Computational Geometry and Topology Géométrie et topologie algorithmiques

Steve OUDOT

Pooran MEMARI

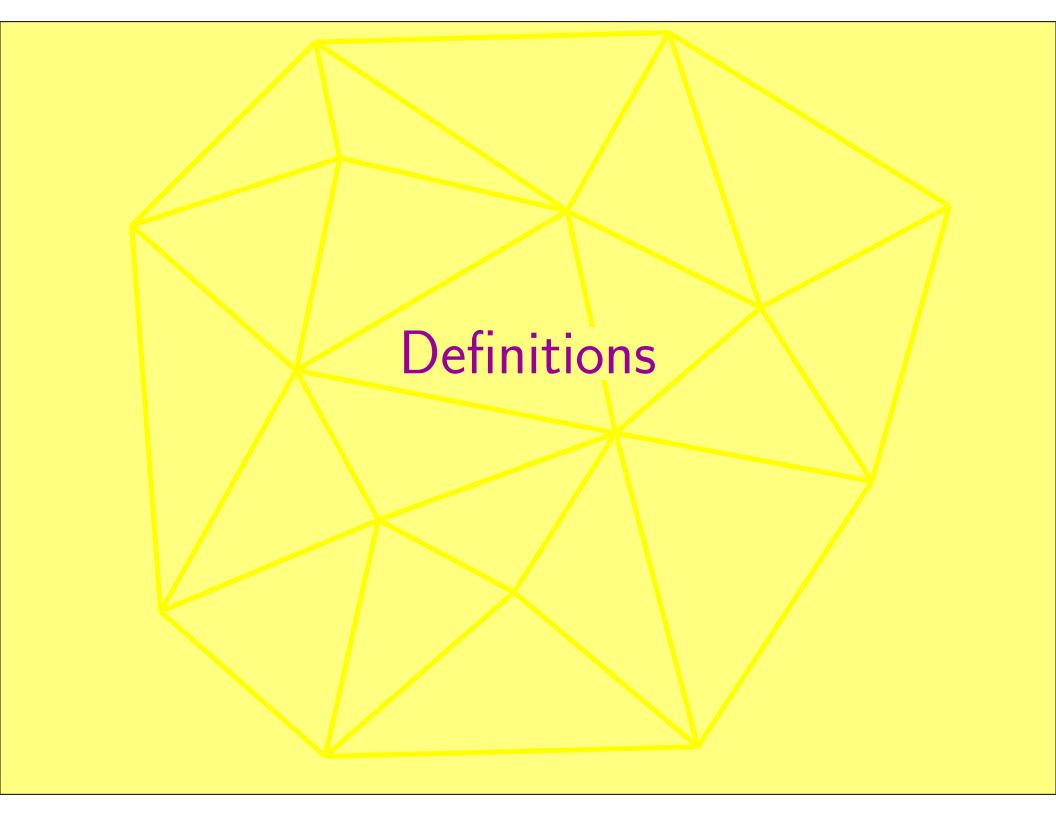
Acknowledgments of Involved Colleagues:

Jean Daniel Boissonnat, Frederic Chazal, Marc Glisse, As well as Olivier Devillers and Luca Castelli

This lecture: slides courtesy of Olivier Devillers and Jean Daniel Boissonnat

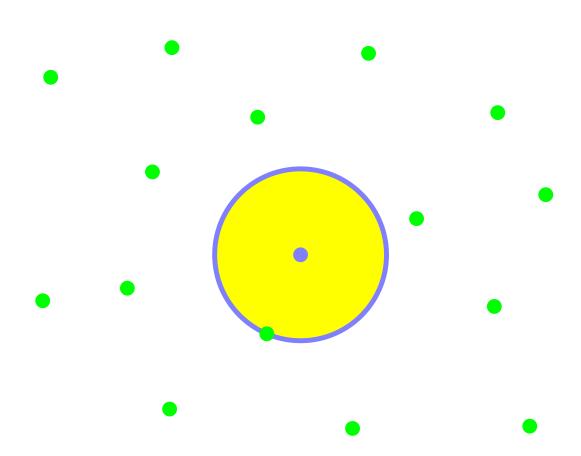
Outline

- 1. Definitions and examples
- 2. Structral properties and applications
- 3. Size
- 4. Construction
- 5. Generalizations

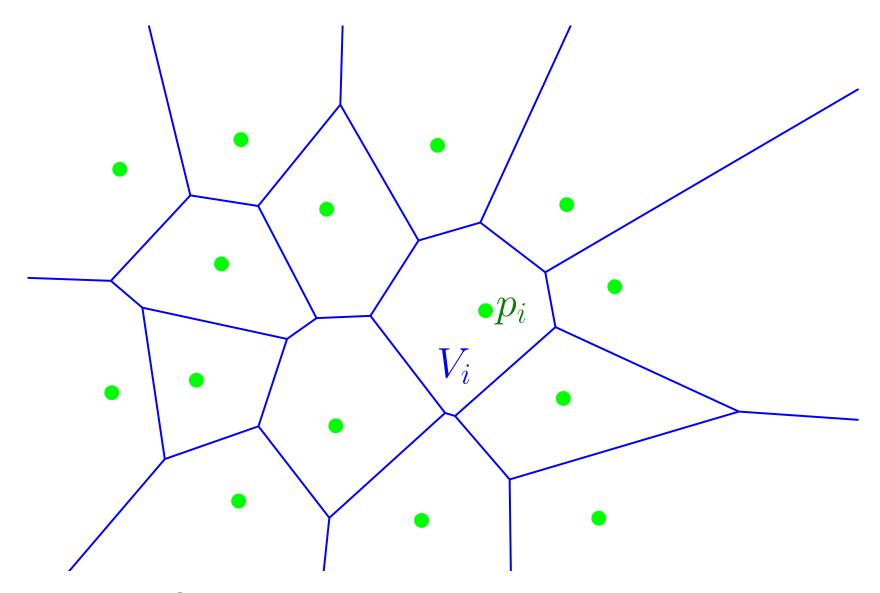


looking for nearest neighbor

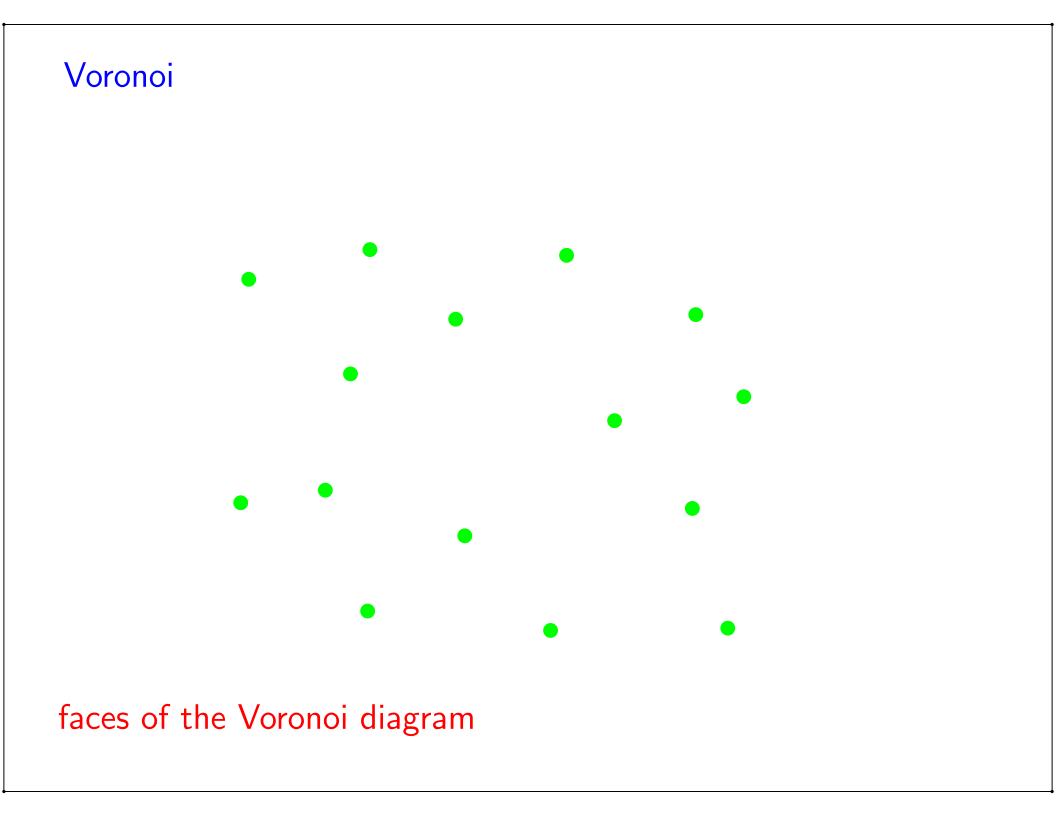
looking for nearest neighbor

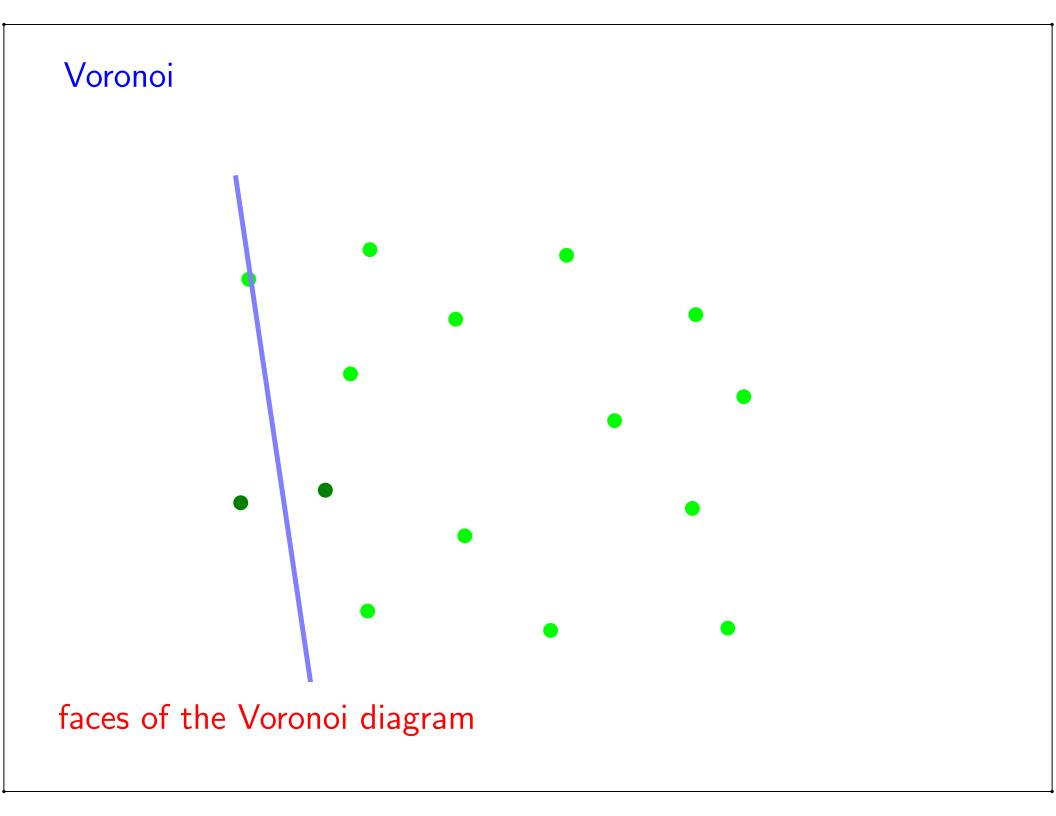


Voronoi diagram of $\{p_1, \cdots, p_n\} \subset \mathbb{R}^d$

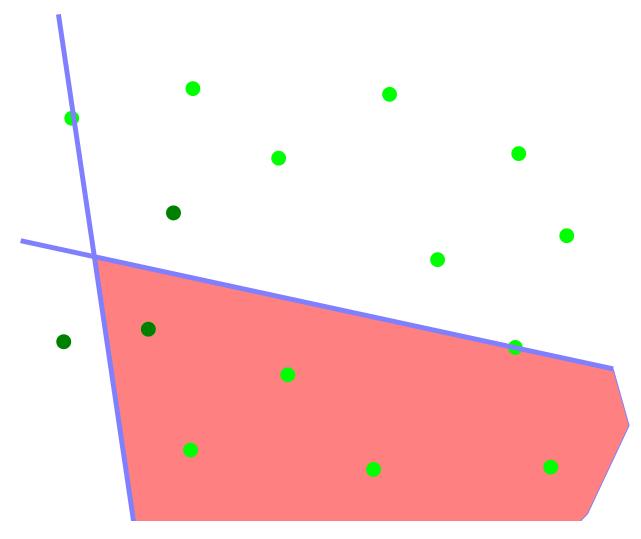


$$V_i := \{ q \in \mathbb{R}^d \mid ||q - p_i|| \le ||q - p_j|| \ \forall j \}$$

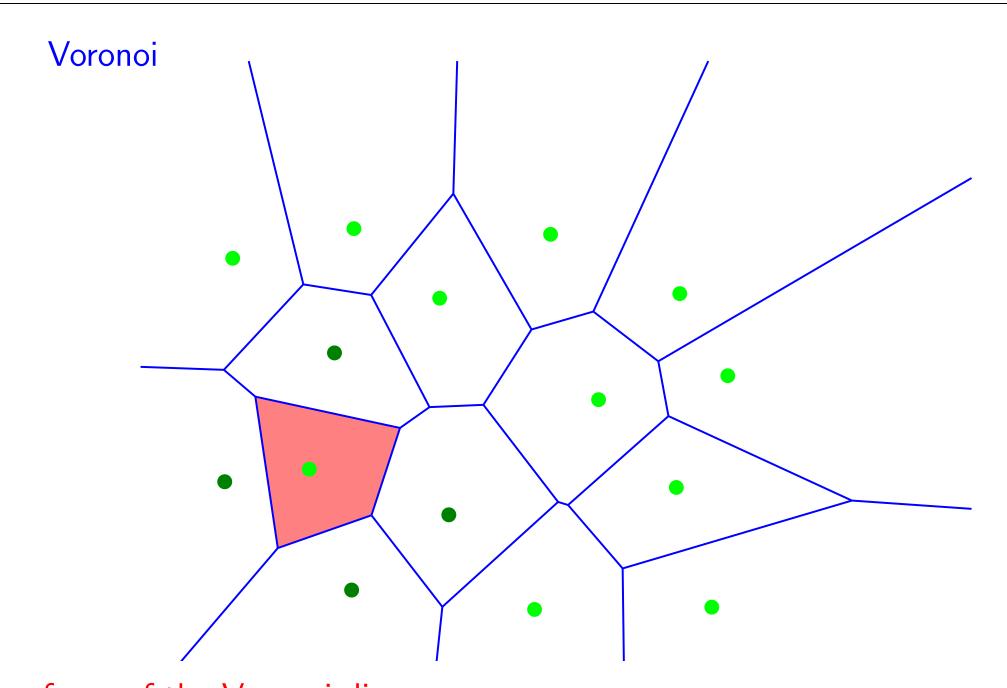




Voronoi

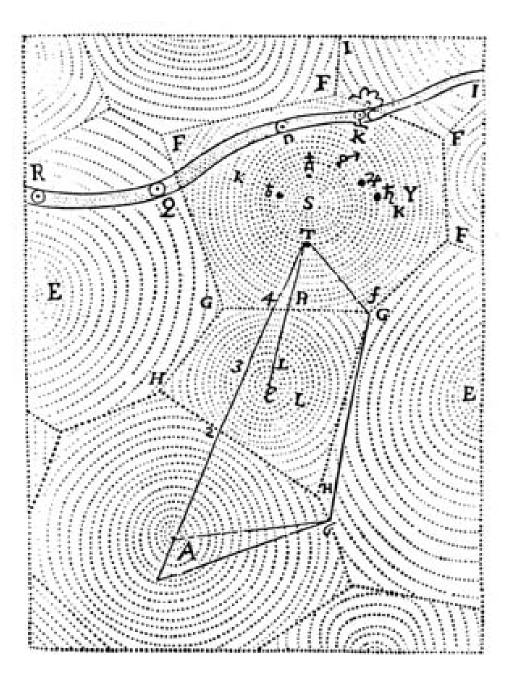


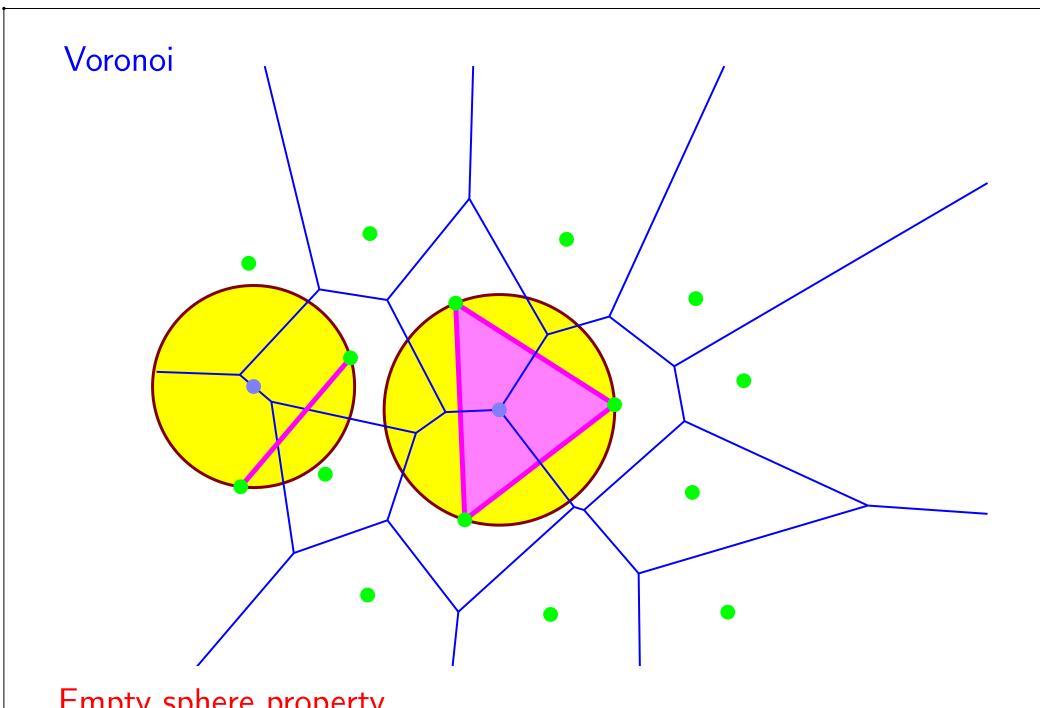
faces of the Voronoi diagram



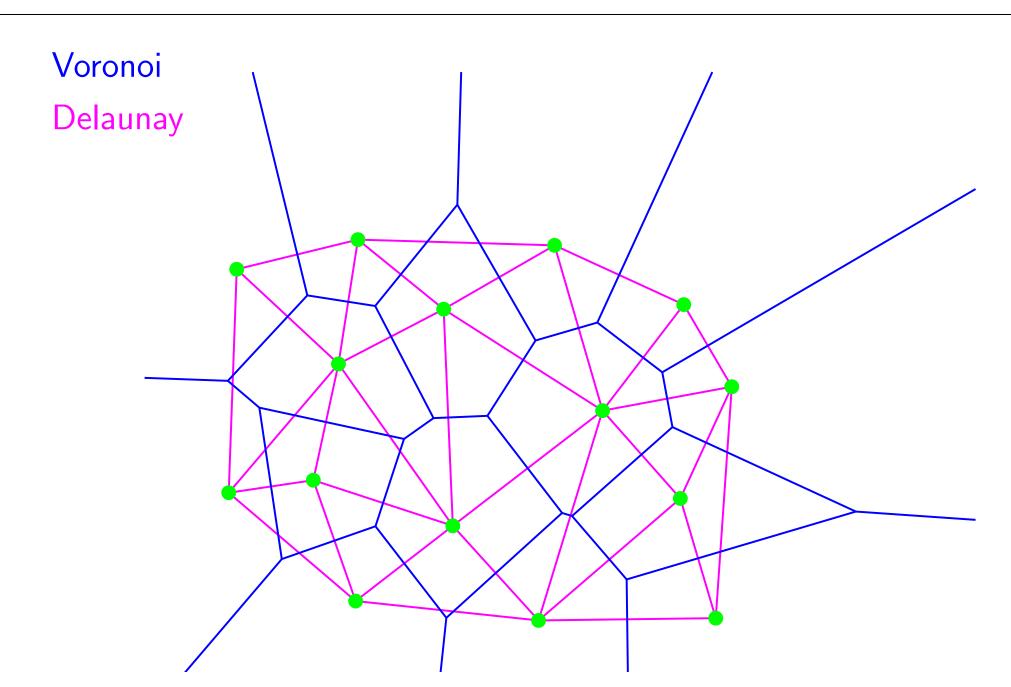
faces of the Voronoi diagram

Voronoi is everywhere

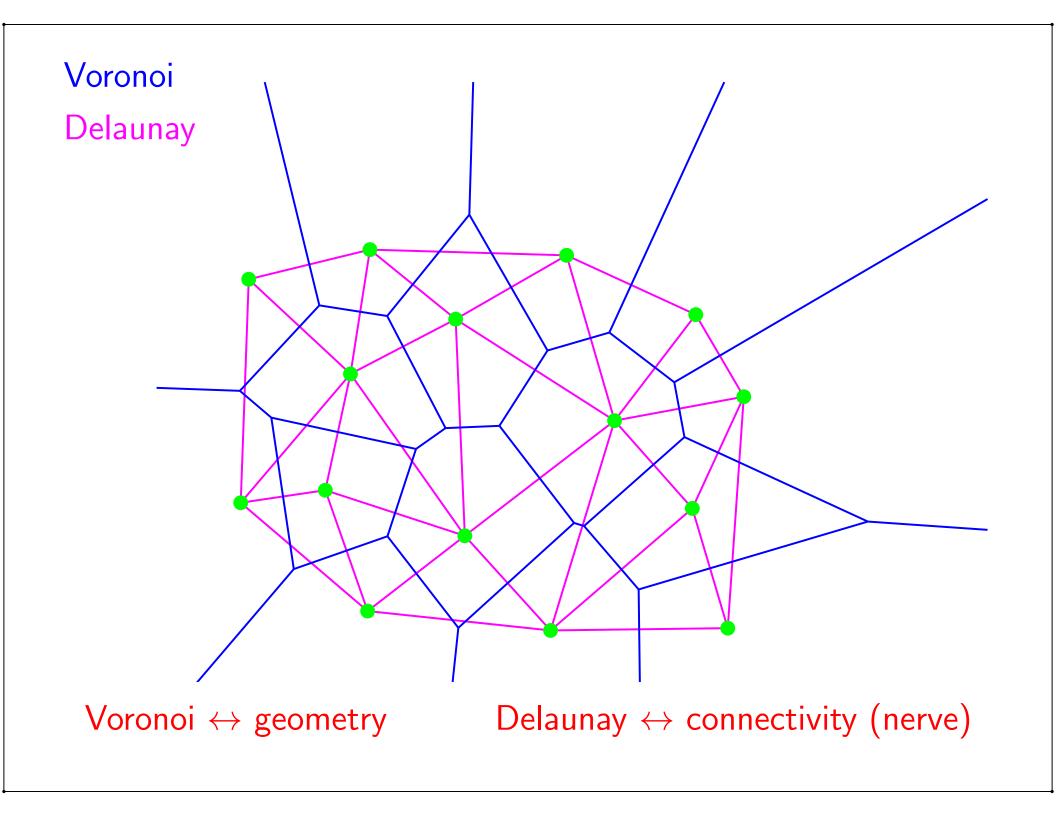




Empty sphere property



Nerve: $\{p_0, \cdots, p_k\} \in \mathrm{Del}(P) \Leftrightarrow V_0 \cap \cdots \cap V_k \neq \emptyset$



