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cally) close to the original shape



Sampling and reconstruction: goals and issues

Assume the sample is dense
enough, the recontruction should
be homeomorphic and (geometri-
cally) close to the original shape



Sampling and reconstruction: goals and issues

Assume the sample is dense
enough, the recontruction should
be homeomorphic and (geometri-
cally) close to the original shape



Sampling and reconstruction: goals and issues

The sampling should be dense
where curvature is high

Assume the sample is dense
enough, the recontruction should
be homeomorphic and (geometri-
cally) close to the original shape



Sampling and reconstruction: goals and issues

The sampling should be dense
where curvature is high

Assume the sample is dense
enough, the recontruction should
be homeomorphic and (geometri-
cally) close to the original shape



Sampling and reconstruction: goals and issues

The sampling should be dense
where curvature is high

The only curvature parameter
does not suffice

Assume the sample is dense
enough, the recontruction should
be homeomorphic and (geometri-
cally) close to the original shape



Various reconstruction techniques

Delaunay-based
- Crust / Power Crust
- Cocone
- Gabriel / α-shape / β-skeleton
- flow complex

Implicitization
- Local polynomial fitting
- Natural Neighbors (Voronoi-based)
- Radial Basis Functions

Projection operators
- Moving Least Squares
- Extremal surfaces

For arbitrary dimensions and co-dimensions
- Unions of balls / nerves
- Witness Complex



Various reconstruction techniques

Delaunay-based
- Crust / Power Crust
- Cocone
- Gabriel / α-shape / β-skeleton
- flow complex

Implicitization
- Local polynomial fitting
- Natural Neighbors (Voronoi-based)
- Radial Basis Functions

Projection operators
- Moving Least Squares
- Extremal surfaces

For arbitrary dimensions and co-dimensions
- Unions of balls / nerves
- Witness Complex

Ball Pivoting (Bernardini et al.)



General assumptions
we assume S is a smooth curve

(closed, compact, twice differentiable 1-manifold without boundary)

S can have multiple connected components

S cannot have: endpoints, branches, self-intersections

Goal: compute a polygonal reconstruction of S from P

P

S

(a graph connecting consecutive points of P on S)



Quality of the reconstruction: topological equivalences

These three surfaces are homeomorphic (they all have genus 1)

homeomorphisms are weak equivalences (they do not take into account the ambient space)

isotopic surfaces (unknotted torus) knotted torus

There exists a continuous bijection between surfaces, whose inverse is also continuous

There exists a family of deformations which contin-
uously transform the surfaces



Simplicial complexes

abstract simplicial complex K (set of simplices)

V = {v0, v1, . . . , vn−1}
E = {{i, j}, {k, l}, . . .}
F = {{i, j, k}, {j, i, l}, . . .}

inclusion property :

ρ ∈ K and σ ⊂ ρ −→ σ ∈ K

intersection property :

given two simplices σ1, σ2 of K, the intersection
σ1 ∪ σ2 is a face of both

not valid simplicial complex

valid simplicial complex0-simplex 1-simplex 3-simplex2-simplex



What Delaunay has to do with reconstruction
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→ a faithful approximation of the curve appears as a subcomplex of the Delaunay

→ this should hold whenever the point cloud is sufficiently densely sampled along the curve



What Delaunay has to do with reconstruction

→ a faithful approximation of the curve appears as a subcomplex of the Delaunay

→ this should hold whenever the point cloud is sufficiently densely sampled along the curve

Q What is this good subcomplex? Can it be defined in some canonical way?
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Restricted Delaunay triangulation
Def: DelS(P ) := {σ ∈ Del(P ) | σ∗ ∩ S 6= ∅}

σ∗

σ



Restricted Delaunay triangulation
Def: DelS(P ) := {σ ∈ Del(P ) | σ∗ ∩ S 6= ∅}

τ ∗

τ



Medial axis

Def (equivalent): locus of centers of maximal inscribed circles (spheres)

Def: MS is the closure of the set of points of Rd that have ≥ 2 nearest neighbors
on S.



