomorphic to S,
o dig(Dels(P),S) € O(e?), S and Delg(P) are close

e Vf € Dels(P), Vv € f, Znsn,S € O(e), the angles between consectuive points on
Delg(P) are flat

e - .- (similar areas, curvature estimation, etc.)




Approximation power of the restricted Delaunay

Proof for curves:

show that every edge of Dels(P) connects consecutive points of P along S, and vice-versa




Approximation power of the restricted Delaunay

Proof for curves:
show that every edge of Dels(P) connects consecutive points of P along S, and vice-versa
— Assume (p, q) € Delg(P).

Let ¢c € (p,q)* N S. r=|c—pl=llec—q| =d(c,P) <e < ps <ls(c)
= B(c,r) NS is a topological arc

B(c,r) is a Voronoi disk (empty of points in its interior)




Approximation power of the restricted Delaunay

Proof for curves:
show that every edge of Dels(P) connects consecutive points of P along S, and vice-versa
— Assume (p, q) € Delg(P).

Let ¢c € (p,q)* N S. r=|c—pl=llec—q| =d(c,P) <e < ps <ls(c)
= B(c,r) NS is a topological arc

Claim: 3s € P\ {p,q} on the arc on between p and q

if s € P\ {p,q} belongs to this arc, then the arc is
tangent to B(c,r) in p, q or s (say s)

= d(c, P) =7 =|lc—s|| > 1lfs(s) > e.

(contradiction with the hypothesis of the theorem)

by the Tangent ball lemma B should
not intersect S (its radius r is too small)

[]

S

B(c,r) is a Voronoi disk (empty of points in its interior)




Approximation power of the restricted Delaunay

Proof for curves:
show that every edge of Dels(P) connects consecutive points of P along S, and vice-versa
< Assume P and q are consecutive on S

Let ¢ € arcs(pq) N Op*.
if ¢ € 0q*, we are done otherwise ¢ € (p,s)* for some s € P\ {p}

(contradiction)




Approximation power of the restricted Delaunay

Proof for curves:
show that every edge of Dels(P) connects consecutive points of P along S, and vice-versa
< Assume P and q are consecutive on S

Let ¢ € arcs(pq) N Op*.
if ¢ € 0q*, we are done S otherwise ¢ € (p,s)* for some s € P\ {p}

= (p, s) € Dels(P)

= p, § consecutive along S, with ¢ € arcg(ps)

(by previous part of the proof)
= s5=yq

(contradiction)




Approximation power of the restricted Delaunay

Proof for curves:
show that every edge of Dels(P) connects consecutive points of P along S, and vice-versa

= Dels(P) is homeomorphic to S between each pair of consecutive points of P

Since Dels(P) is embedded in Del(P), it does
not self-intersect = global homeomorphism




Approximation power of the restricted Delaunay

2

The polygonal reconstruction may no be unique
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Approximation power of the restricted Delaunay

N /

> .

The polygonal reconstruction may no be unique

(if P is not an e-sample)




Flatness of the reconstruction

Property:
Let S be a curve with positive reach g, and let p, g two points on S. If d(p, q) < 29, then

the angle between (p, q) and the tangent line [ is at most arcsin —d(gé’)q)

%d(p, s) = gsina

. d
o = arcsin @
Y

ku




Computing the restricted Delaunay

Q How to compute Dels(P) when S is unknown?




Computing the restricted Delaunay

Q How to compute Dels(P) when S is unknown?
— a whole family of algorithms use various Delaunay extraction criteria:

- crust

- power crust

g‘ﬁ& - Cocone

‘ \.?\\&\ - tlght cocone
7




Crust algorithm

[Amenta et al. 1997-98]







Crust algorithm

[Amentd et al. 1997

ﬁ98]

/]

1. Compute Delaunay triangulation of P
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Crust algorithm » ¢
[Ament et al. 1997—398]
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3. Add poles to the set of vertices

Crust algorithm

[Amenta et al. 1997-98]













— in 2-d, crust = Delg(P) =~ S

Crust algorithm

[Amenta et al. 1997-98|




— in 2-d, crust = Delsg(P) ~ S

Crust algorithm

[Amenta et al. 1997-98]

— in 3-d, crust 2 Dels(P) ~ S




Crust algorithm — in 2-d, crust = Delg(P) ~ S

[Amenta et al. 1997-98] — in 3-d, crust 2 Dels(P) = S

= manifold extraction step in post-processing




Crust algorithm
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Crust algorithm [Amenta et al. 1997-98]
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Back to the reconstruction paradigm

Q What do you see?

Why? .. ° °.
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Back to the reconstruction paradigm

— When the dimensionality of the data is unknown or there is noise, the
reconstruction result depends on the scale at which the data is looked at.

— need for multi-scale reconstruction techniques




Multi-scale approach in a nutshell
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— build a one




Multi-scale approach in a nutshell
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parameter family of complexes approximating the input at various scales

— build a one

— connections with manifold learning and topological persistence




Multi-scale algorithm [cuibas, oudot 2007]

Input: a finite point set W C R"

— resample W iteratively, and maintain a simplicial complex:




Multi-scale algorithm [cuibas, oudot 2007]

Input: a finite point set W C R"

— resample W iteratively, and maintain a simplicial complex:

Let L := {p}, for some p € W;




Multi-scale algorithm [cuibas, oudot 2007]

Input: a finite point set W C R"

— resample W iteratively, and maintain a simplicial complex:

Let L := {p}, for some p € W;

[ ] ° [ ] [ ]
WHILE L C W e ° R S
¢ [ ] ¢ [ ]
[ ] [ ] ¢
Let q := argmax,, cyyd(w, L); . .,
[ ] * [ ]
[ ] * ¢
[ ]
.. ¢ o o
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Input: a finite point set W C R"