Geometric simplicial complexes

vertex set:
$$V = \{v_0, v_1, \dots, v_{n-1}\} \subset \mathbb{R}^d$$

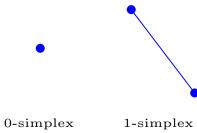
k-simplex:
$$\sigma = \operatorname{Conv}\{v_{i_0}, v_{i_1}, \cdots, v_{i_k}\}$$

inclusion property (τ face of σ):

$$\sigma \in K \text{ and } V(\tau) \subseteq V(\sigma) \Longrightarrow \tau \in K$$

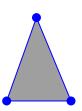
intersection property:

 $\sigma_1, \sigma_2 \in K \text{ and } \sigma_1 \cap \sigma_2 \neq \emptyset \Longrightarrow \sigma_1 \cap \sigma_2 \in K \text{ and is a face of both}$

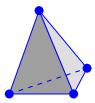


(vertex)

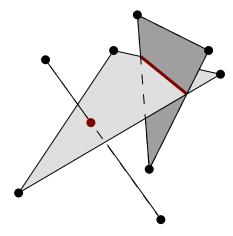
1-simplex (edge)



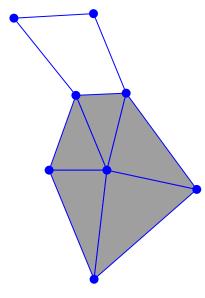
2-simplex (triangle)



3-simplex (tetrahedron)



invalid simplicial complex



valid simplicial complex

Geometric simplicial complexes

vertex set:
$$V = \{v_0, v_1, \dots, v_{n-1}\} \subset \mathbb{R}^d$$

k-simplex:
$$\sigma = \operatorname{Conv}\{v_{i_0}, v_{i_1}, \cdots, v_{i_k}\}$$

inclusion property (τ face of σ):

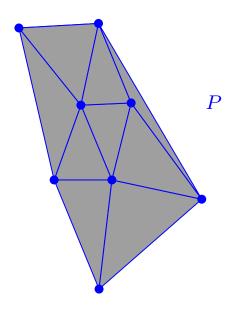
$$\sigma \in K \text{ and } V(\tau) \subseteq V(\sigma) \Longrightarrow \tau \in K$$

intersection property:

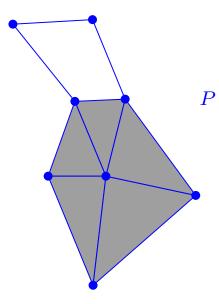
$$\sigma_1, \sigma_2 \in K \text{ and } \sigma_1 \cap \sigma_2 \neq \emptyset \Longrightarrow \sigma_1 \cap \sigma_2 \in K \text{ and is a face of both}$$

triangulation of P:

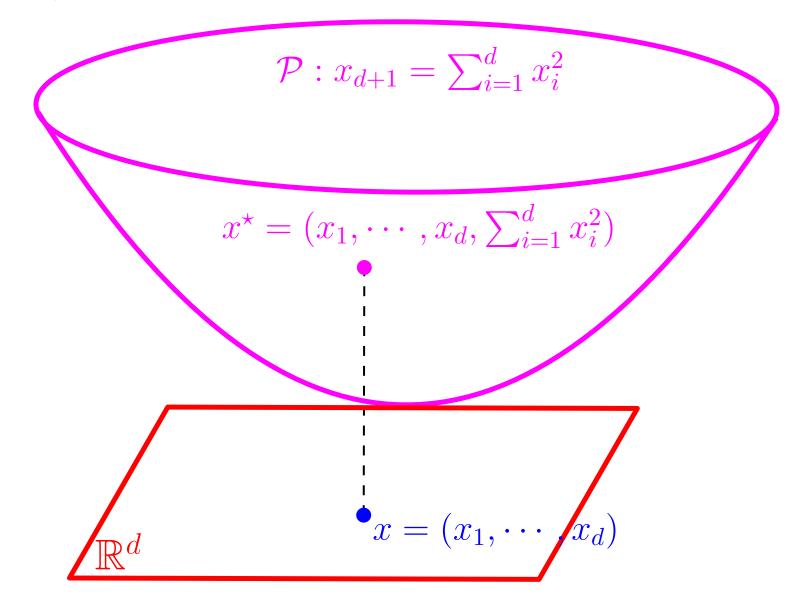
simplicial complex T with vertex set P such that $\bigcup_{\sigma \in T} \sigma = \operatorname{Conv} P$

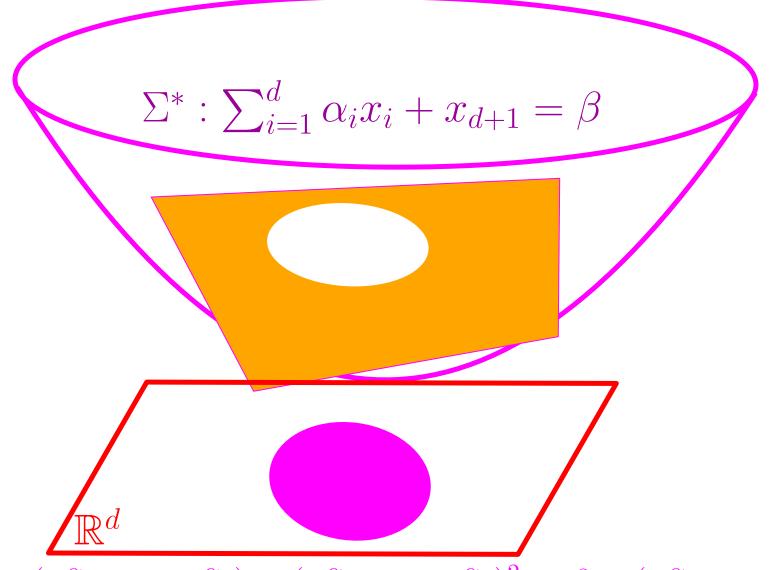


valid triangulation of P

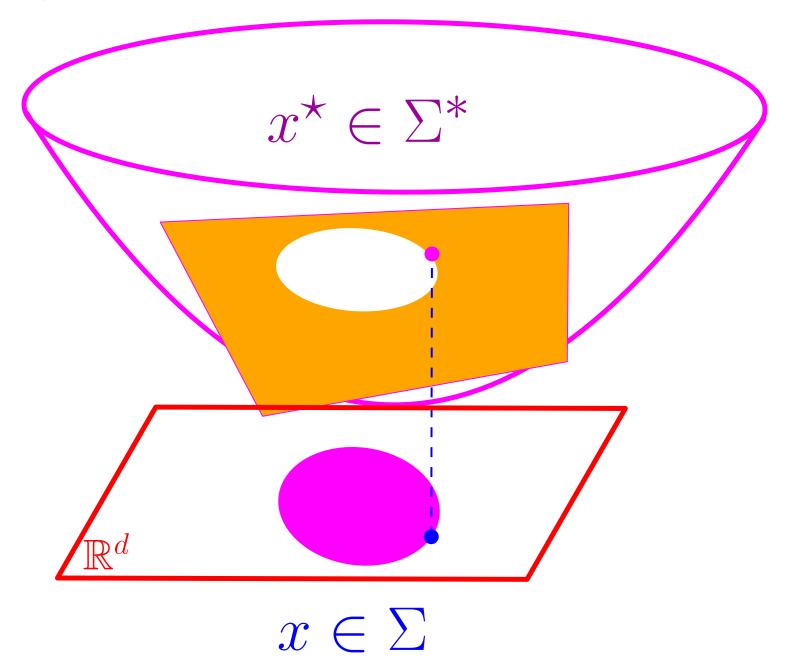


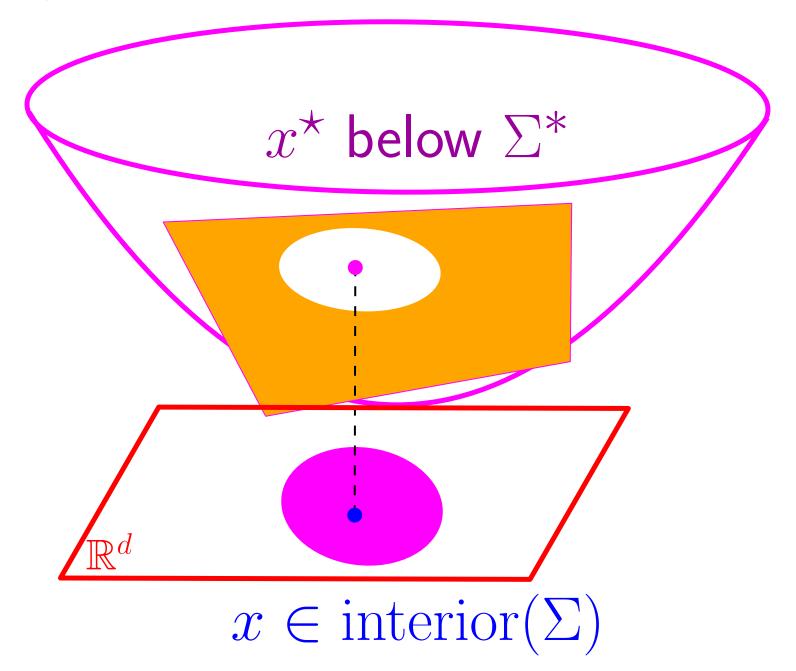
invalid triangulation of P

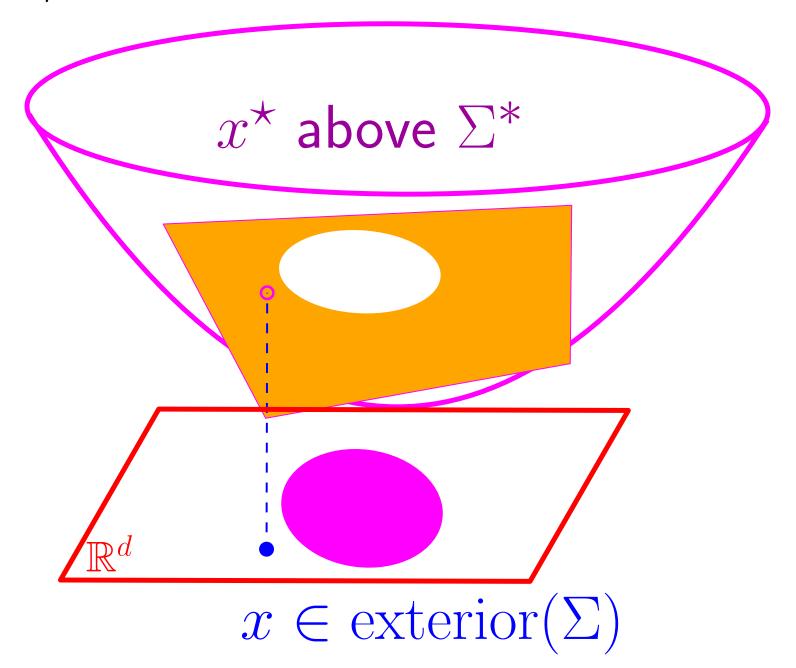


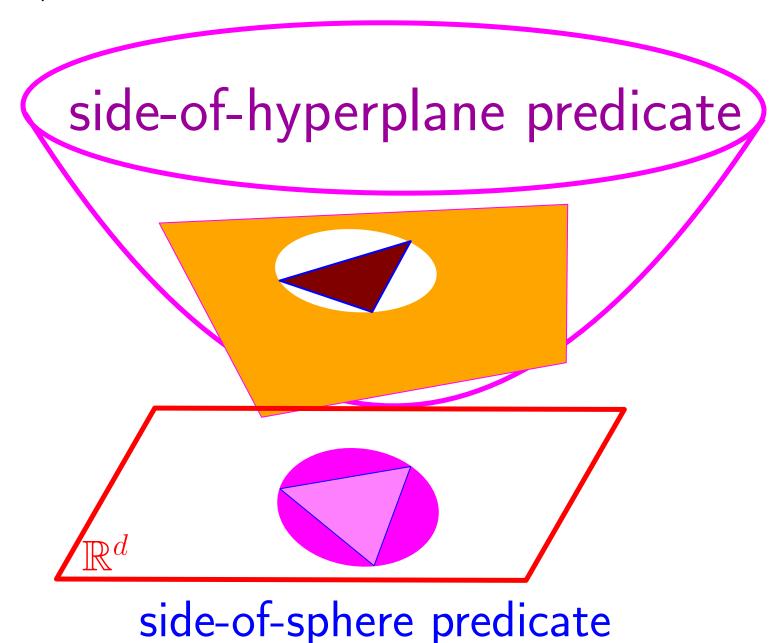


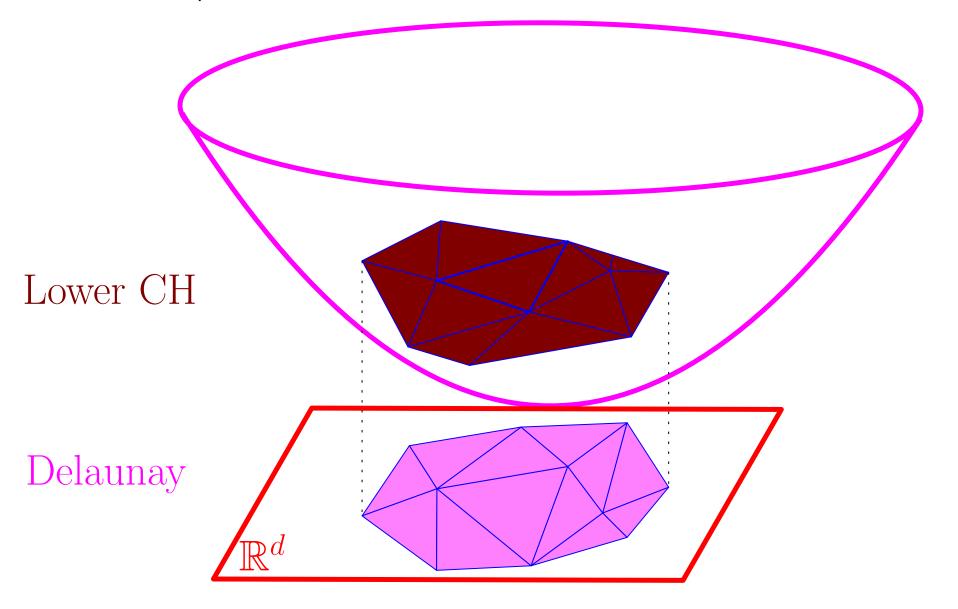
$$\Sigma : x^2 - 2x \cdot (\frac{-\alpha_1}{2}, \dots, \frac{-\alpha_d}{2}) + (\frac{-\alpha_1}{2}, \dots, \frac{-\alpha_d}{2})^2 = \beta + (\frac{-\alpha_1}{2}, \dots, \frac{-\alpha_d}{2})^2$$



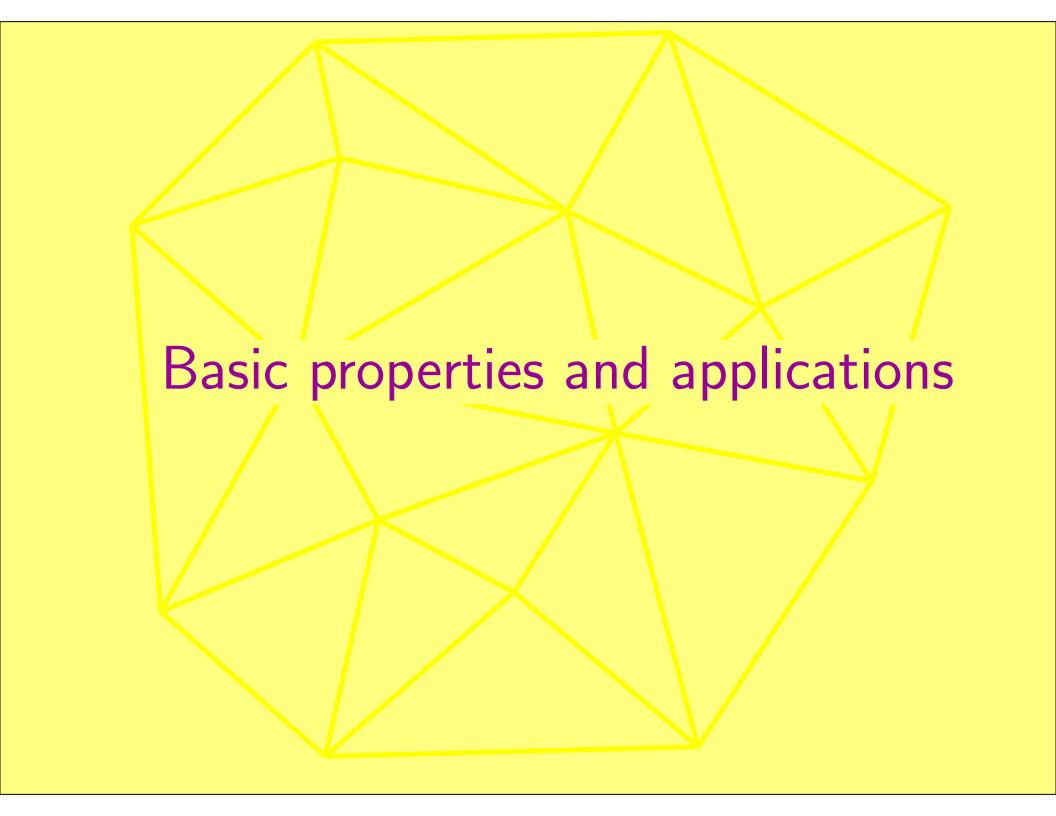




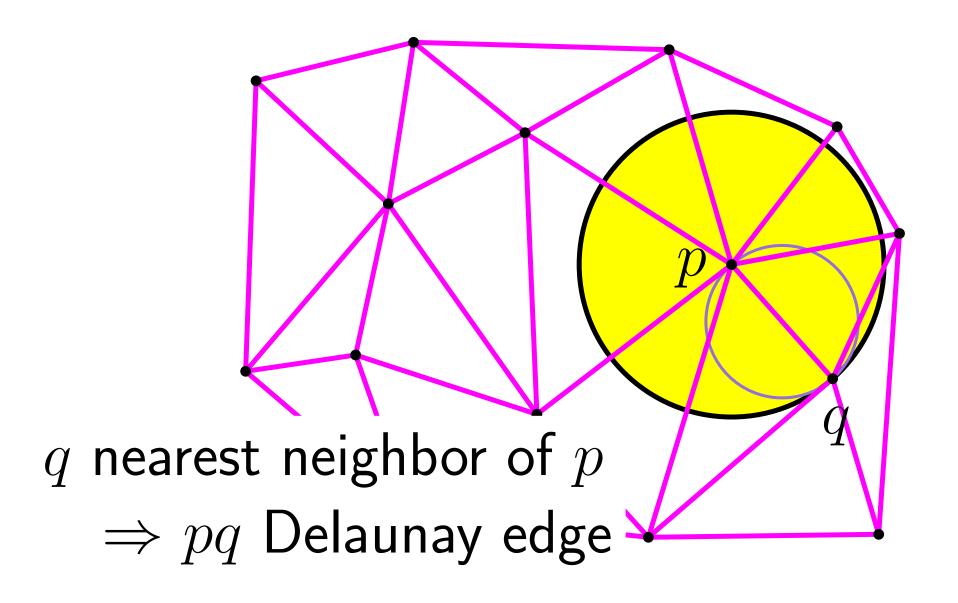




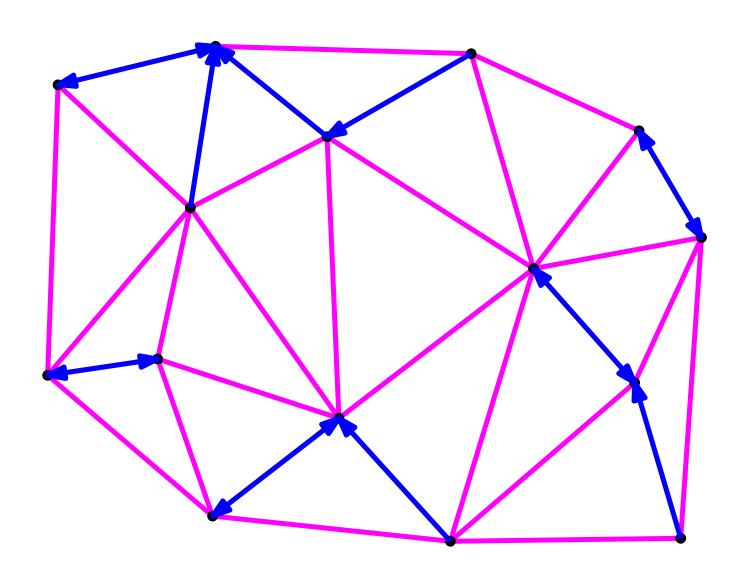
⇒ Delaunay is generically a triangulation (not an abstract complex)