ε-samples

ε

Def: P is an ε-sample of S if ∀x ∈ S, min{‖x− p‖ | p ∈ P} ≤ ε.

S



Shapes with positive reach [Federer 1958]
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Shapes with positive reach [Federer 1958]

S
MS

Def: %S = min{d(x,MS) | x ∈ S}

Def: ∀x ∈ S, lfs(x) = min{‖x−m‖ | m ∈MS}

Def: MS is the closure of the set of points of Rd that have ≥ 2 nearest neighbors on S.

Property 1:

The segment of length lfs(x) be-
tween x and the medial axis MS is
perpendicular to MS

x

mx

%S

y

my

Property 2:
lfs(x) is Lipschitz continuous

lfs(x) := d(mx, x) ≤ d(x,my) ≤ d(x, y) + d(y,my) = d(x, y) + lfs(y)

|lfs(x)− lfs(y)| ≤ d(mx,my)



Shapes with positive reach [Federer 1958]

O

r

x 7→ x3 sin 1
x



Shapes with positive reach [Federer 1958]

O

r

%S = +∞ %S = r %S = 0

x 7→ x3 sin 1
x

(convex) (C1,1 but not C2) (C1 but not C1,1)



Insist on the fact that these properties allow to avoid using arguments from smooth analysis while making the reasoning hold for a larger
class of shape. Mention also the fact that we only need two of these fundamental results for the analysis of curves.

Shapes with positive reach (Cont’d)

→ Fundamental properties: (see [Federer 1958])

Tangent Ball Lemma: ∀x ∈ S, ∀c ∈ nxS, ‖x− c‖ < lfs(x) ⇒ B(c, ‖x− c‖) ∩ S = ∅.

S

MS

x

lfs(x)



Insist on the fact that these properties allow to avoid using arguments from smooth analysis while making the reasoning hold for a larger
class of shape. Mention also the fact that we only need two of these fundamental results for the analysis of curves.

Shapes with positive reach (Cont’d)

→ Fundamental properties: (see [Federer 1958])

Tangent Ball Lemma: ∀x ∈ S, ∀c ∈ nxS, ‖x− c‖ < lfs(x) ⇒ B(c, ‖x− c‖) ∩ S = ∅.

S

Topological Ball Lemma:
If S is a k-manifold, then ∀B(c, r) s.t.
B(c, r) ∩MS = ∅, B(c, r) ∩ S is either
empty or a topological k-ball.

c



A first (topological) proof
Tangent Ball Lemma: ∀x ∈ S, ∀c ∈ nxS, ‖x− c‖ < lfs(x) ⇒ B(c, ‖x− c‖) ∩ S = ∅.

S

MS

x

lfs(x)



Second (topological) proof

S

Topological Ball Lemma (for curves)
If S is a smooth curve, given a disk B(c, r) (intersecting S in at least two points)

B

either B(c, r) ∩ S is a topological 1-ball (arc of curve).

or B(c, r) ∩MS 6= ∅ (the intersection has several connected components)

if B(c, r) ∩ S is a topological we are done



Second (topological) proof

S

Topological Ball Lemma (for curves)
If S is a smooth curve, given a disk B(c, r) (intersecting S in at least two points)

either B(c, r) ∩ S is a topological 1-ball (arc of curve).

or B(c, r) ∩MS 6= ∅ (the intersection has several connected components)

B

otherwise, B(c, r) ∩ S has at least 2 con-
nected components f1 and f2

c

p
assume that the closest point p to
the center c is unique (otherwise,
we are done, by definition of me-
dial axis)

f2

f1
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S

Topological Ball Lemma (for curves)
If S is a smooth curve, given a disk B(c, r) (intersecting S in at least two points)
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or B(c, r) ∩MS 6= ∅ (the intersection has several connected components)
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let x a point moving from c to q

at the beginning the closest com-
ponent of x is f1
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S