— resample W iteratively, and maintain a simplicial complex:

Let L := {p}, for some p € W;

WHILE L C W

Let q := argmax,, cyyd(w, L);
L:=LU{q};
update simplicial complex;

END_WHILE
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Multi-scale algorithm [cuibas, oudot 2007]

Input: a finite point set W C R"

— resample W iteratively, and maintain a simplicial complex:

Let L := {p}, for some p € W;

WHILE L C W

Let q := argmax,, cyyd(w, L);
L:=LU{q};
update simplicial complex;

END_WHILE

Output: the sequence of simplicial complexes




The simplicial complex to maintain

— maintain the witness complex C" (L) [de Silva 2003]:

Let L C RY (landmarks) s.t. |L| < +oo and W C RY (witnesses)
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— maintain the witness complex C" (L) [de Silva 2003]:

Let L C RY (landmarks) s.t. |L| < +oo and W C RY (witnesses)

Def. w € W strongly witnesses [vg,--- ,vx] if |[w —
vl = |lw —vj|| < |Jlw—wul for all 4,5 =0,--- ,k and all
u € L\ {vg, - ,vr} (Delaunay test)
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The simplicial complex to maintain

— maintain the witness complex C" (L) [de Silva 2003]:

Let L C RY (landmarks) s.t. |L| < +oo and W C RY (witnesses)

Def. w € W strongly witnesses [vg,--- ,vx] if |[w —
vl = |lw —vj|| < |Jlw—wul for all 4,5 =0,--- ,k and all
u € L\ {vg, - ,vr} (Delaunay test)

Def. w € W weakly witnesses [vg, - -+ ,vi] if ||w—wv;]| <
|lw—wul foralli =0,--- k and all uw € L\ {vg, -+ ,vx}.

Def. CW(L) is the largest abstract simplicial complex built
over L, whose faces are weakly witnessed by points of V.




The witness complex (properties)

Thm. 1 [de Silva 2003] VW, L, Yo € C" (L), 3c € R? that strongly witnesses o.

= CW (L) is a subcomplex of Del(L)
= CW (L) is embedded in R?
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= CW (L) is a subcomplex of Del(L)
= CW (L) is embedded in R?
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- The time to compute CV (L) is O(d|W||L])




The witness complex (properties)

Thm. 1 [de Silva 2003] VW, L, Yo € C" (L), 3c € R? that strongly witnesses o.

= CW (L) is a subcomplex of Del(L)
= CW(L) is embedded in R4

Thm. 2 [de Silva, Carlsson 2004]
- The size of CW (L) is O(d|W])
- The time to compute CW (L) is O(d|W||L|)

Thm. 3 [Guibas, Oudot 2007]
[Attali, Edelsbrunner, Mileyko 2007]
Under some conditions, C" (L) = Dels(L) ~ S




The witness complex (properties)

— connection with reconstruction:

o W C RY is given as input

o [ C W is generated

e underlying manifold & unknown
e only distance comparisons

= algorithm is applicable in any metric space




The witness complex (properties)

— connection with reconstruction:

o W C R? is given as input

o [ C W is generated

e underlying manifold & unknown
e only distance comparisons

= algorithm is applicable in any metric space

o In RY, CW (L) can be maintained by updating,
for each witness w, the list of d + 1 nearest land-
marks of w.

space
time

O (d|W))
O (d|W?)

IAIA




The full algorithm

Input: a finite point set W C R<.




The full algorithm

Input: a finite point set W C R<.

Init: L := {p}; construct lists of nearest landmarks; C (L) = {[p]};

Invariant: Yw € W, the list of d + 1 nearest landmarks of w is maintained
throughout the process.
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Input: a finite point set W C R<.

Init: L := {p}; construct lists of nearest landmarks; C (L) = {[p]};
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WHILE L C W
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The full algorithm

Input: a finite point set W C R<.

Init: L := {p}; construct lists of nearest landmarks; C (L) = {[p]};

Invariant: Yw € W, the list of d + 1 nearest landmarks of w is maintained
throughout the process.

WHILE L C W

insert argmax,, cyyd(w, L) in L;
update the lists of nearest neighbors;
update CY (L);

END_WHILE

Output: the sequence of complexes C" (L)
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— case of curves:

Conjecture [Carlsson, de Silva
CW (L) coincides with Dels(L)...




Theoretical guarantees

— case of curves:

®
Conjecture [Carlsson, de Silva 2004]: ‘\j '/ S8
CW (L) coincides with Dels(L)... '7 ‘*I o
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.. under some conditions on W and L L
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Theoretical guarantees

— case of curves:

Thm. 3 If S is a closed curve with positive reach, W c R? s.t. dg(W,S) < 4,
L C W e-sparse e-sample of W with § << ¢ << g5, then CV (L) = Dels(L) ~ S.
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L C W e-sparse e-sample of W wit § <<|e k< 0s] then CV (L) = Dels(L) ~ S.
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— There is a plateau in the diagram of Betti numbers of C" (L).
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Theoretical guarantees

— case of surfaces:
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Theoretical guarantees

— case of surfaces:

Thm [Attali, Edelsbrunner, Mileyko]
If ¢ << 05, then YW C S, C (L) C Dels(L).

= C%(L) = Dels(L)

Pb Dels(L) ZCW(L)if W C S

Solution relax witness test
|Guibas, Oudot]

= CV (L) = Dels(L)+ slivers
= CY(L) ¢ Del(L)
= CY (L) not embedded.

Post-process extract manifold M
from C}Y (L) N Del(L)
[Amenta, Choi, Dey, Leekha]
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