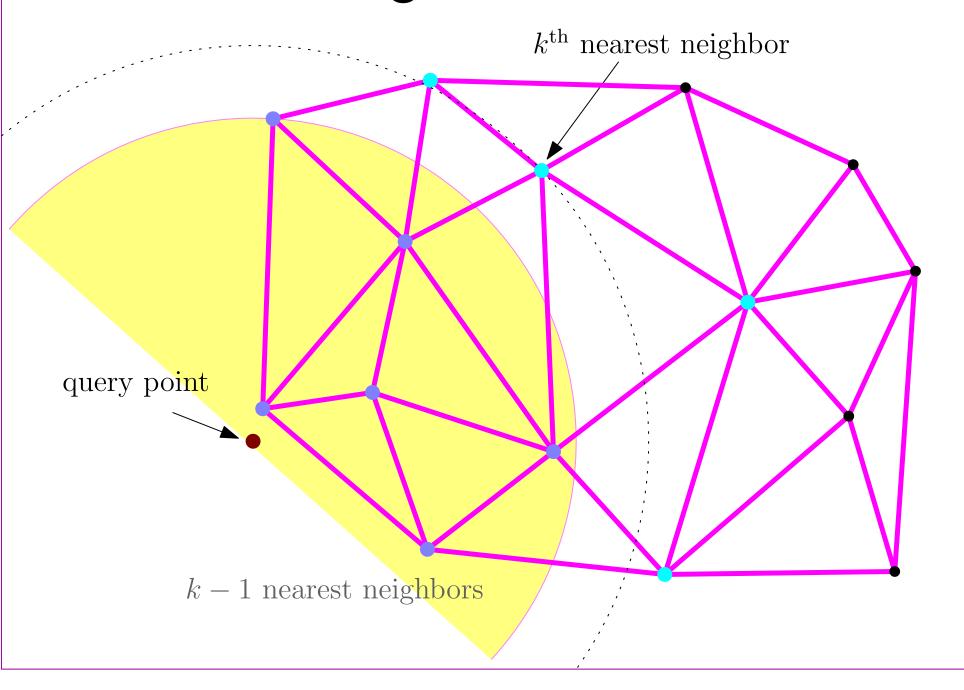
nearest neighbor graph



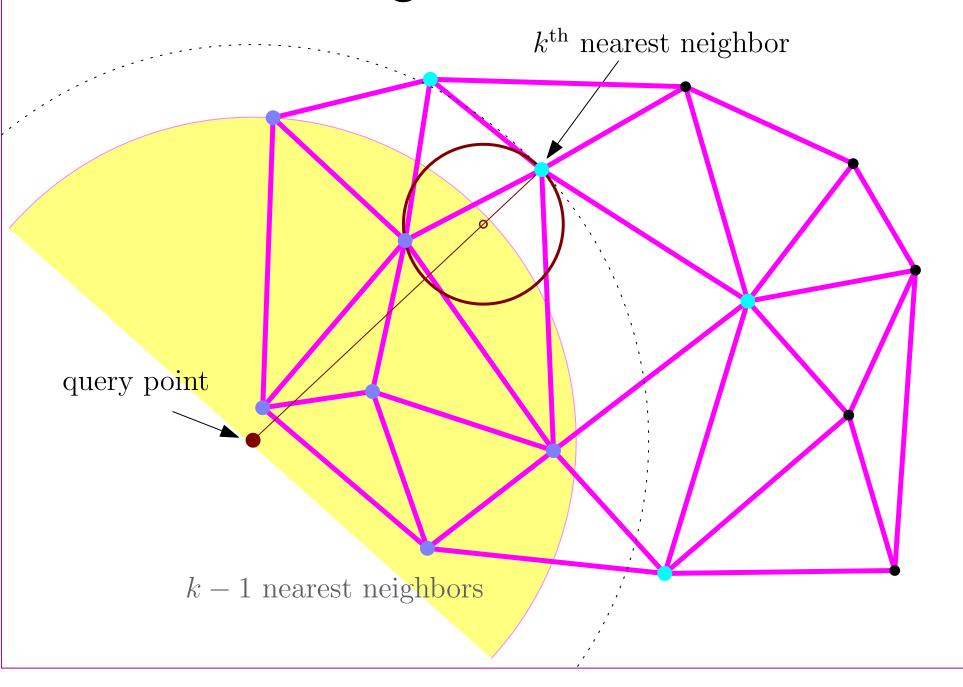
nearest neighbor graph



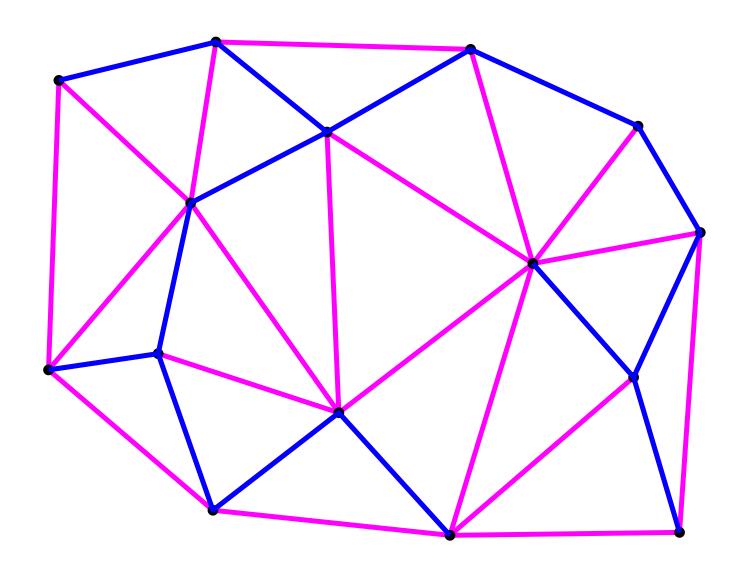
k nearest neighbors



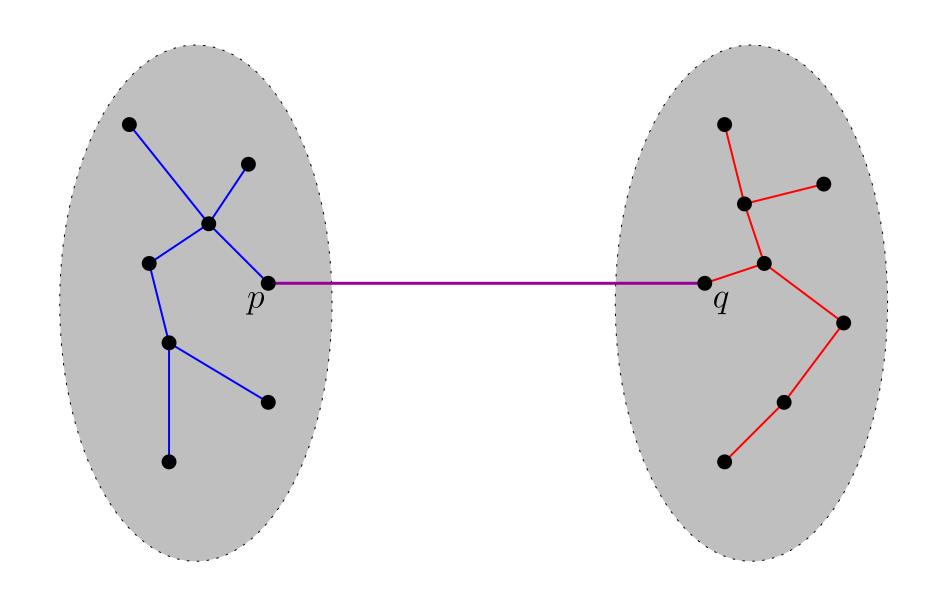
k nearest neighbors



Minimum Spanning Tree

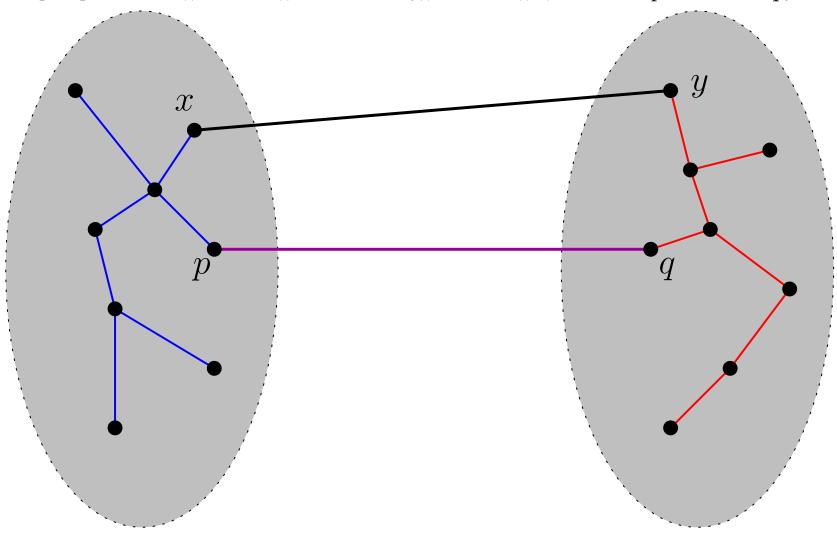


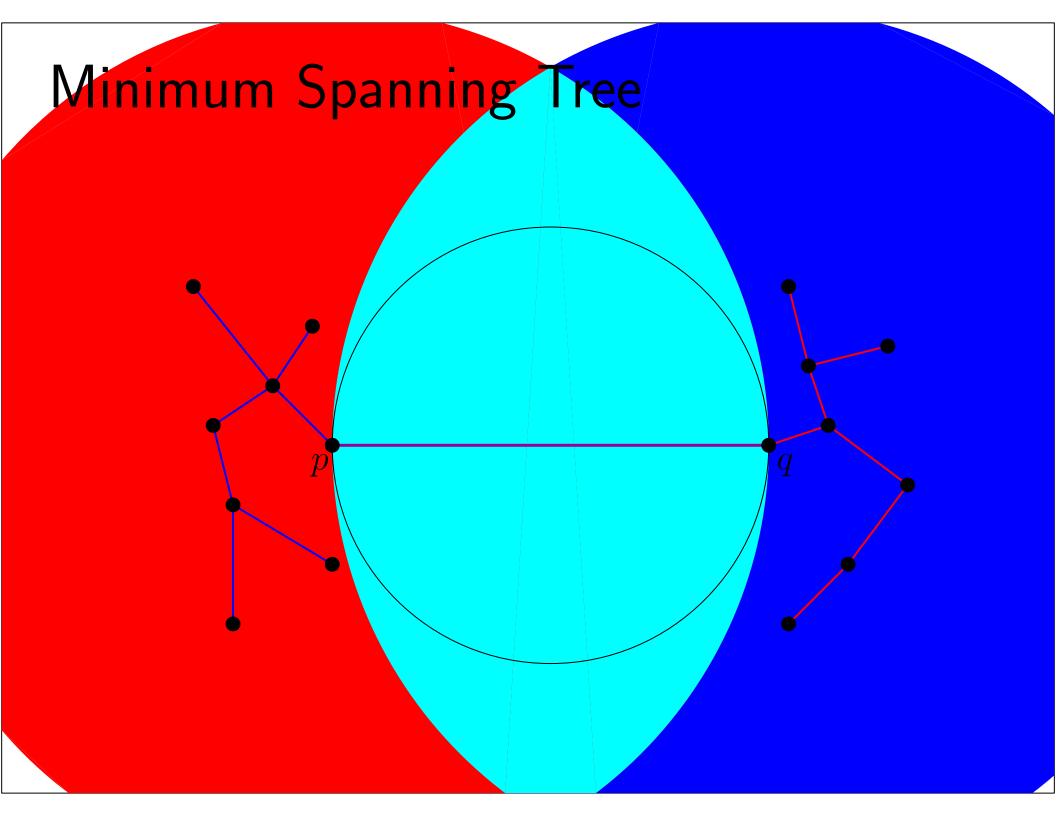
Minimum Spanning Tree



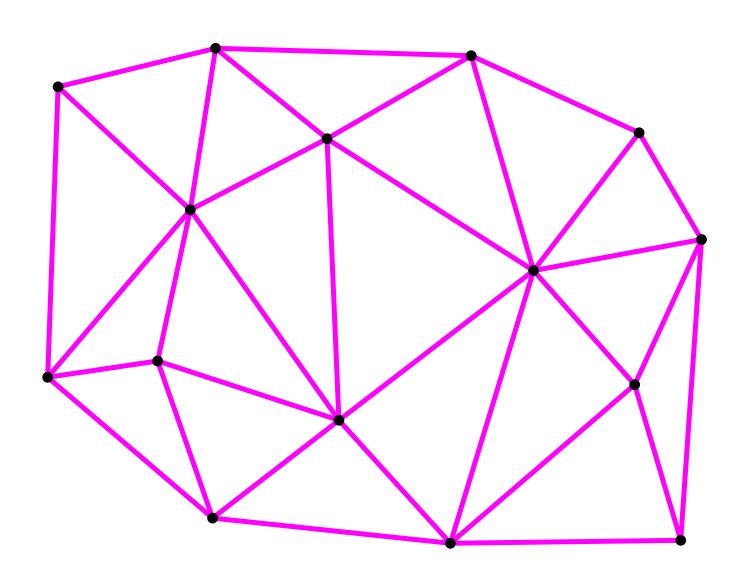
Minimum Spanning Tree

 $\forall [pq] \in A, \|p - q\| = \min\{\|x - y\| \mid x \in A_p, y \in A_q\}$



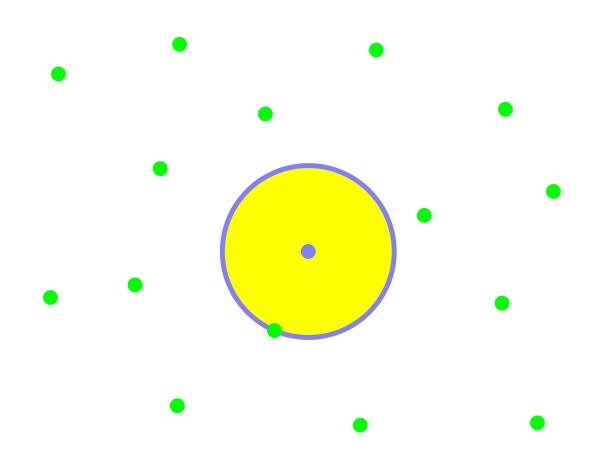


Largest empty circle (centered in the convex hull)

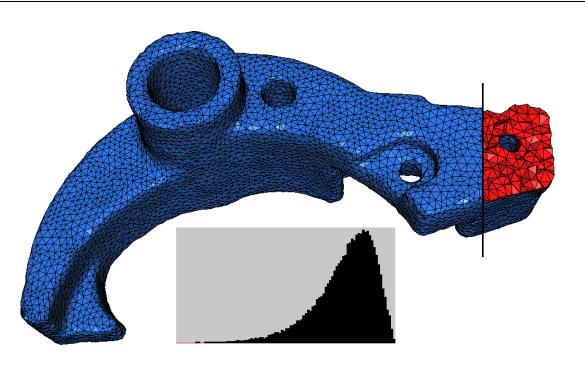


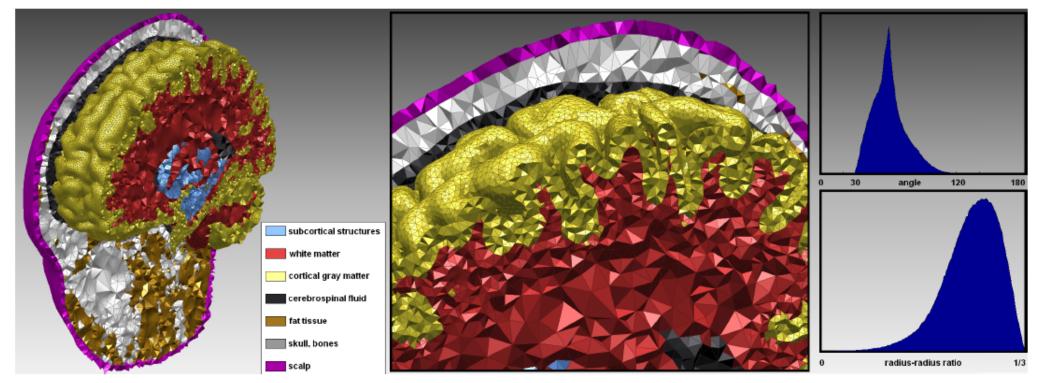
Largest empty circle (centered in the convex hull)

Applications Databases, Al (NN-search)