Topological Ball Lemma (for curves)
If S is a smooth curve, given a disk B(c, r) (intersecting S in at least two points)

either B(c, r) ∩ S is a topological 1-ball (arc of curve).

or B(c, r) ∩MS 6= ∅ (the intersection has several connected components)

B

c

p

q
q ∈ f2 closest point

x

let x a point moving from c to q

at the beginning the closest com-
ponent of x is f1

at the end the clos-
est component to x
is f2



Second (topological) proof

S

Topological Ball Lemma (for curves)
If S is a smooth curve, given a disk B(c, r) (intersecting S in at least two points)

either B(c, r) ∩ S is a topological 1-ball (arc of curve).

or B(c, r) ∩MS 6= ∅ (the intersection has several connected components)

B

c

p

q
q ∈ f2 closest point

x

let x a point moving from c to q

at the beginning the closest com-
ponent of x is f1

at the end the clos-
est component to x
is f2

there is a point x ∈ MS
with two closest neigh-
bors on distinc compo-
nents



Medial axis and Voronoi vertices
Property (for curves in the plane)
Given a set of points P ⊂ S, any Voronoi disk B (maximal empty disk centered at a Voronoi
vertex) must intersect the medial axis MS



Medial axis and Voronoi vertices
Remark (for curves in the plane)
If P is an ε-sample of S (smooth), then all Voronoi vertices converge to the medial
axis (as ε→ 0)



Medial axis and Voronoi vertices
Remark (for curves in the plane)
If P is an ε-sample of S (smooth), then all Voronoi vertices converge to the medial
axis (as ε→ 0)

when S is not smooth some Voronoi vertices may not converge
to the medial axis (as ε→ 0)



Medial axis and Voronoi vertices
Remark (for curves in the plane)
If P is an ε-sample of S (smooth), then all Voronoi vertices converge to the medial
axis (as ε→ 0)

Remark (surfaces in 3D)
Not all Voronoi vertices are close to the medial axis

p

V or(p)
close to the medial axis

far from the medial axis

p+

p−



Approximation power of the restricted Delaunay

Theorem: [Amenta et al. 1998-99]
If S is a curve or surface with positive reach, and if P is an ε-sample of S
with ε < %S (curve) or ε < 0.1%S (surface), then:

• DelS(P ) is homeomorphic to S,

• dH(DelS(P ),S) ∈ O(ε2),

• ∀f ∈ DelS(P ), ∀v ∈ f , ∠nfnvS ∈ O(ε),

• · · · (similar areas, curvature estimation, etc.)

S and DelS(P ) are close

the angles between consectuive points on
DelS(P ) are flat

1. the underlying shape S is a closed curve or surface with positive reach %S

2. the point cloud P is an ε-sample of S with ε ∈ O(%S).



Approximation power of the restricted Delaunay

Proof for curves:

show that every edge of DelS(P ) connects consecutive points of P along S, and vice-versa



Approximation power of the restricted Delaunay

Proof for curves:

show that every edge of DelS(P ) connects consecutive points of P along S, and vice-versa

c

S

p
q

Let c ∈ (p, q)∗ ∩ S. r = ‖c− p‖ = ‖c− q‖ = d(c, P ) ≤ ε < %S ≤ lfs(c)

⇒ B(c, r) ∩ S is a topological arc

B(c, r) is a Voronoi disk (empty of points in its interior)

→ Assume (p, q) ∈ DelS(P ).