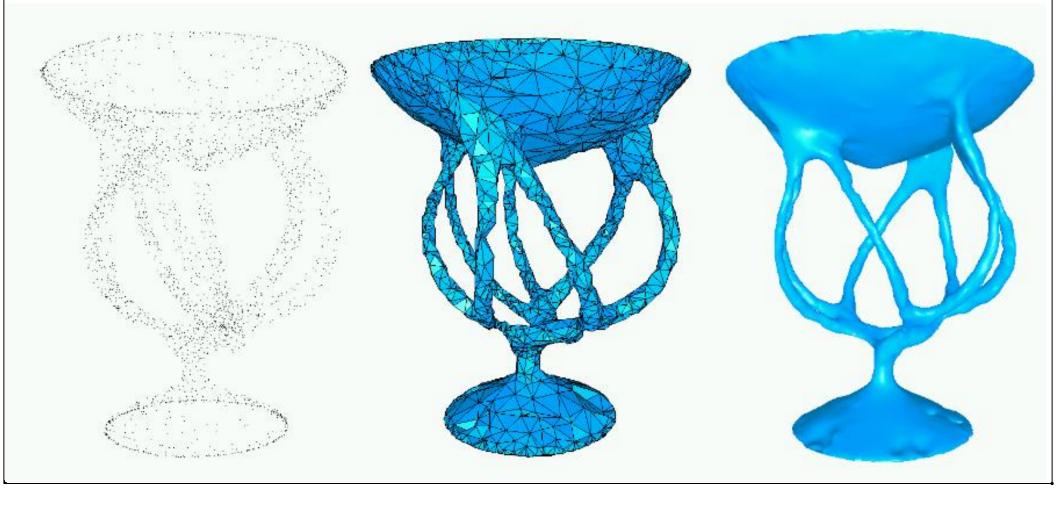


Applications Databases, Al Mesh generation





Applications Databases, Al Mesh generation Reconstruction

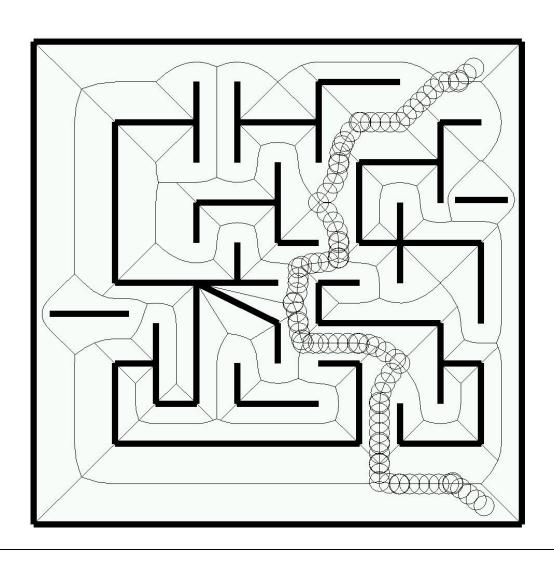


Applications

Databases, Al

Mesh generation
Reconstruction

Path planning

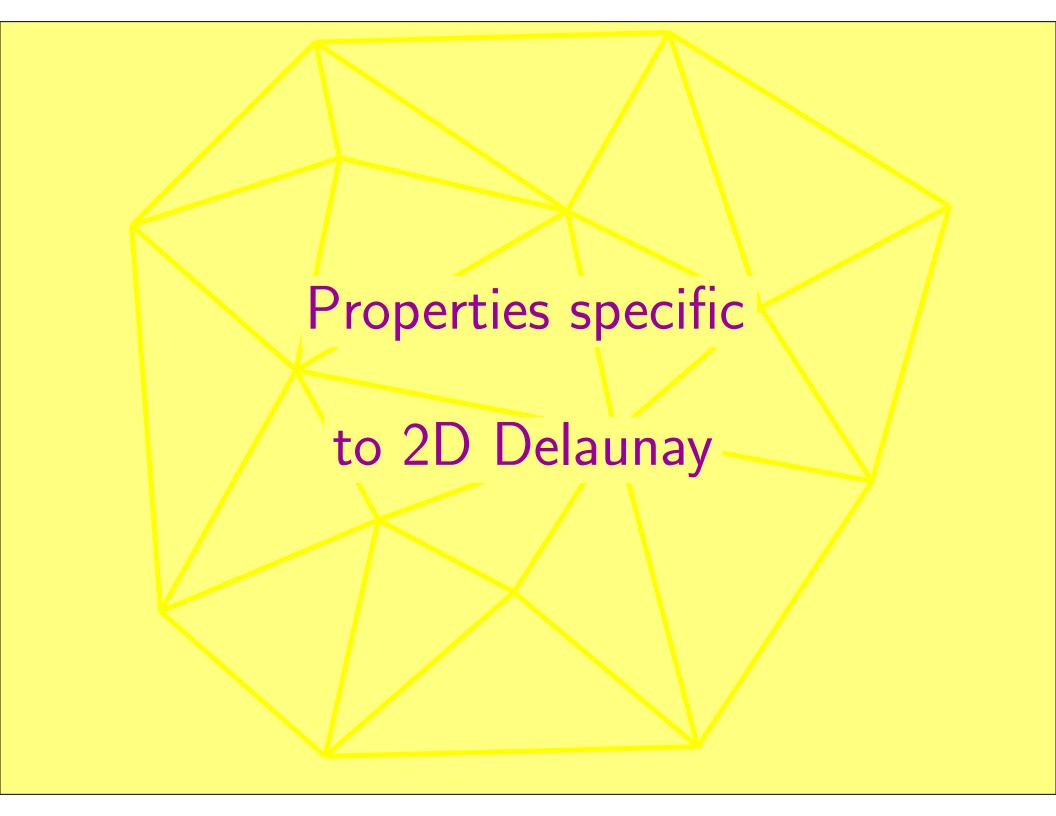


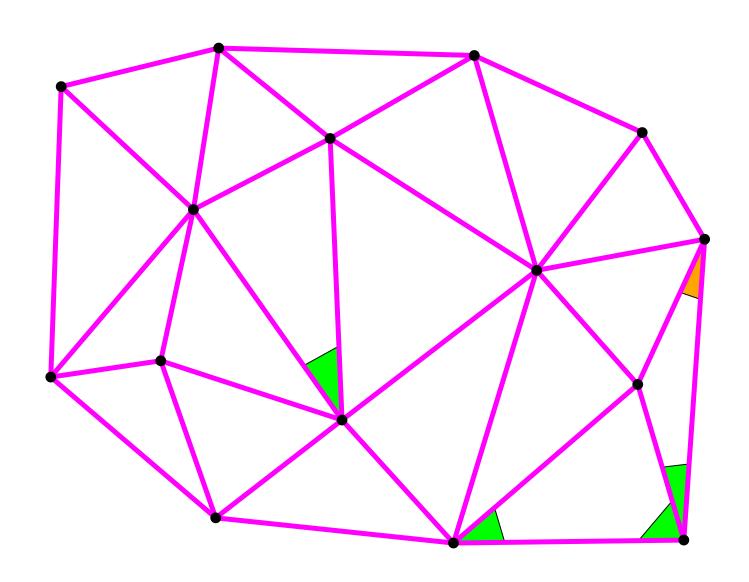
Applications

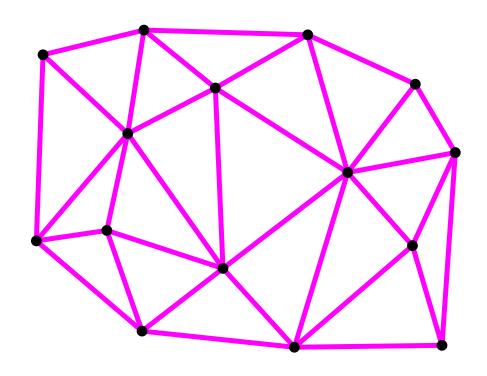
Databases, Al

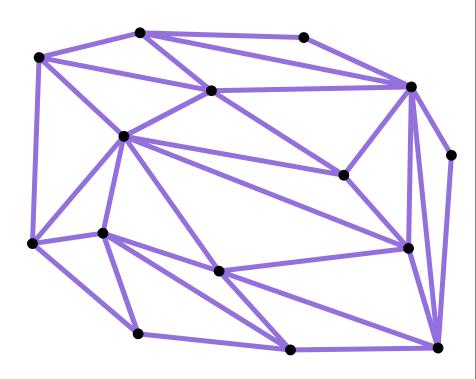
Mesh generation
Reconstruction

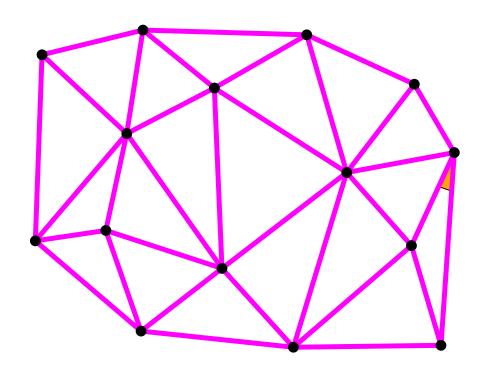
Path planning and many more (e.g. texture synthesis)

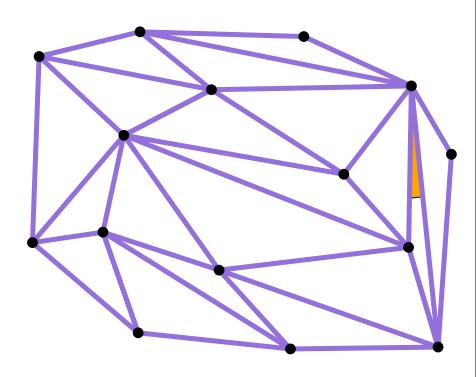


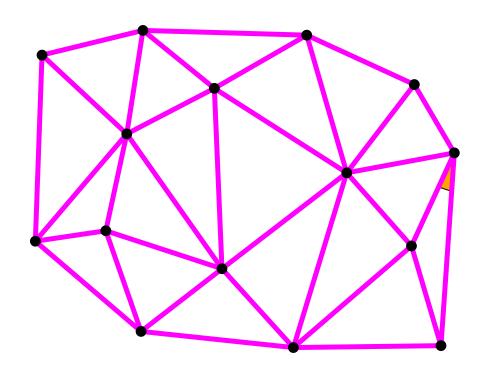


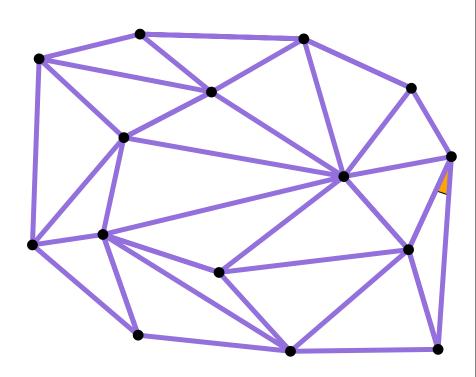




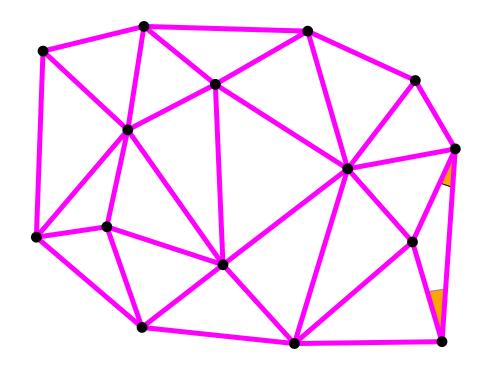


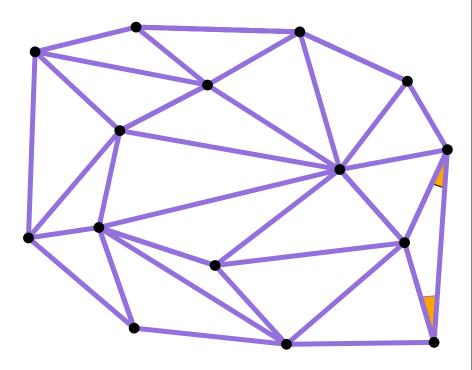


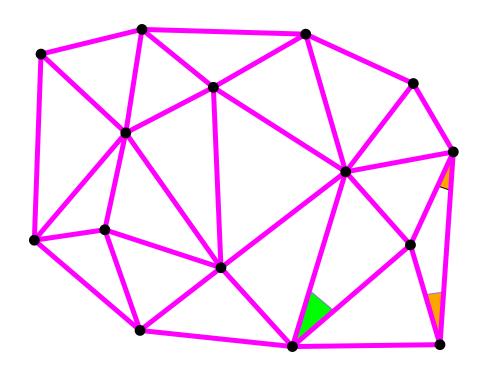


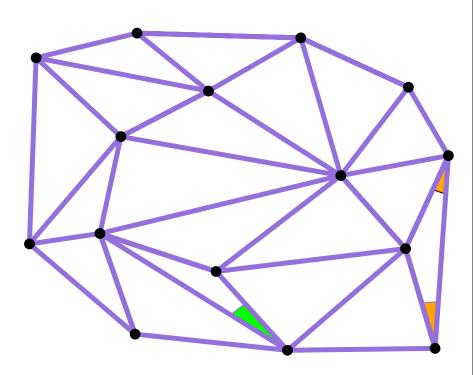


... but the converse is false



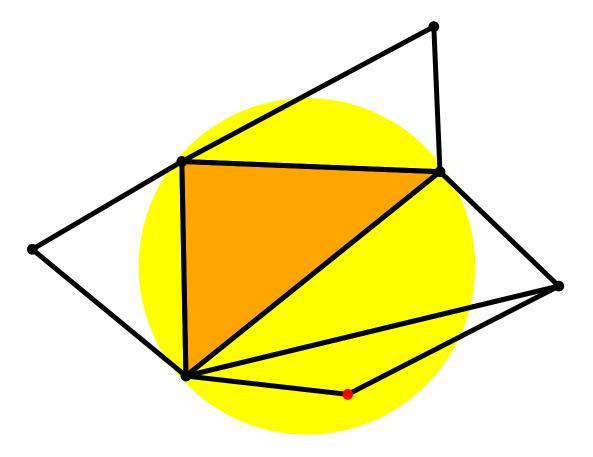






Delaunay maximizes the sequence of angles in lexicographic order

Local optimality vs global optimality

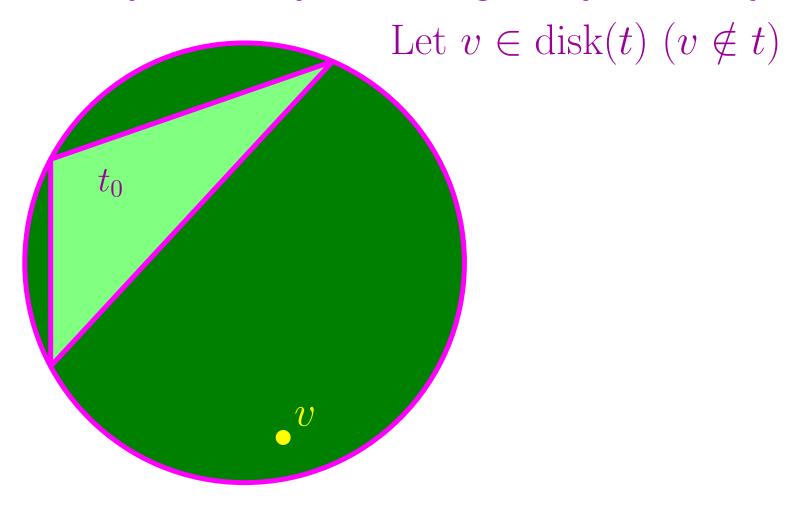


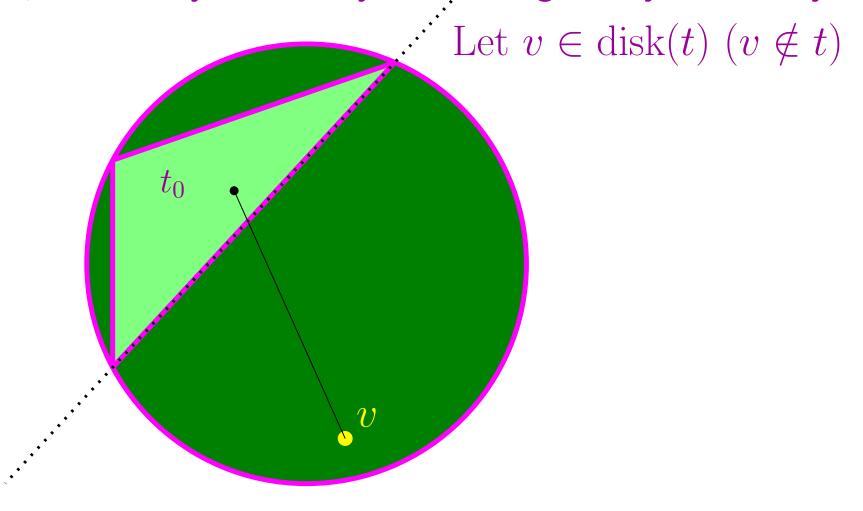
highlighted triangle is only locally Delaunay

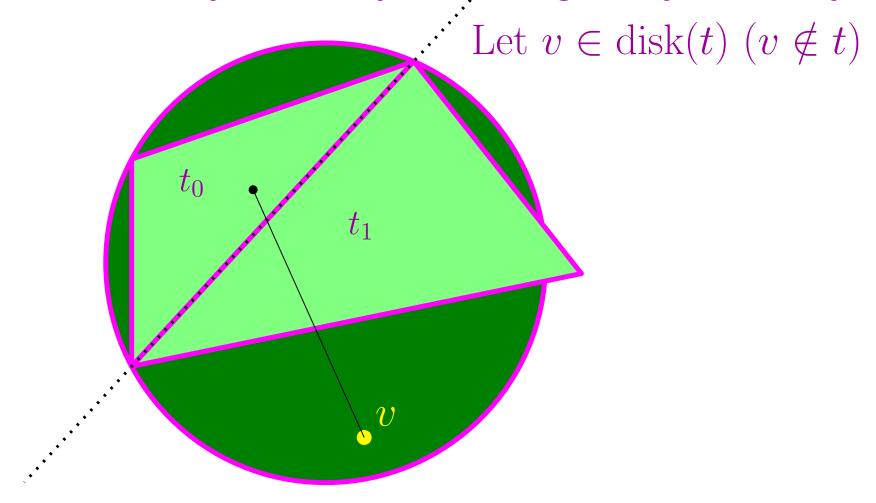
Theorem

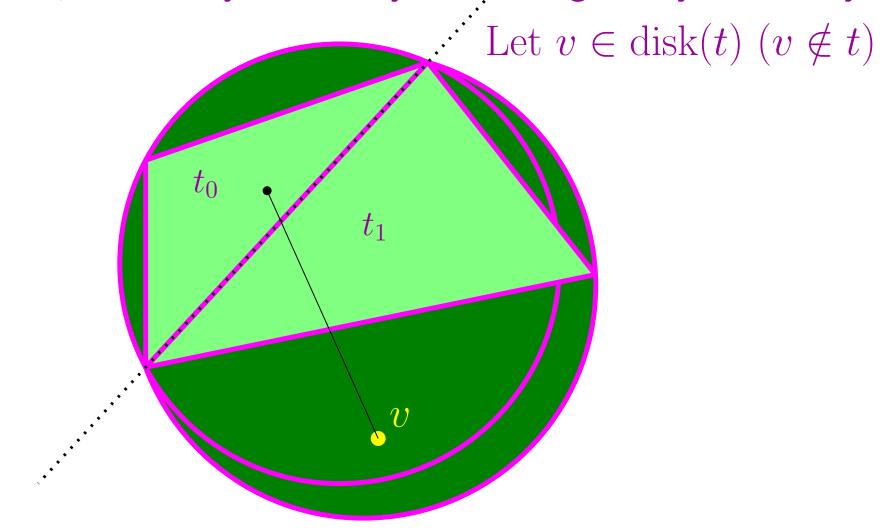
Locally Delaunay everywhere

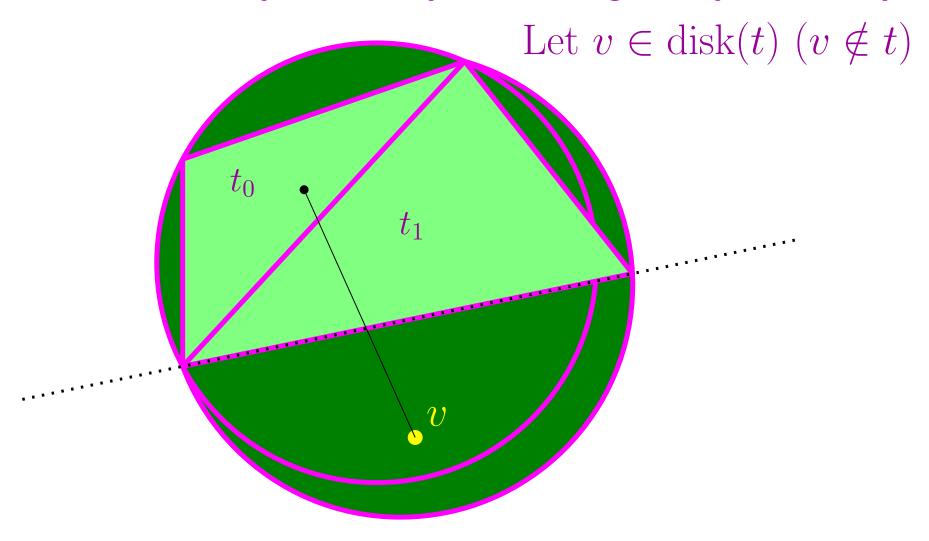
Globally Delaunay



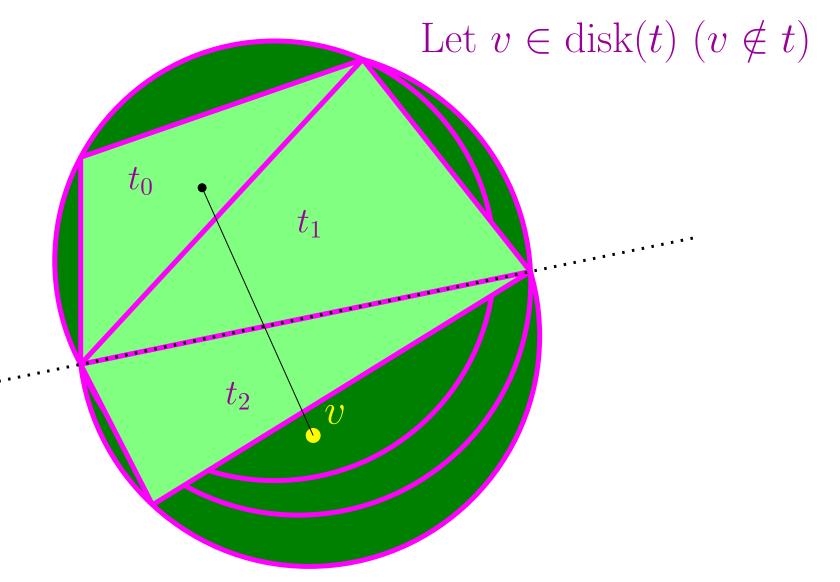








Let t_0 be locally Delaunay, but not globally Delaunay



Since \exists finitely many triangles, at some point v is a vertex of t_i

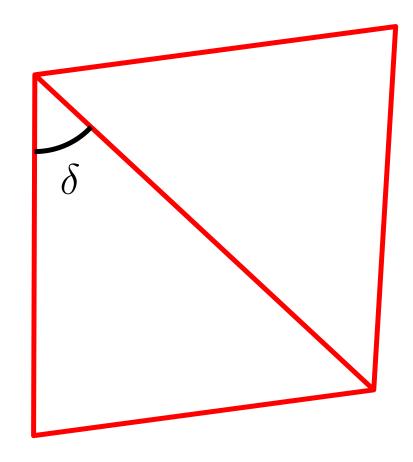
Local optimality and smallest angle Case of 4 points