Approximation power of the restricted Delaunay

Proof for curves:

show that every edge of DelS(P ) connects consecutive points of P along S, and vice-versa

c

S

p
q

Let c ∈ (p, q)∗ ∩ S. r = ‖c− p‖ = ‖c− q‖ = d(c, P ) ≤ ε < %S ≤ lfs(c)

⇒ B(c, r) ∩ S is a topological arc

s

if s ∈ P \ {p, q} belongs to this arc, then the arc is
tangent to ∂B(c, r) in p, q or s (say s)

⇒ d(c, P ) = r = ‖c− s‖ ≥ lfs(s) > ε.

(contradiction with the hypothesis of the theorem)

Claim: @s ∈ P \ {p, q} on the arc on between p and q

B(c, r) is a Voronoi disk (empty of points in its interior)

by the Tangent ball lemma B should
not intersect S (its radius r is too small)

→ Assume (p, q) ∈ DelS(P ).



Approximation power of the restricted Delaunay

Proof for curves:

show that every edge of DelS(P ) connects consecutive points of P along S, and vice-versa

c

S

p
q

Let c ∈ arcS(pq) ∩ ∂p∗.
c ∈ (p, s)∗ for some s ∈ P \ {p}

Vor(p)

← Assume p and q are consecutive on S

if c ∈ ∂q∗, we are done otherwise

(contradiction)



Approximation power of the restricted Delaunay

Proof for curves:

show that every edge of DelS(P ) connects consecutive points of P along S, and vice-versa

S

p
q

Let c ∈ arcS(pq) ∩ ∂p∗.

s

c

S c ∈ (p, s)∗ for some s ∈ P \ {p}

⇒ p, s consecutive along S, with c ∈ arcS(ps)

⇒ s = q

⇒ (p, s) ∈ DelS(P )

(by previous part of the proof)

Vor(p)

← Assume p and q are consecutive on S

if c ∈ ∂q∗, we are done otherwise

(contradiction)



Approximation power of the restricted Delaunay

Proof for curves:

show that every edge of DelS(P ) connects consecutive points of P along S, and vice-versa

⇒ DelS(P ) is homeomorphic to S between each pair of consecutive points of P

Since DelS(P ) is embedded in Del(P ), it does
not self-intersect ⇒ global homeomorphism



Approximation power of the restricted Delaunay

The polygonal reconstruction may no be unique



Approximation power of the restricted Delaunay

The polygonal reconstruction may no be unique

(if P is not an ε-sample)



Flatness of the reconstruction

Property:
Let S be a curve with positive reach %, and let p, q two points on S. If d(p, q) < 2%, then

the angle between (p, q) and the tangent line l is at most arcsin d(p,q)
2%

lp

c

c′

% s
l′

S

q

∠(pq, l) ≤ ∠(l, l′) := α

lp

c

% s
l′

α = 2∠(pcs)

c

% s
α

α

1
2
d(p, s) = % sinα

α = arcsin d(p,s)
2%



Computing the restricted Delaunay

Q How to compute DelS(P ) when S is unknown?



Computing the restricted Delaunay

Q How to compute DelS(P ) when S is unknown?

→ a whole family of algorithms use various Delaunay extraction criteria:

- crust

- cocone

- tight cocone

- · · ·

- power crust



Crust algorithm
[Amenta et al. 1997-98]



Crust algorithm 1. Compute Delaunay triangulation of P

[Amenta et al. 1997-98]



Crust algorithm 1. Compute Delaunay triangulation of P

[Amenta et al. 1997-98]



Crust algorithm 2. Compute poles (furthest Voronoi vertices)

[Amenta et al. 1997-98]



Crust algorithm 3. Add poles to the set of vertices

[Amenta et al. 1997-98]



Crust algorithm 3. Add poles to the set of vertices

[Amenta et al. 1997-98]



Crust algorithm 4. Keep Delaunay simplices whose vertices are in P

[Amenta et al. 1997-98]



Crust algorithm → in 2-d, crust = DelS(P ) ≈ S

[Amenta et al. 1997-98]
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Crust algorithm → in 2-d, crust = DelS(P ) ≈ S

→ in 3-d, crust ⊇ DelS(P ) ≈ S[Amenta et al. 1997-98]



Crust algorithm → in 2-d, crust = DelS(P ) ≈ S

→ in 3-d, crust ⊇ DelS(P ) ≈ S

⇒ manifold extraction step in post-processing

[Amenta et al. 1997-98]



Crust algorithm
[Amenta et al. 1997-98]



Crust algorithm [Amenta et al. 1997-98]



transition : voici l’etat de l’art il y a quelques annees. On savait reconstruire des courbes dans le plan et des surfaces dans R3 lisses sans
bruit avec garanties. Puis on a commence a s’interesser aux objets non lisses, non manifold, en toutes dimensions, avec du bruit. Et la,
un probleme fondamental est apparu...

Back to the reconstruction paradigm

Q What do you see?

Why?
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transition : voici l’etat de l’art il y a quelques annees. On savait reconstruire des courbes dans le plan et des surfaces dans R3 lisses sans
bruit avec garanties. Puis on a commence a s’interesser aux objets non lisses, non manifold, en toutes dimensions, avec du bruit. Et la,
un probleme fondamental est apparu...

Back to the reconstruction paradigm

→ When the dimensionality of the data is unknown or there is noise, the
reconstruction result depends on the scale at which the data is looked at.

→ need for multi-scale reconstruction techniques



Multi-scale approach in a nutshell

→ build a one-parameter family of complexes approximating the input at various scales



Multi-scale approach in a nutshell

→ build a one-parameter family of complexes approximating the input at various scales

→ connections with manifold learning and topological persistence



the simplicial complex serves as an approximation

Input: a finite point set W ⊂ Rn

→ resample W iteratively, and maintain a simplicial complex:

Multi-scale algorithm [Guibas, Oudot 2007]
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the simplicial complex serves as an approximation

Input: a finite point set W ⊂ Rn

→ resample W iteratively, and maintain a simplicial complex:

Let L := {p}, for some p ∈W ;

while L (W

L := L ∪ {q};

end while

Let q := argmaxw∈Wd(w,L);

update simplicial complex;

Output: the sequence of simplicial complexes

Multi-scale algorithm [Guibas, Oudot 2007]



Here, X is any metric spaceLet L ⊆ Rd (landmarks) s.t. |L| < +∞

→ maintain the witness complex CW (L) [de Silva 2003]:

and W ⊆ Rd (witnesses)

The simplicial complex to maintain



Here, X is any metric space

Def. w ∈ W strongly witnesses [v0, · · · , vk] if ‖w −
vi‖ = ‖w − vj‖ ≤ ‖w − u‖ for all i, j = 0, · · · , k and all
u ∈ L \ {v0, · · · , vk} (Delaunay test)
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Here, X is any metric space

Def. w ∈W weakly witnesses [v0, · · · , vk] if ‖w−vi‖ ≤
‖w− u‖ for all i = 0, · · · , k and all u ∈ L \ {v0, · · · , vk}.

Def. CW (L) is the largest abstract simplicial complex built
over L, whose faces are weakly witnessed by points of W .

Def. w ∈ W strongly witnesses [v0, · · · , vk] if ‖w −
vi‖ = ‖w − vj‖ ≤ ‖w − u‖ for all i, j = 0, · · · , k and all
u ∈ L \ {v0, · · · , vk} (Delaunay test)

Let L ⊆ Rd (landmarks) s.t. |L| < +∞

→ maintain the witness complex CW (L) [de Silva 2003]:

and W ⊆ Rd (witnesses)

The simplicial complex to maintain



⇒ CW (L) is a subcomplex of Del(L)

⇒ CW (L) is embedded in Rd

Thm. 1 [de Silva 2003] ∀W,L, ∀σ ∈ CW (L), ∃c ∈ Rd that strongly witnesses σ.