Lemma:

For any 4 points in convex position,

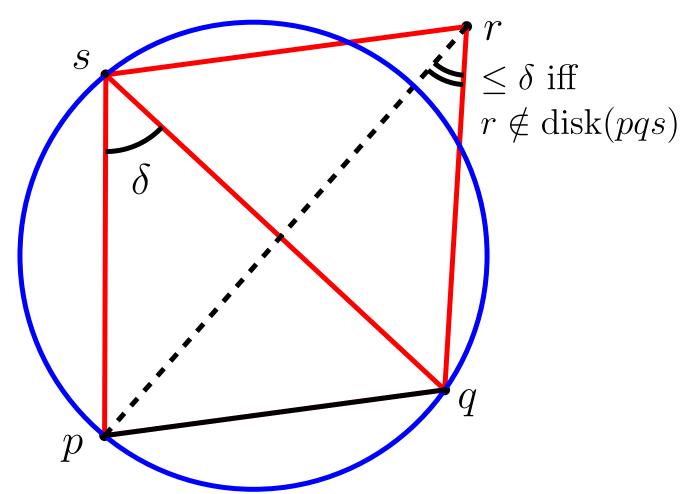
Delaunay \iff smallest angle maximized

Local optimality and smallest angle Case of 4 points



Let δ be the smallest angle

Local optimality and smallest angle Case of 4 points



Let δ be the smallest angle

Algorithm for making a triangulation Delaunay

while ∃ pairs of adjacent triangles that are not locally Delaunay pick an arbitrary pair and flip common edge

Algorithm for making a triangulation Delaunay

while ∃ pairs of adjacent triangles that are not locally Delaunay pick an arbitrary pair and flip common edge

Theorem: whatever the choice of order on pairs, the algorithm terminates

- \rightarrow proof: each flip increases smallest angle in quad \Rightarrow cannot be undone
- → output is (globally) Delaunay

Algorithm for making a triangulation Delaunay

while ∃ pairs of adjacent triangles that are not locally Delaunay pick an arbitrary pair and flip common edge

Theorem: whatever the choice of order on pairs, the algorithm terminates

- \rightarrow proof: each flip increases smallest angle in quad \Rightarrow cannot be undone
- → output is (globally) Delaunay

does not work in higher dimensions (several types of flips possible)

Theorem
Delaunay ⇒ maximum smallest angle

Theorem Delaunay \Rightarrow maximum smallest angle

Proof: Let T triangulation

Theorem Delaunay \Rightarrow maximum smallest angle

Proof: Let T triangulation

Apply flipping algorithm on ${\cal T}$

→ output is Delaunay

Theorem

Delaunay ⇒ maximum smallest angle

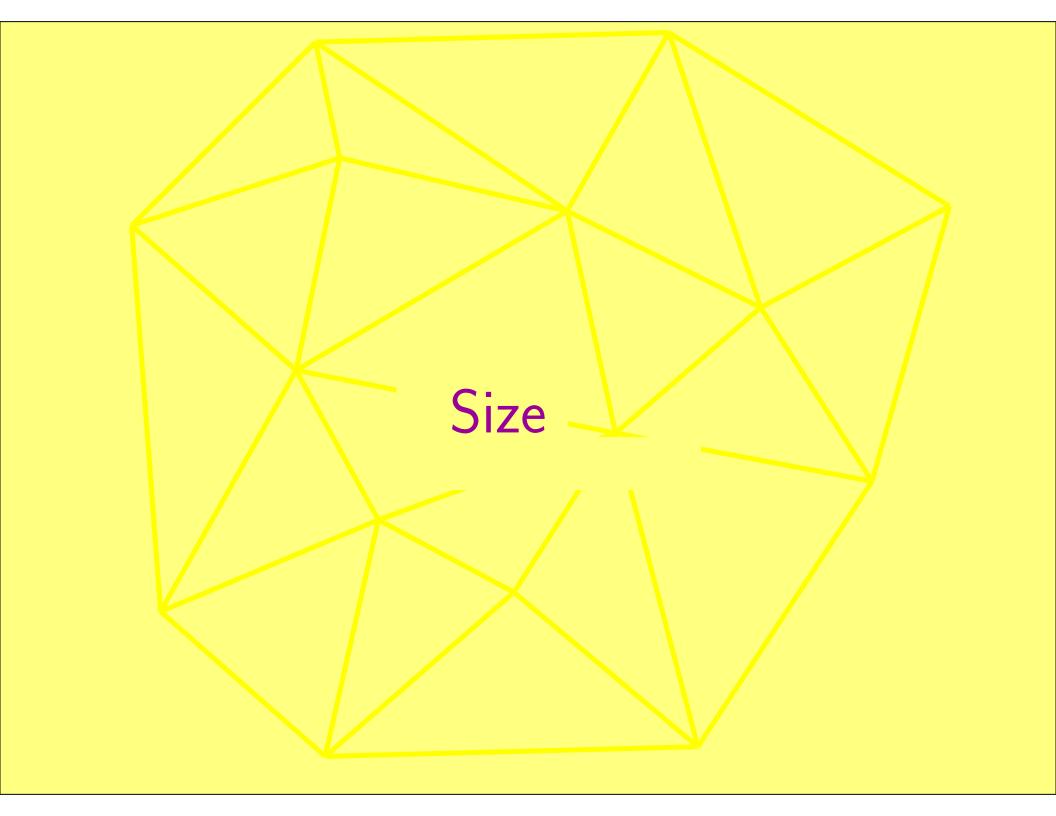
Proof: Let T triangulation

Apply flipping algorithm on ${\cal T}$

→ output is Delaunay

Each flip increases angles within quadrangle

→ output has larger smallest angle

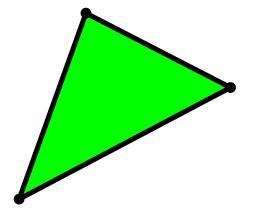


f: number of facets (except ∞)

e: number of edges

v: number of vertices

$$f - e + v = 1$$

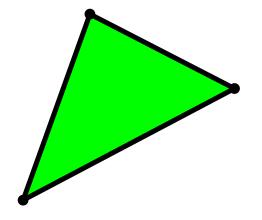


f: number of facets (except ∞)

e: number of edges

v: number of vertices

$$f - e + v = 1$$



$$1 - 3 + 3 = 1$$

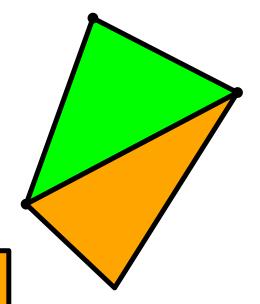
f: number of facets (except ∞)

e: number of edges

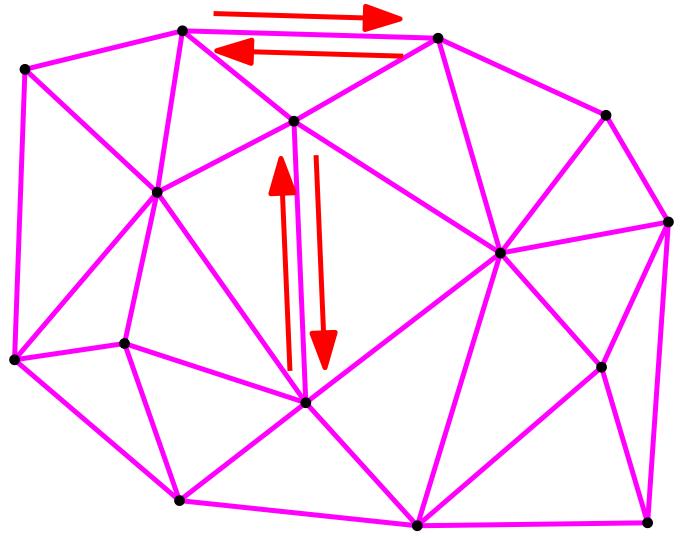
v: number of vertices

$$f - e + v = 1$$

$$+1 - 2 + 1 = +0$$



k: size of ∞ facet



number of oriented edges in a triangulation: 2e = 3f + k

$$f - e + v = 1$$

Triangulation

$$2e = 3f + k$$

$$f = 2v - 2 - k = O(v)$$

$$e = 3v - 3 - k = O(v)$$

$$f - e + v = 1$$

Triangulation

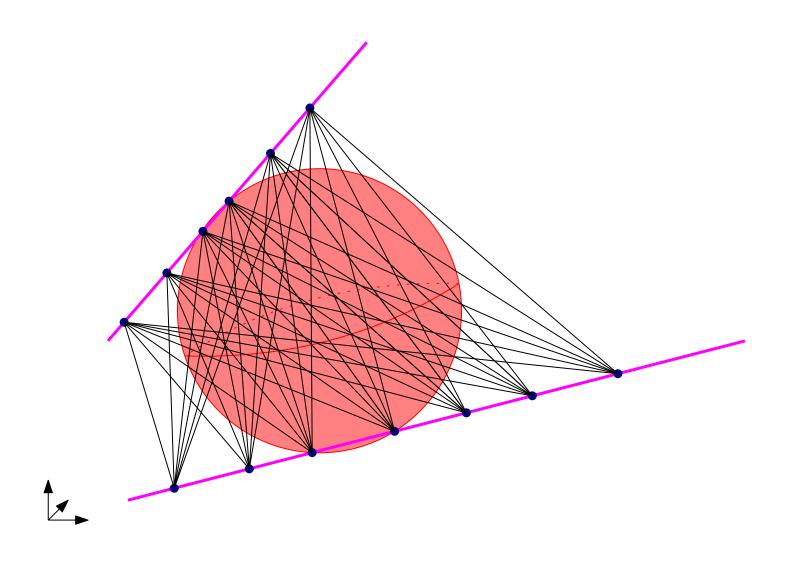
$$2e = 3f + k$$

2D Delaunay has linear size

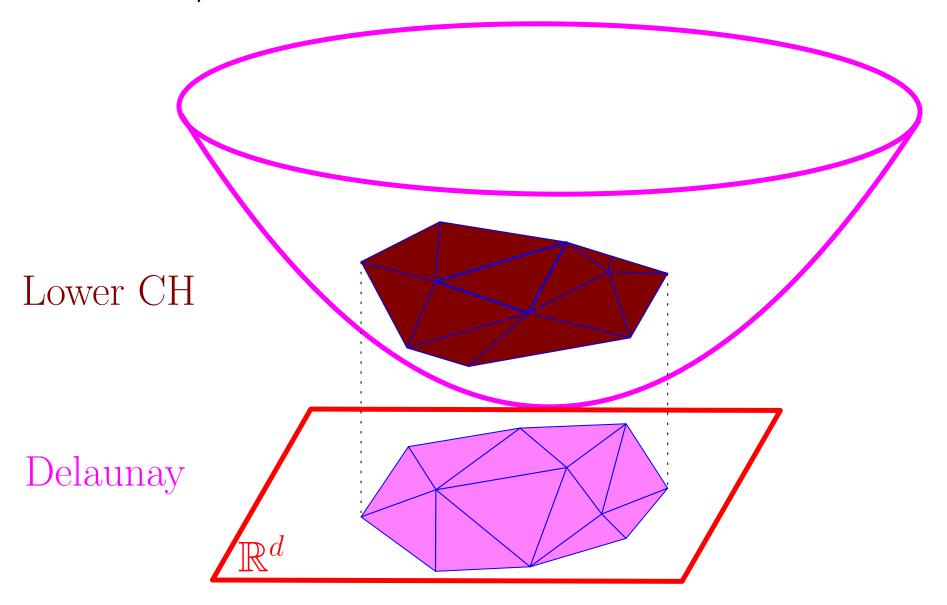
$$f = 2v - 2 - k = O(v)$$

$$e = 3v - 3 - k = O(v)$$

3D Delaunay can have quadratic size

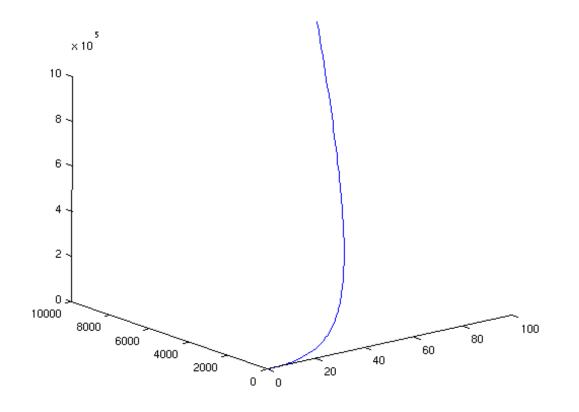


point / sphere lifting

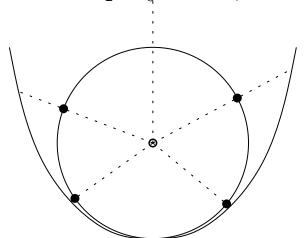


• By point/sphere lifting, $|\mathrm{Del}(P)| = |\mathrm{Conv}(P^*)| = O(|P|^{\lfloor \frac{d+1}{2} \rfloor}) = O(|P|^{\lceil \frac{d}{2} \rceil})$

- By point/sphere lifting, $|\mathrm{Del}(P)| = |\mathrm{Conv}(P^*)| = O(|P|^{\lfloor \frac{d+1}{2} \rfloor}) = O(|P|^{\lceil \frac{d}{2} \rceil})$
- When d is even, point set P on moments curve $t \mapsto (t, t^2, t^3, \dots, t^d)$ yields $|\mathrm{Del}(P)| \ge |\mathrm{Conv}(P)| = \Omega(|P|^{\lfloor \frac{d}{2} \rfloor}) = \Omega(|P|^{\lceil \frac{d}{2} \rceil}).$

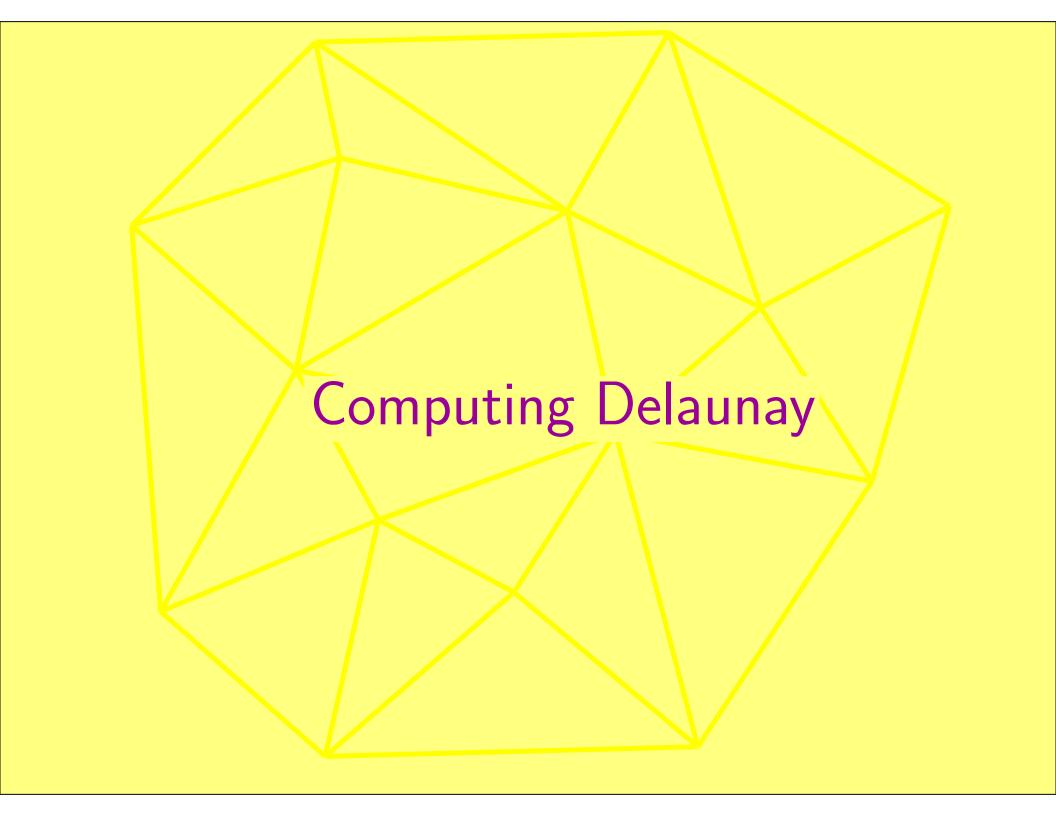


- By point/sphere lifting, $|\mathrm{Del}(P)| = |\mathrm{Conv}(P^*)| = O(|P|^{\lfloor \frac{d+1}{2} \rfloor}) = O(|P|^{\lceil \frac{d}{2} \rceil})$
- When d is even, point set P on moments curve $t \mapsto (t, t^2, t^3, \dots, t^d)$ yields $|\mathrm{Del}(P)| \ge |\mathrm{Conv}(P)| = \Omega(|P|^{\lfloor \frac{d}{2} \rfloor}) = \Omega(|P|^{\lceil \frac{d}{2} \rceil}).$
- When d is odd, take point set P^* on trigonometric curve $t \mapsto \frac{2}{d+1}(\cos t, \sin t, \cos 2t, \sin 2t, \cdots, \cos \frac{d+1}{2}t, \sin \frac{d+1}{2}t) \in \mathbb{S}^d \subset \mathbb{R}^{d+1}$ yields $|\operatorname{Conv}(P^*)| = \Omega(|P^*|^{\lfloor \frac{d+1}{2} \rfloor}) = \Omega(|P^*|^{\lceil \frac{d}{2} \rceil}).$
- \rightarrow map P^* onto unit paraboloid via radial projection, then down to $P \subset \mathbb{R}^d$.



- By point/sphere lifting, $|\mathrm{Del}(P)| = |\mathrm{Conv}(P^*)| = O(|P|^{\lfloor \frac{d+1}{2} \rfloor}) = O(|P|^{\lceil \frac{d}{2} \rceil})$
- When d is even, point set P on moments curve $t \mapsto (t, t^2, t^3, \dots, t^d)$ yields $|\mathrm{Del}(P)| \geq |\mathrm{Conv}(P)| = \Omega(|P|^{\lfloor \frac{d}{2} \rfloor}) = \Omega(|P|^{\lceil \frac{d}{2} \rceil}).$
- When d is odd, take point set P^* on trigonometric curve $t \mapsto \frac{2}{d+1}(\cos t, \sin t, \cos 2t, \sin 2t, \cdots, \cos \frac{d+1}{2}t, \sin \frac{d+1}{2}t) \in \mathbb{S}^d \subset \mathbb{R}^{d+1}$ yields $|\operatorname{Conv}(P^*)| = \Omega(|P^*|^{\lfloor \frac{d+1}{2} \rfloor}) = \Omega(|P^*|^{\lceil \frac{d}{2} \rceil}).$
- \rightarrow map P^* onto unit paraboloid via radial projection, then down to $P \subset \mathbb{R}^d$.

Size of Delaunay of n points in \mathbb{R}^d : $\Theta(n^{\lceil \frac{a}{2} \rceil})$



- 1. Lift P to \mathbb{R}^{d+1} and compute lower convex hull there
- \rightarrow direct extension of Graham's algorithm ([H.-P. Seidel]): $O(n^{\lceil \frac{d+1}{2} \rceil} + n \log n)$
- \rightarrow randomized incremental algorithm ([Clarkson, Shor]): exp. $O(n^{\lceil \frac{d}{2} \rceil} + n \log n)$
- \rightarrow de-randomized incremental algorithm ([Chazelle]): $O(n^{\lceil \frac{d}{2} \rceil} + n \log n)$

- 1. Lift P to \mathbb{R}^{d+1} and compute lower convex hull there
- 2. Incremental algorithm ([Boissonnat et al.])
 - $\rightarrow O(n^{\lceil \frac{d+1}{2} \rceil} + n \log n)$ with deterministic point insertion order
 - \rightarrow exp. $O(n^{\lceil \frac{d}{2} \rceil} + n \log n)$ with randomized point insertion order

- 1. Lift P to \mathbb{R}^{d+1} and compute lower convex hull there
- 2. Incremental algorithm ([Boissonnat et al.])
- 3. Divide-and-conquer algorithm [Guibas, Stolfi]
 - \rightarrow only in the plane or in 3-space
 - \rightarrow optimal $O(n \log n)$ in the plane and $O(n^2)$ in \mathbb{R}^3

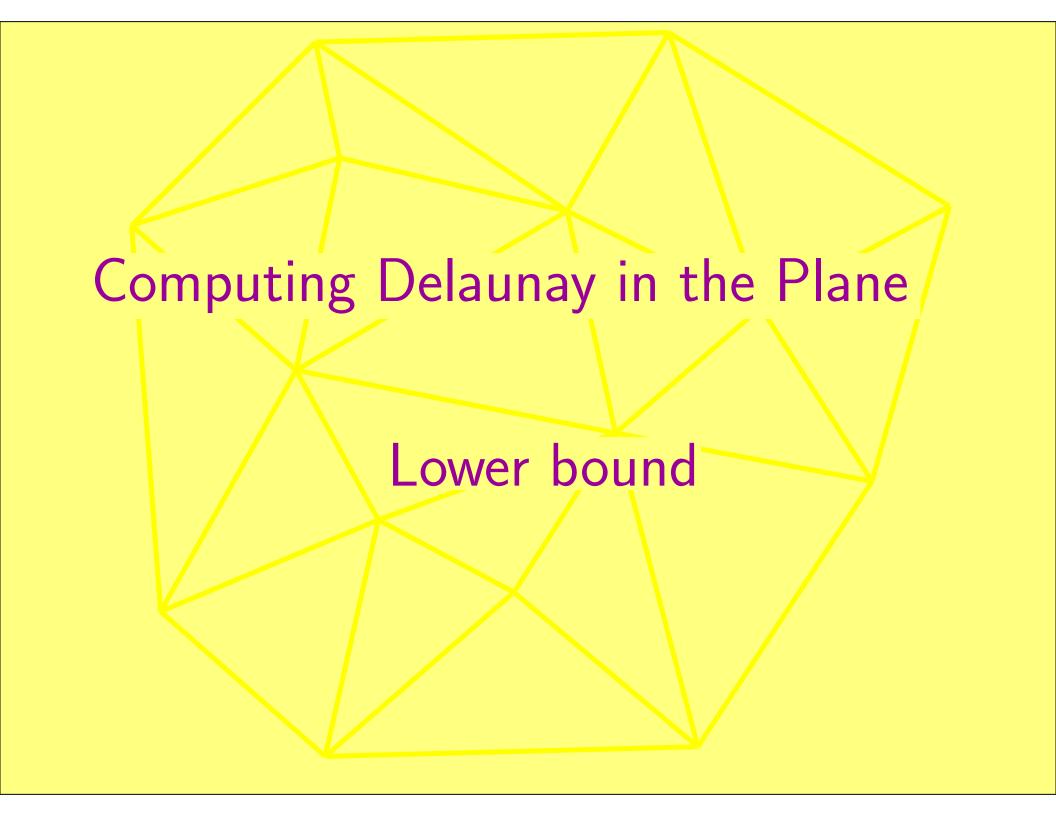
- 1. Lift P to \mathbb{R}^{d+1} and compute lower convex hull there
- 2. Incremental algorithm ([Boissonnat et al.])
- 3. Divide-and-conquer algorithm [Guibas, Stolfi]
- 4. Plane-sweep algorithm [Fortune]
 - \rightarrow in the plane only
 - \rightarrow computes Voronoi diagram
 - \rightarrow optimal $O(n \log n)$ time

1. Lift P to \mathbb{R}^{d+1} and compute lower convex hull there

2. Incremental algorithm ([Boissonnat et al.])

(today)

- 3. Divide-and-conquer algorithm [Guibas, Stolfi]
- 4. Plane-sweep algorithm [Fortune]



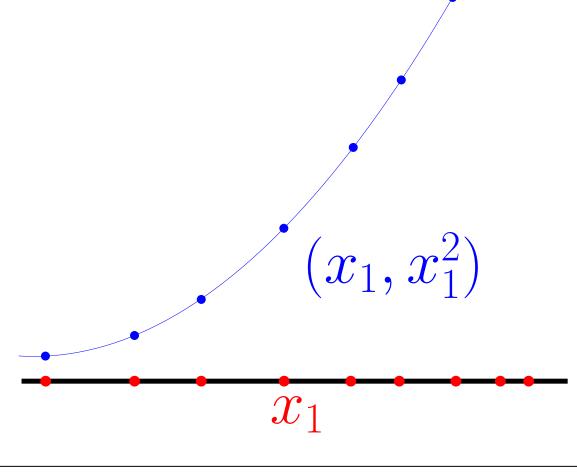
Delaunay can be used to sort numbers

Delaunay can be used to sort numbers

Let $x_1, x_2, \ldots, x_n \in \mathbb{R}$, to be sorted

Let $x_1, x_2, \ldots, x_n \in \mathbb{R}$, to be sorted

$$(x_1,x_1^2),\ldots,(x_n,x_n^2)$$
 n points

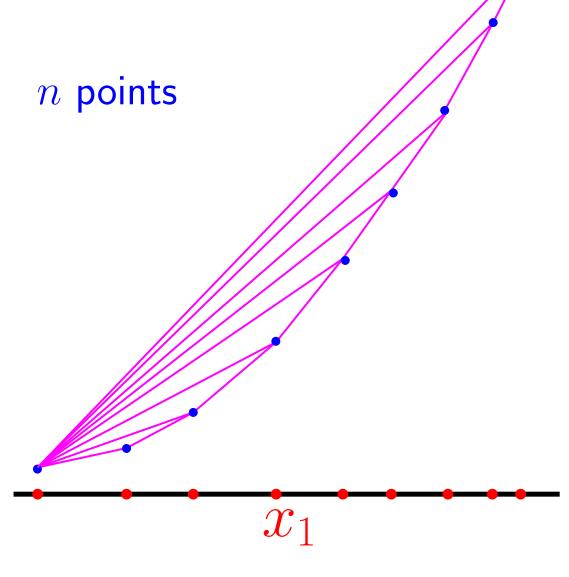


Let $x_1, x_2, \ldots, x_n \in \mathbb{R}$, to be sorted

$$(x_1,x_1^2),\ldots,(x_n,x_n^2)$$
 n points

Delaunay

 \rightarrow order in x



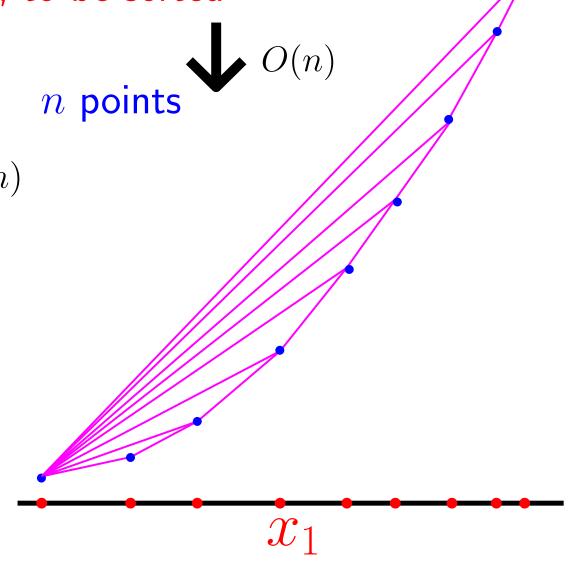
Let $x_1, x_2, \ldots, x_n \in \mathbb{R}$, to be sorted

$$(x_1,x_1^2),\ldots,(x_n,x_n^2)$$
 n points

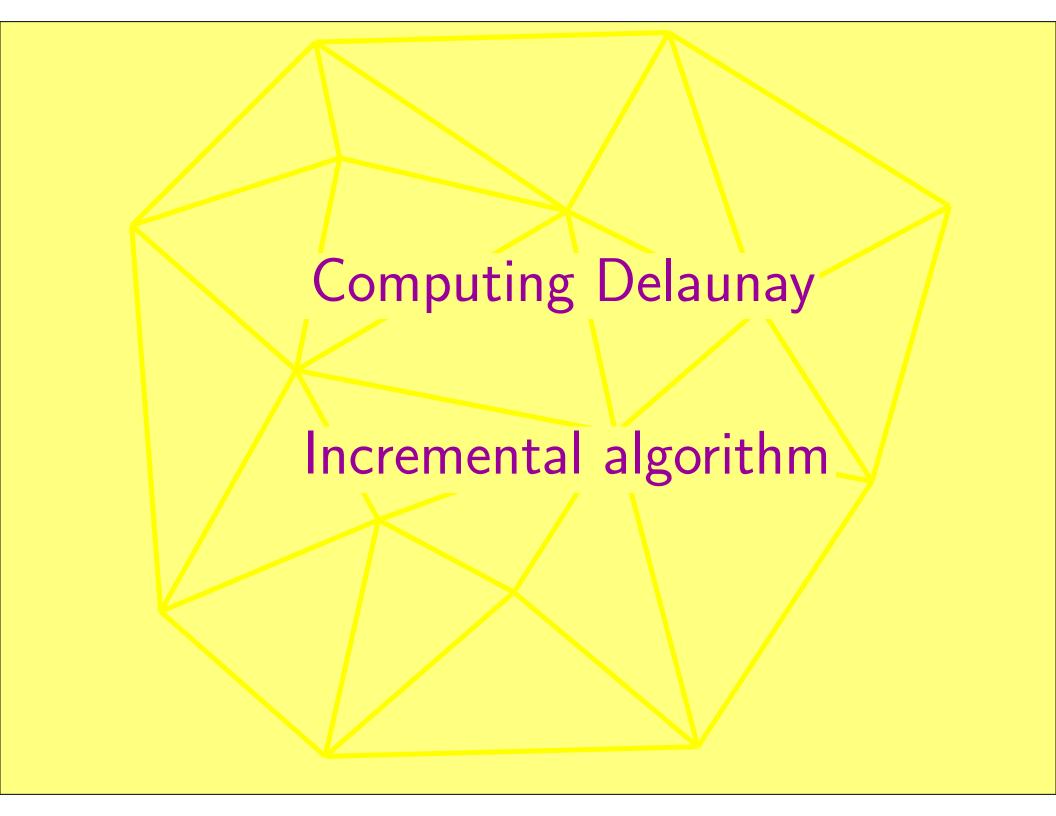
Delaunay f(n)

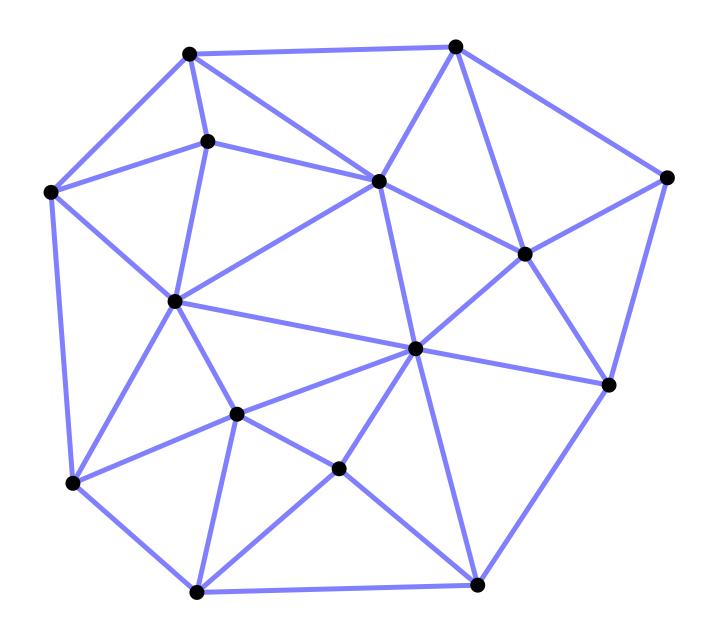
 \rightarrow order in x

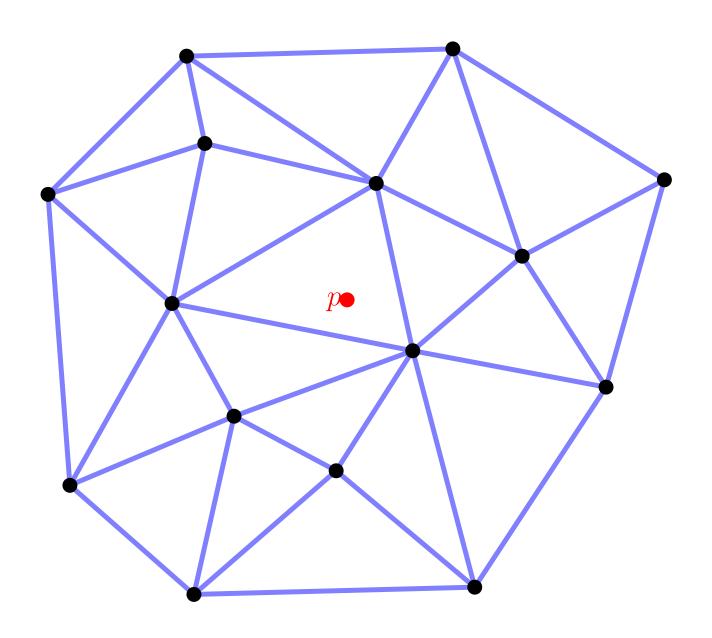
$$O(n) + f(n) \in \Omega(n \log n)$$



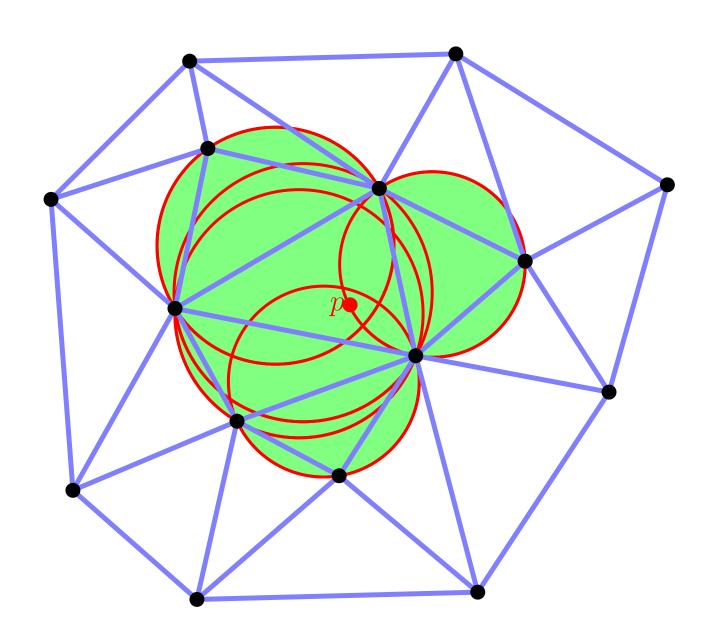
$$\Rightarrow f(n) \in \Omega(n \log n)$$

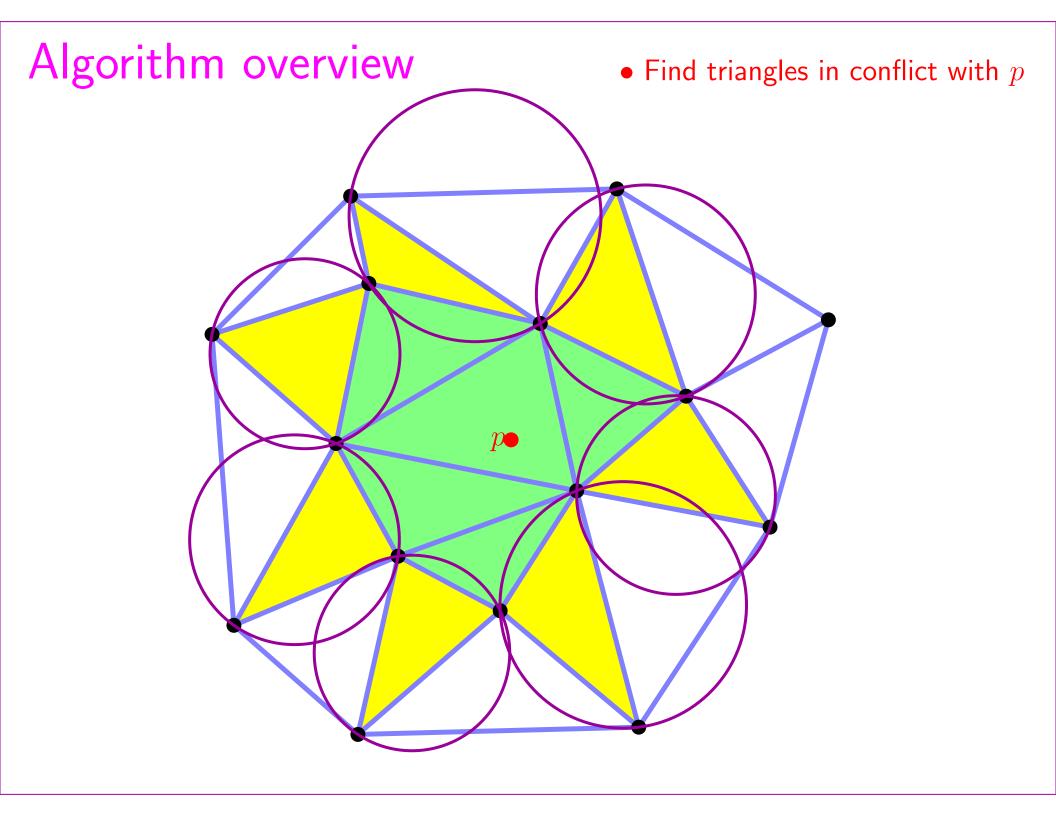




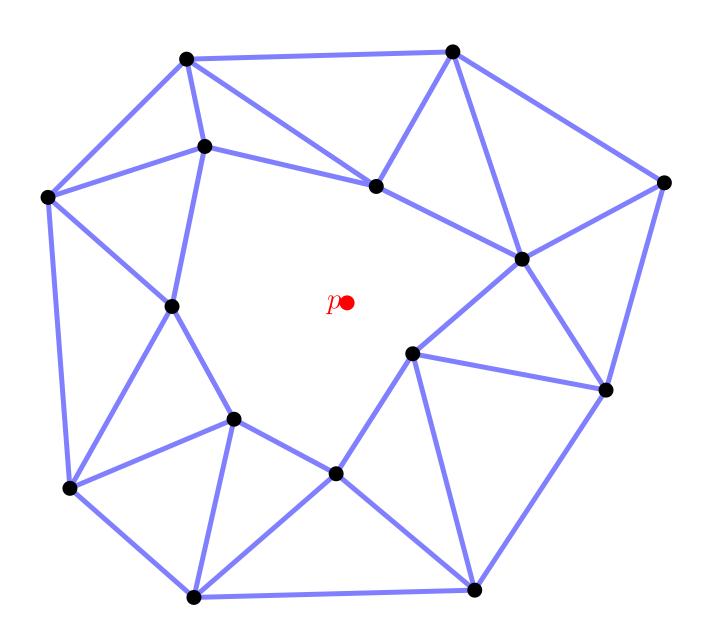


ullet Find triangles in conflict with p

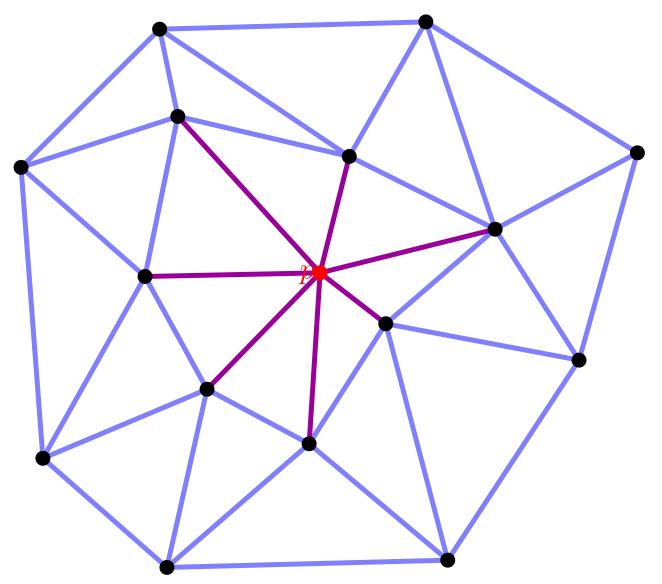




- ullet Find triangles in conflict with p
- Delete triangles in conflict

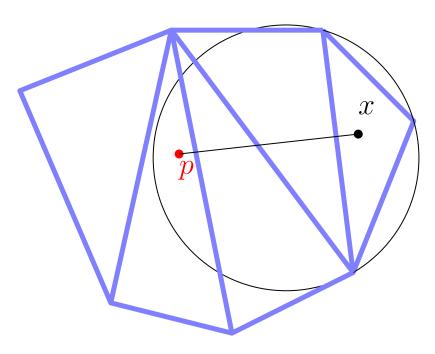


- ullet Find triangles in conflict with p
- Delete triangles in conflict
- ullet Re-triangulate hole w.r.t. p



Why it works

Property 1: the conflict zone is starred with respect to p (hence connected)



 $\forall x \in \text{conflict zone, all triangles intersected by } [p, x] \text{ are in conflict with } p$

(same proof as for locally Del. \Rightarrow globally Del.)