The witness complex (properties)



every point of W witnesses exactly one simplex of each dimension

⇒ CW (L) is a subcomplex of Del(L)

⇒ CW (L) is embedded in Rd

Thm. 1 [de Silva 2003] ∀W,L, ∀σ ∈ CW (L), ∃c ∈ Rd that strongly witnesses σ.

Thm. 2 [de Silva, Carlsson 2004]
- The size of CW (L) is O(d|W |)
- The time to compute CW (L) is O(d|W ||L|)

The witness complex (properties)



every point of W witnesses exactly one simplex of each dimension

⇒ CW (L) is a subcomplex of Del(L)

⇒ CW (L) is embedded in Rd

Thm. 1 [de Silva 2003] ∀W,L, ∀σ ∈ CW (L), ∃c ∈ Rd that strongly witnesses σ.

Thm. 2 [de Silva, Carlsson 2004]
- The size of CW (L) is O(d|W |)
- The time to compute CW (L) is O(d|W ||L|)

Thm. 3 [Guibas, Oudot 2007]
[Attali, Edelsbrunner, Mileyko 2007]

Under some conditions, CW (L) = DelS(L) ≈ S

The witness complex (properties)



The witness complex (properties)

→ connection with reconstruction:

• W ⊂ Rd is given as input
• L ⊆W is generated
• underlying manifold S unknown
• only distance comparisons

⇒ algorithm is applicable in any metric space



Argument: CW (L) ⊆ Del(L), whose simplices have
dimension at most n

The witness complex (properties)

→ connection with reconstruction:

• W ⊂ Rd is given as input
• L ⊆W is generated
• underlying manifold S unknown
• only distance comparisons

⇒ space ≤ O (d|W |)
time ≤ O

(
d|W |2

)

⇒ algorithm is applicable in any metric space

• In Rd, CW (L) can be maintained by updating,
for each witness w, the list of d + 1 nearest land-
marks of w.



Input: a finite point set W ⊂ Rd.

The full algorithm



Input: a finite point set W ⊂ Rd.

Init: L := {p}; construct lists of nearest landmarks; CW (L) = {[p]};

Invariant: ∀w ∈ W , the list of d + 1 nearest landmarks of w is maintained
throughout the process.

The full algorithm
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Input: a finite point set W ⊂ Rd.

Init: L := {p}; construct lists of nearest landmarks; CW (L) = {[p]};
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Input: a finite point set W ⊂ Rd.

Init: L := {p}; construct lists of nearest landmarks; CW (L) = {[p]};

Invariant: ∀w ∈ W , the list of d + 1 nearest landmarks of w is maintained
throughout the process.

while L (W

insert argmaxw∈Wd(w,L) in L;

update the lists of nearest neighbors;

update CW (L);

end while

Output: the sequence of complexes CW (L)

The full algorithm
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talk about stabilization of topological invariants, e.g. Betti numbers (number of CCs and holes here)

Thm. 3 If S is a closed curve with positive reach, W ⊂ Rd s.t. dH(W,S) ≤ δ,
L ⊆W ε-sparse ε-sample of W with δ << ε << %S , then CW (L) = DelS(L) ≈ S.

> ε

1/ε1/%S 1/δ1/εr 1/εl

εl

β1

β0

0

1

2

εr

→ There is a plateau in the diagram of Betti numbers of CW (L).
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Thm [Attali, Edelsbrunner, Mileyko]
If ε << %S , then ∀W ⊆ S, CW (L) ⊆ DelS(L).

Solution relax witness test
[Guibas, Oudot]

⇒ CWν (L) = DelS(L)+ slivers
⇒ CWν (L) * Del(L)
⇒ CWν (L) not embedded.

Post-process extract manifold M
from CWν (L) ∩Del(L)
[Amenta, Choi, Dey, Leekha]

⇒ CS(L) = DelS(L)

Pb DelS(L) * CW (L) if W ( S

Theoretical guarantees

→ case of surfaces:
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