Why it works

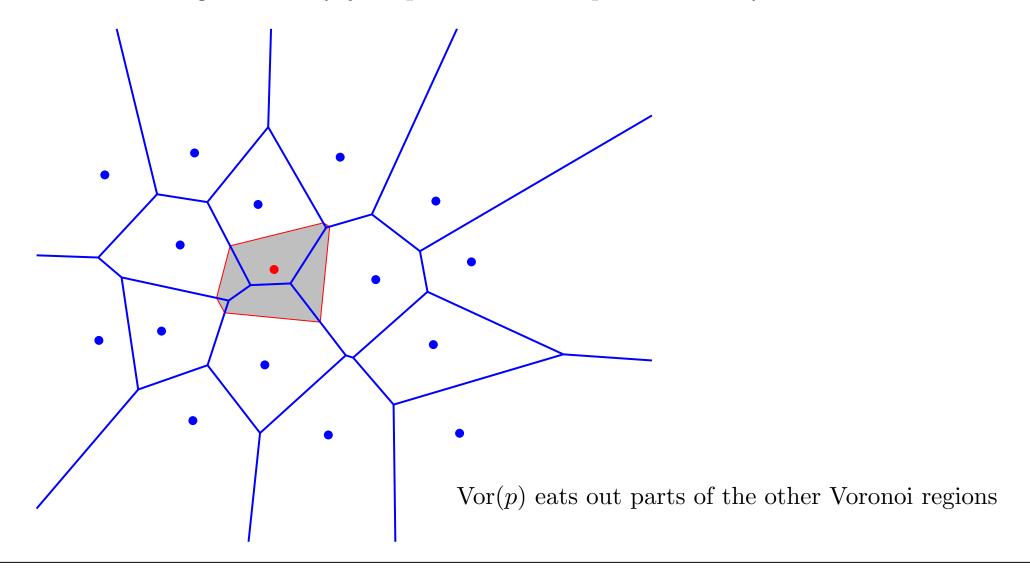
Property 1: the conflict zone is starred with respect to p (hence connected)

- \rightarrow can be computed by a traversal in the dual graph from some $\sigma \ni p$
- \rightarrow can be re-triangulated by join products $p * \sigma$ for each σ on its boundary

Why it works

Property 3: every new Delaunay simplex is incident to p

 \rightarrow re-triangulation by join products with p is Delaunay



Complexity analysis

 $n \text{ points} \Rightarrow n \text{ insertions}$, each of which is composed of:

- locate: O(n) naive, $O(n^{1/d})$ with random line walk, $O(\log n)$ with hierarchy.
- bfs in conflict zone: $O(d_i)$, where d_i is the number of deleted cells at i-th iteration.
- star conflict zone: $O(c_i)$, where c_i is the number of created cells at i-th iteration.
- \Rightarrow total complexity = $O(n \log n + \sum_{i=1}^{n} (c_i + d_i))$

Complexity analysis

 $n \text{ points} \Rightarrow n \text{ insertions}$, each of which is composed of:

- locate: O(n) naive, $O(n^{1/d})$ with random line walk, $O(\log n)$ with hierarchy.
- bfs in conflict zone: $O(d_i)$, where d_i is the number of deleted cells at i-th iteration.
- star conflict zone: $O(c_i)$, where c_i is the number of created cells at i-th iteration.

$$\Rightarrow$$
 total complexity = $O(n \log n + \sum_{i=1}^{n} (c_i + d_i))$

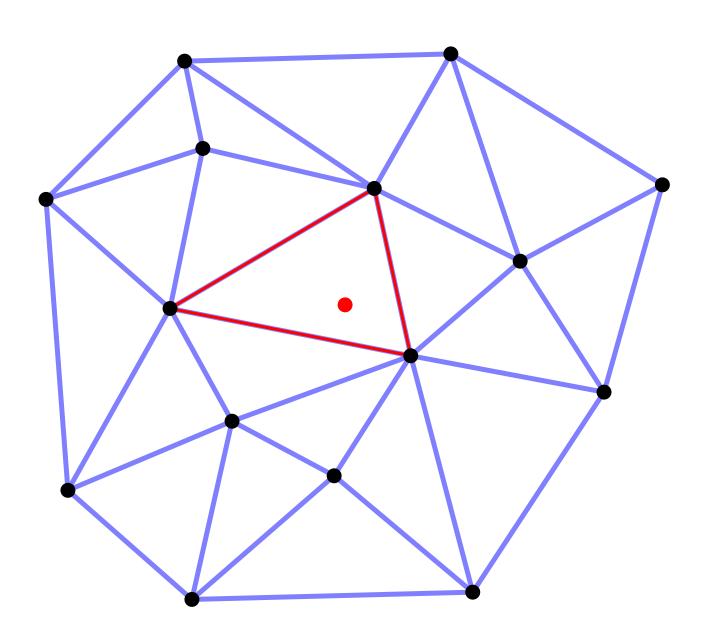
boundary of conflicts zone is homeomorphic to a (d-1)-sphere since the conflict zone is starred w.r.t. $p \Rightarrow c_i, d_i = O(i^{\lceil \frac{d-1}{2} \rceil})$ by a variant of Upper Bound Theorem [Stanley 75].

$$\Rightarrow$$
 total complexity = $O(n \log n + n^{\lceil \frac{d+1}{2} \rceil})$

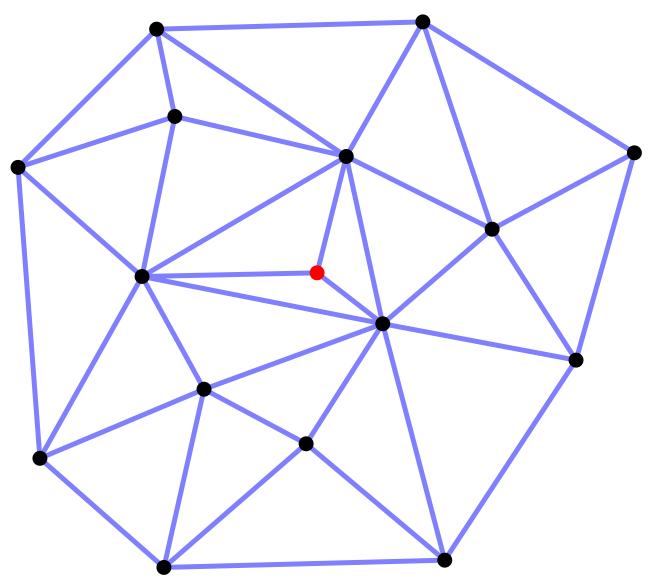
(sub-optimal in even dimensions only)

(can be improved to exp. $O(n \log n + n^{\lceil \frac{d}{2} \rceil})$ if random insertion order can be used)

• Locate point in triangulation

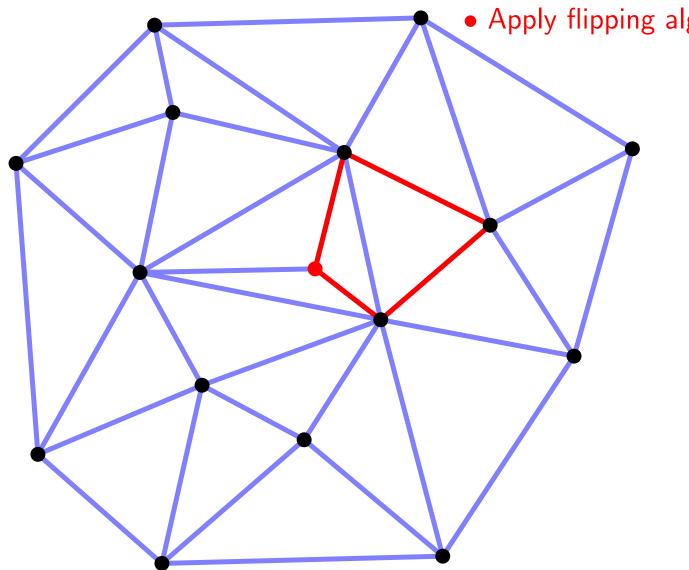


- Locate point in triangulation
- Star triangle



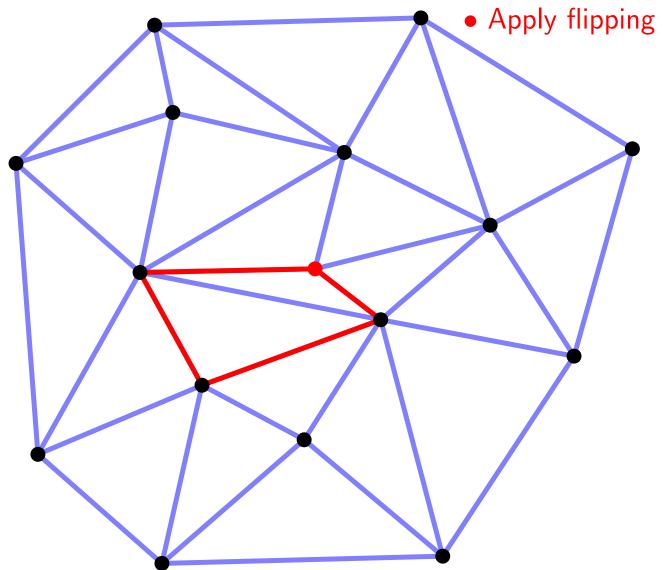
- Locate point in triangulation
- Star triangle

Apply flipping algorithm



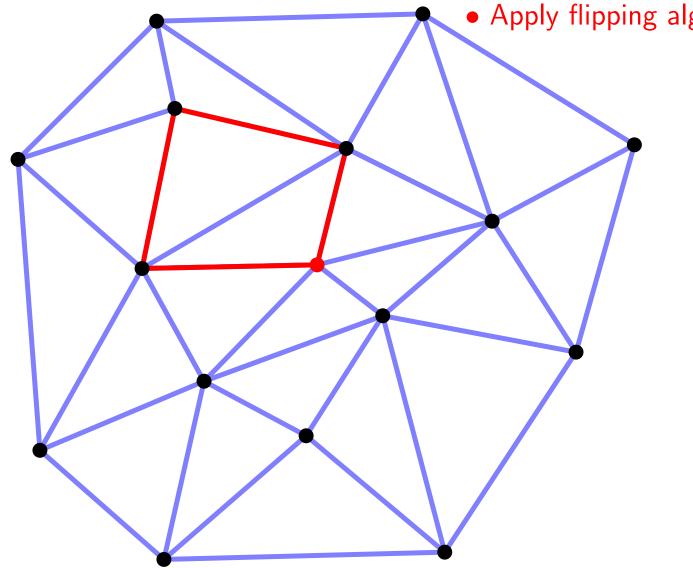
- Locate point in triangulation
- Star triangle

Apply flipping algorithm



- Locate point in triangulation
- Star triangle

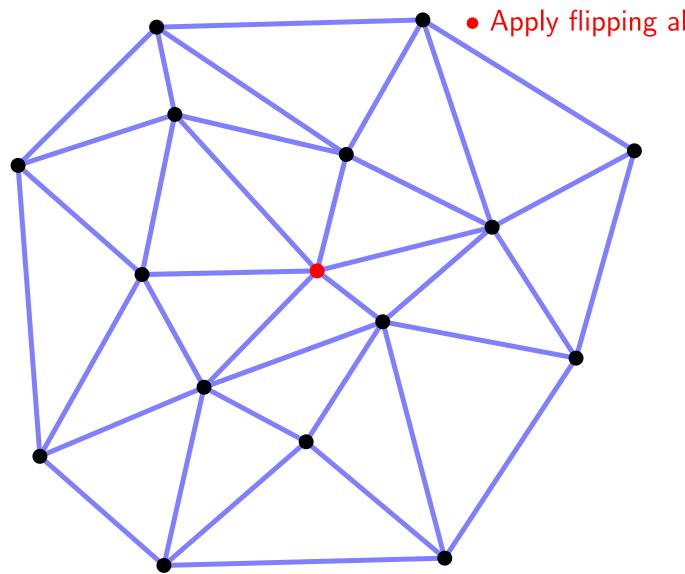
Apply flipping algorithm



The Guibas/Stolfi variant in 2D

- Locate point in triangulation
- Star triangle

Apply flipping algorithm



Computing Delaunay triangulations in the plane

Division – Fusion

L. J. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams. *ACM Trans. on Graphics*, 4(2):74–123, April 1985

Classical approach example: sort

Problem of size n

 \rightarrow division into 2 pbs of size O(n/2)

→ recursive call on sub-problems

 \rightarrow fusion

Classical approach example: sort

Problem of size n

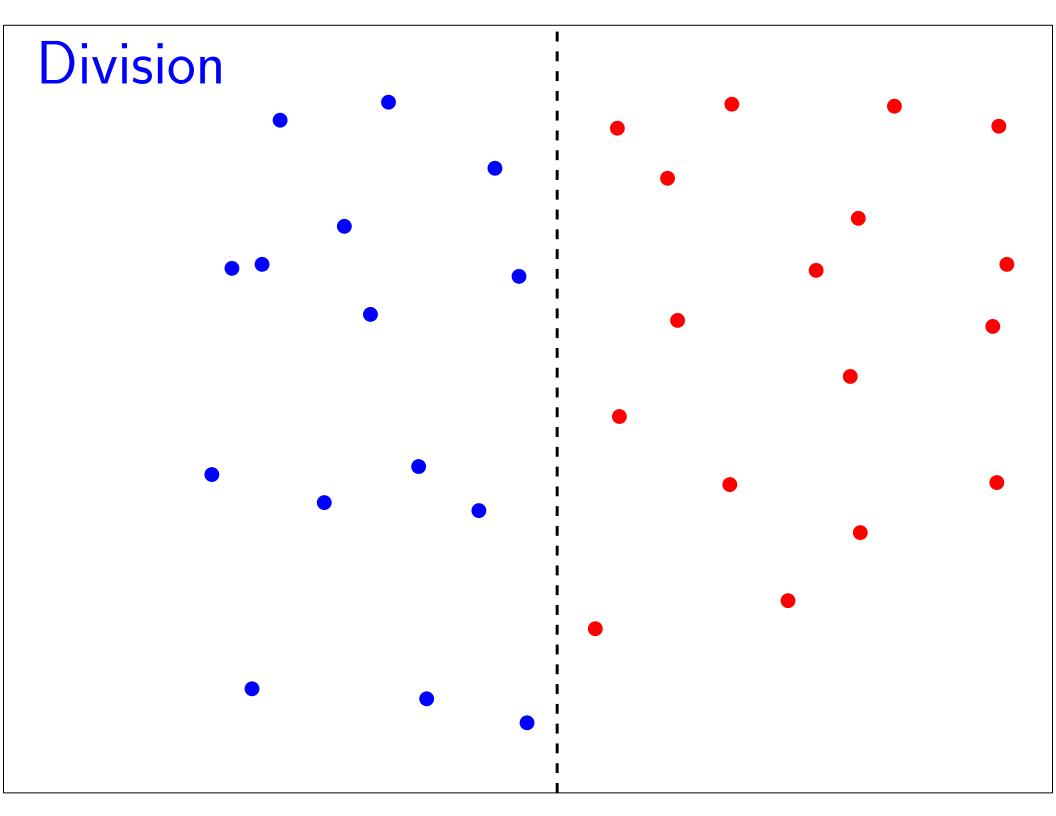
- \rightarrow division into 2 pbs of size O(n/2) O(n)
- \rightarrow recursive call on sub-problems $2 f\left(\frac{n}{2}\right)$
- \rightarrow fusion O(n)

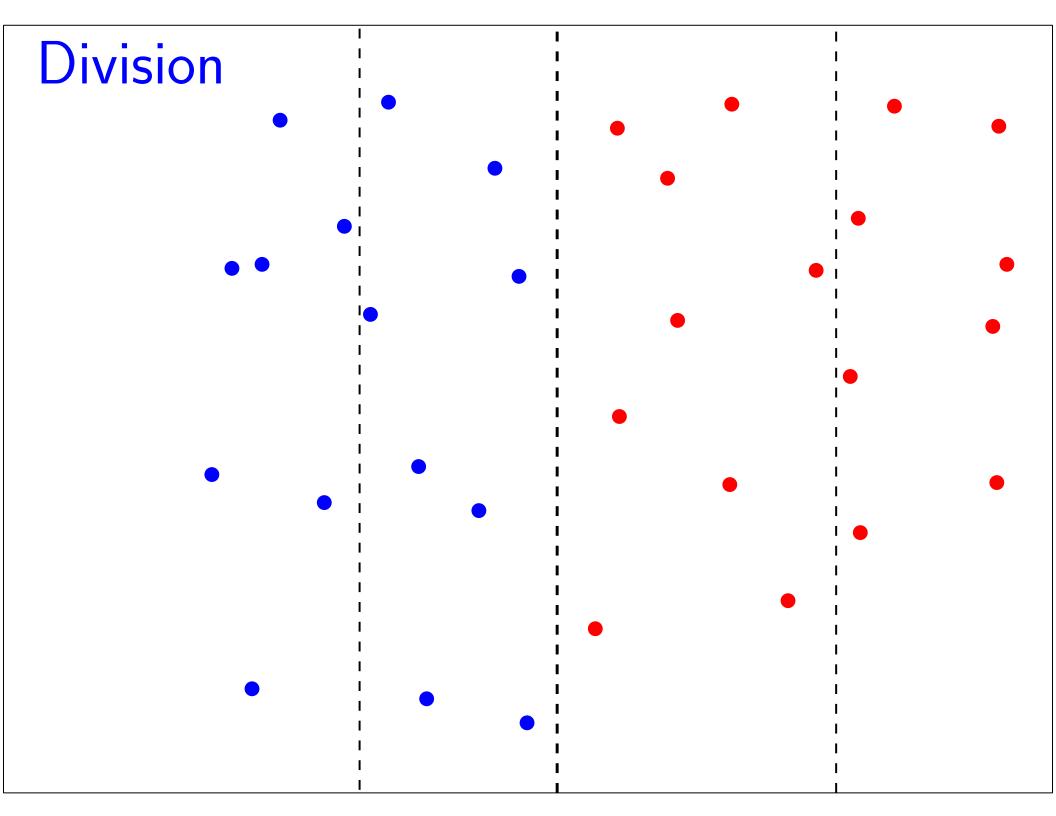
Classical approach example: sort

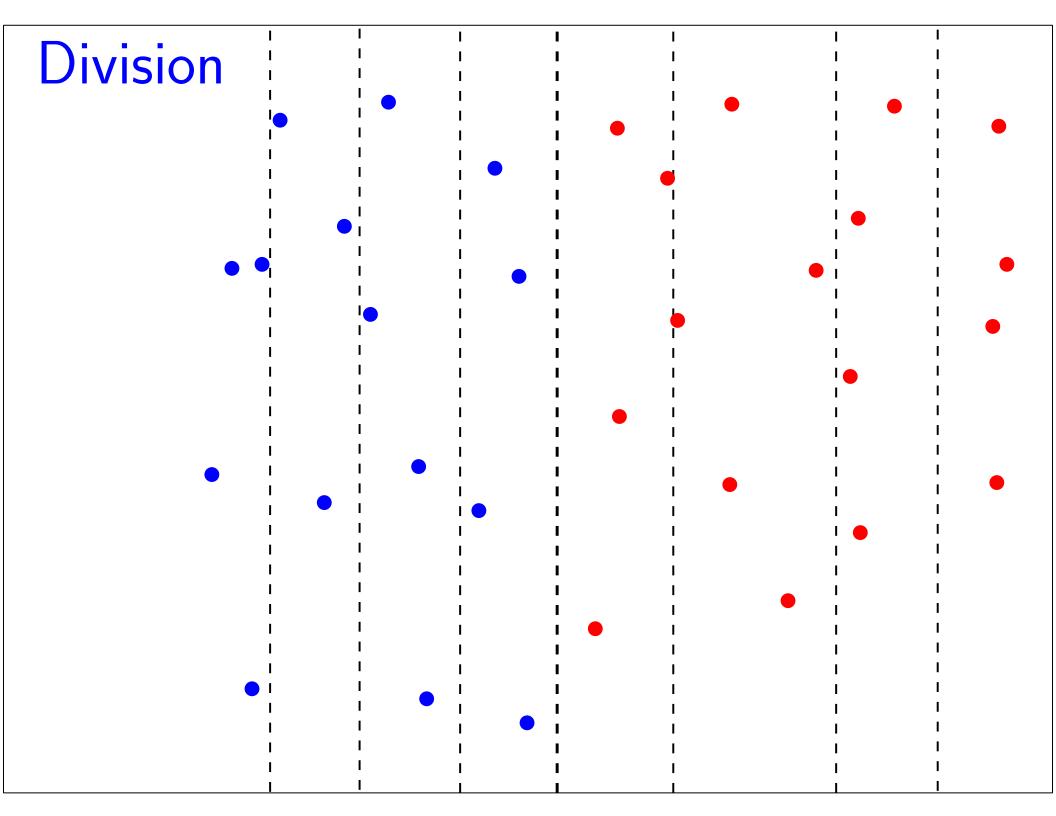
Problem of size n

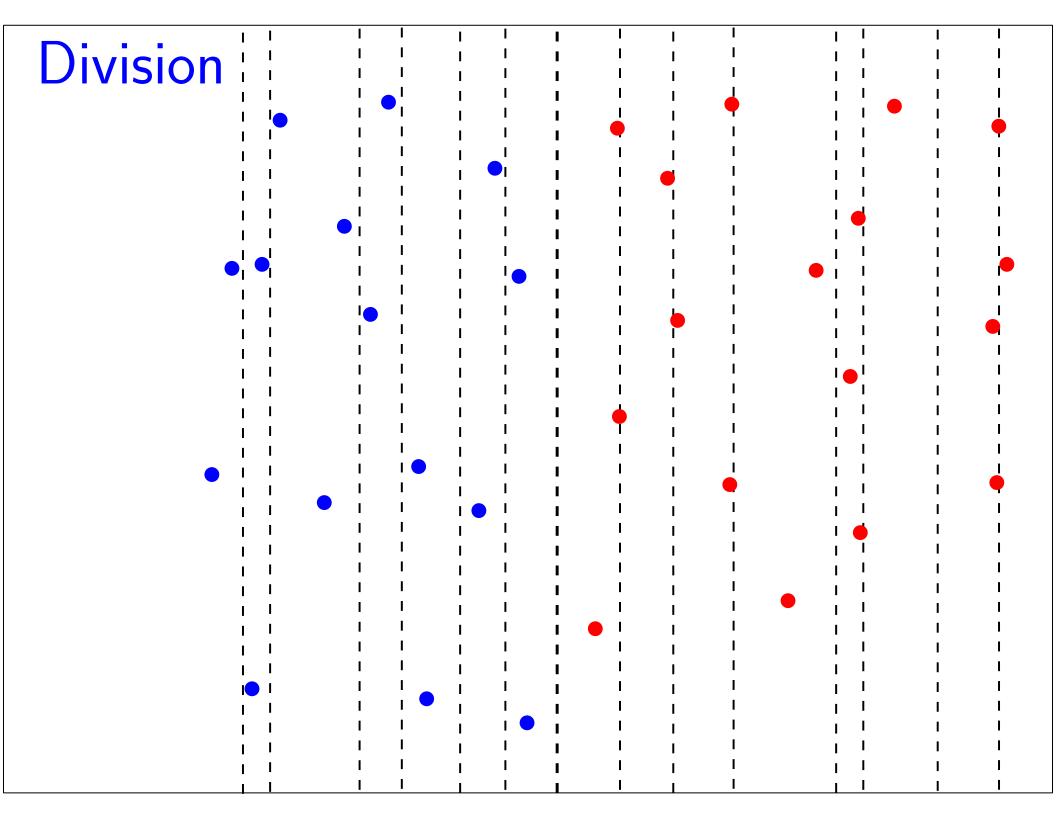
$$f(n) = O(n) + 2f\left(\frac{n}{2}\right)$$
$$= O(n\log n)$$

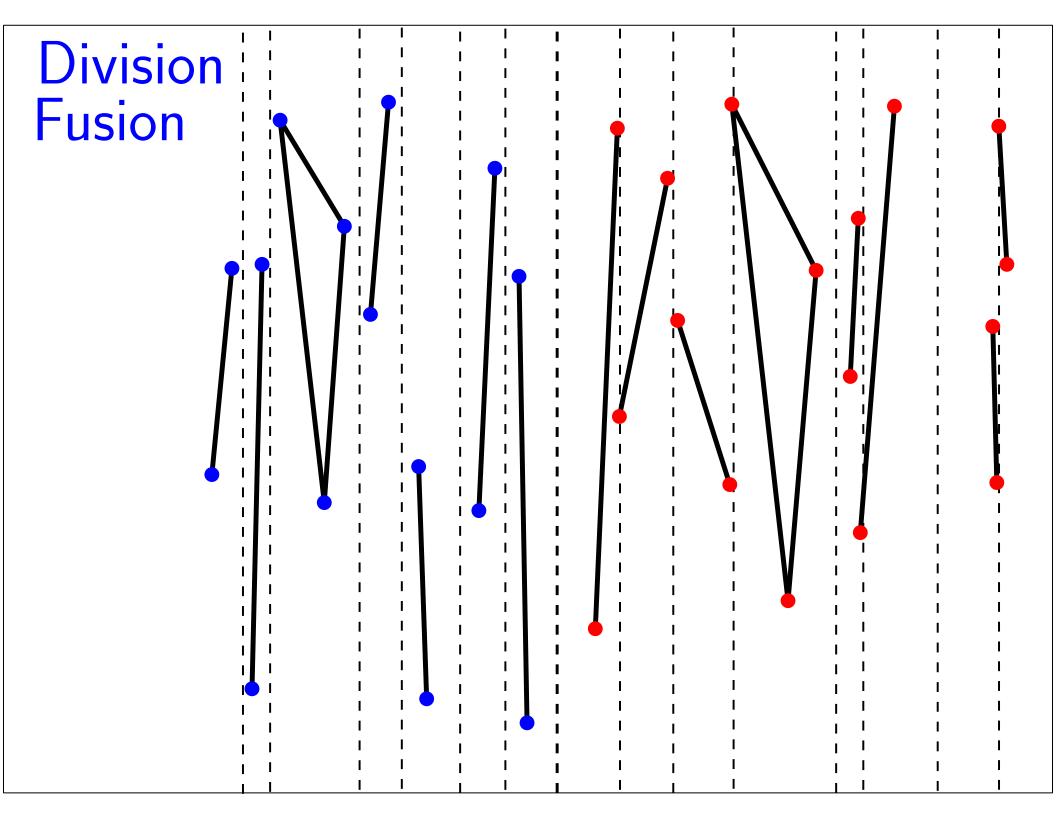
- \rightarrow division into 2 pbs of size O(n/2) O(n)
- \rightarrow recursive call on sub-problems $2 f\left(\frac{n}{2}\right)$
- \rightarrow fusion O(n)

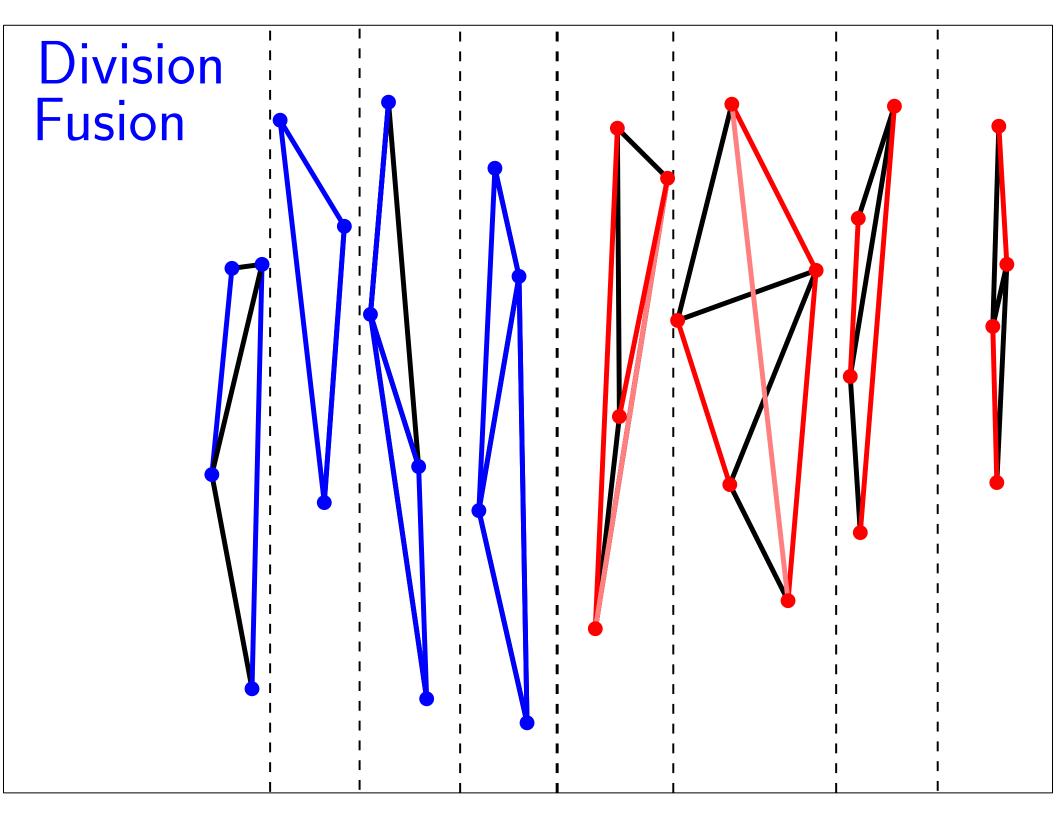


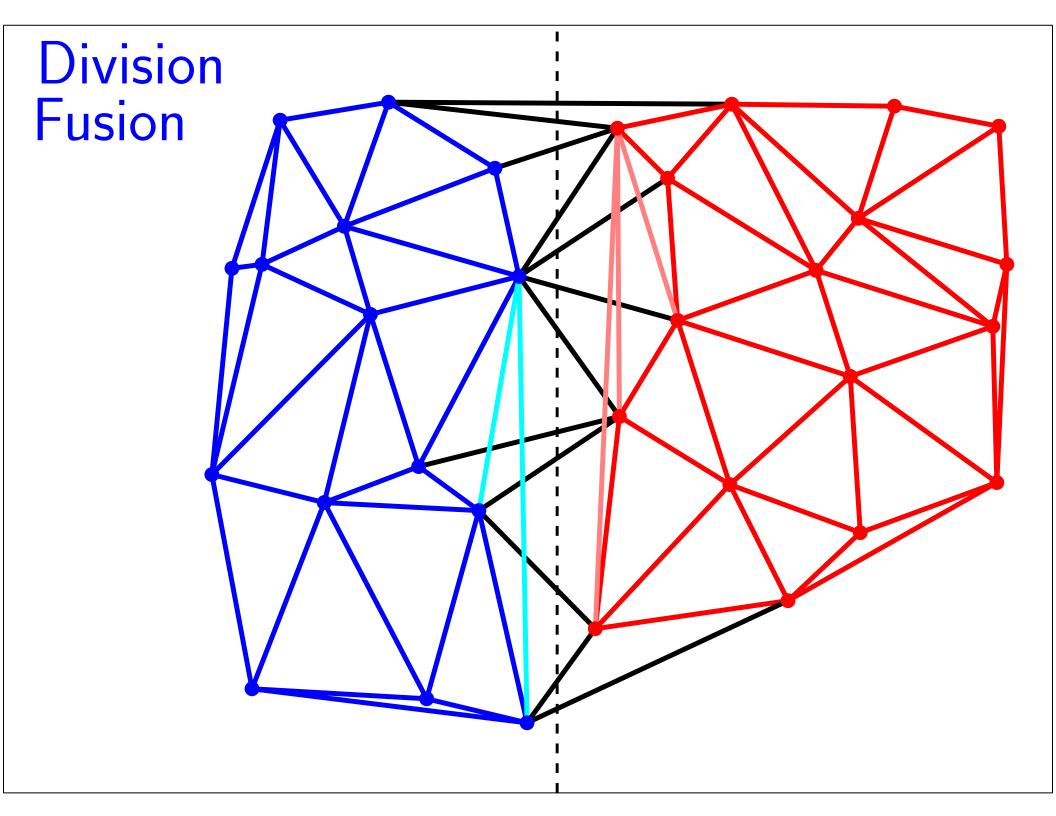


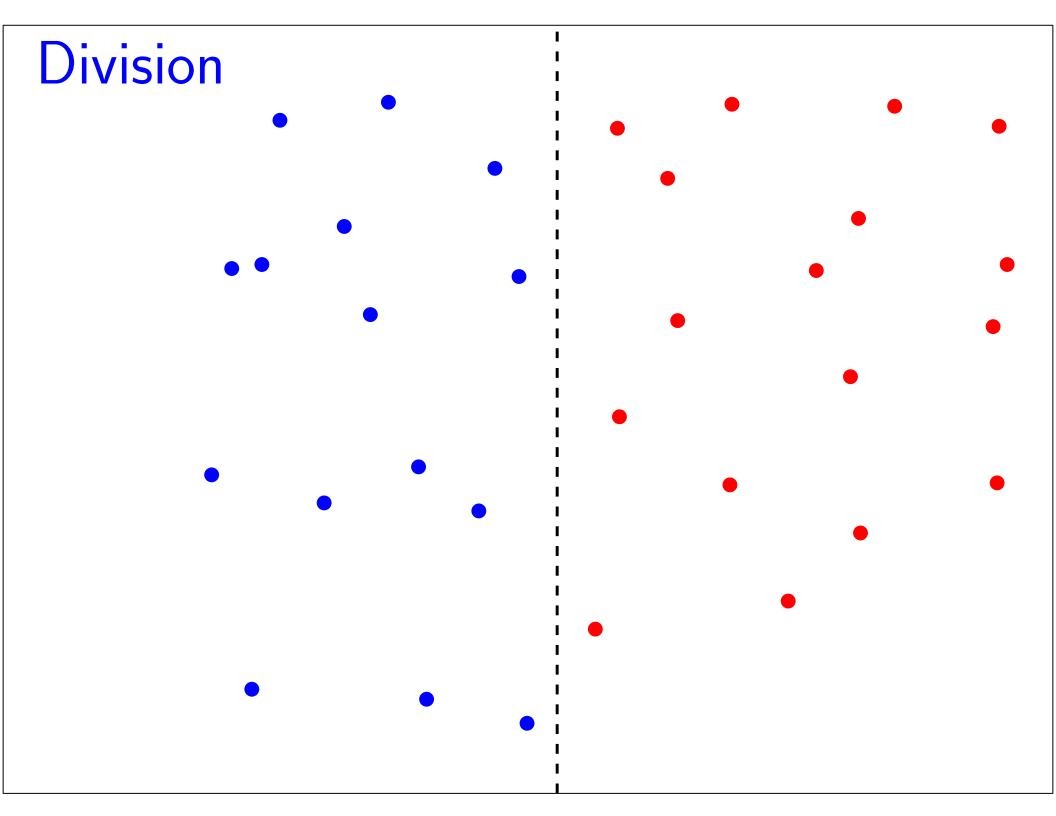


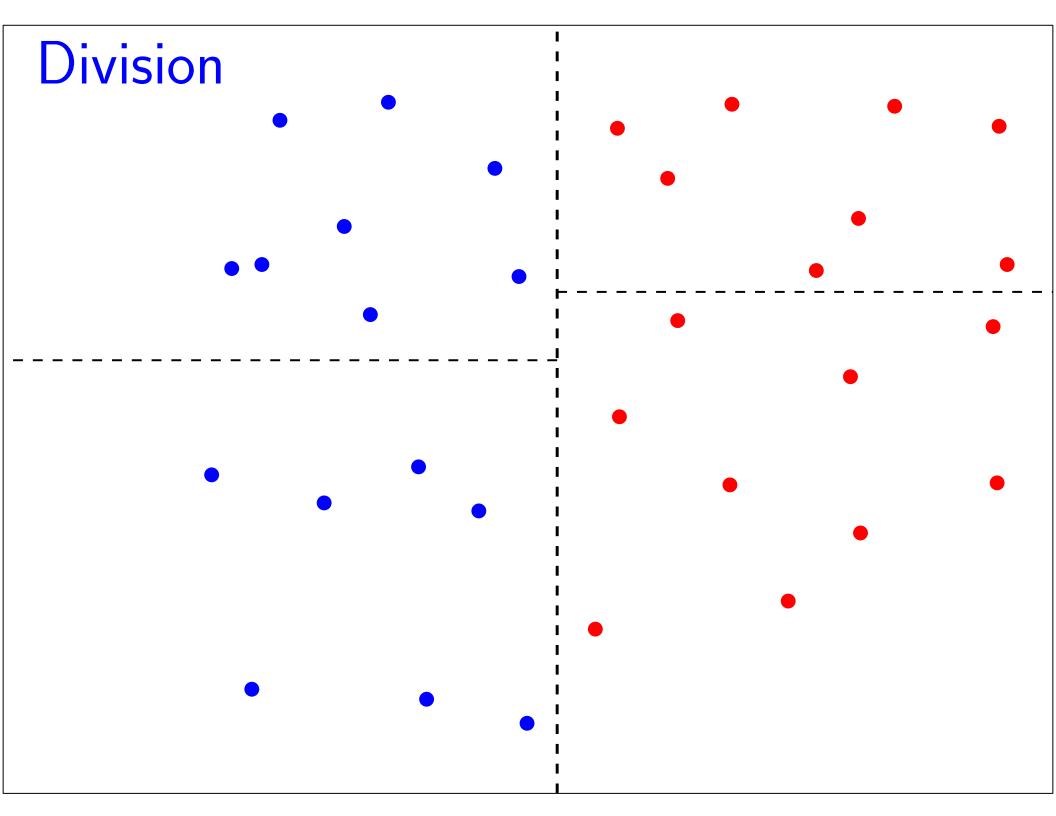


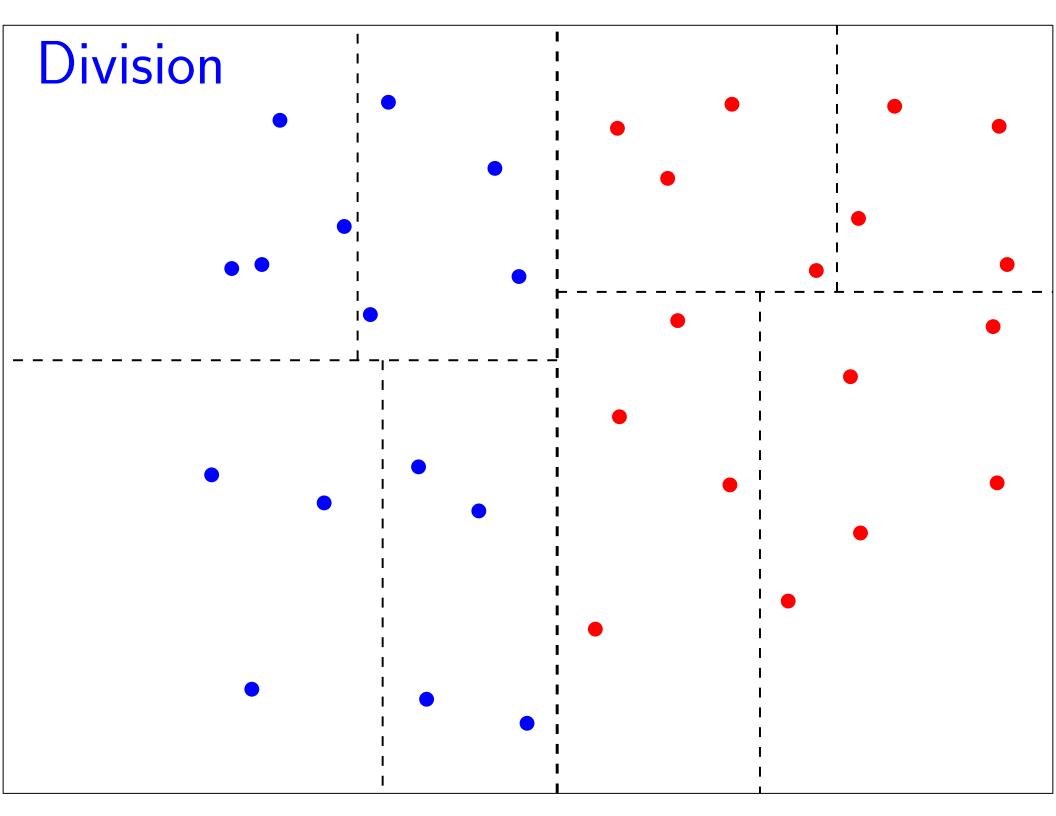


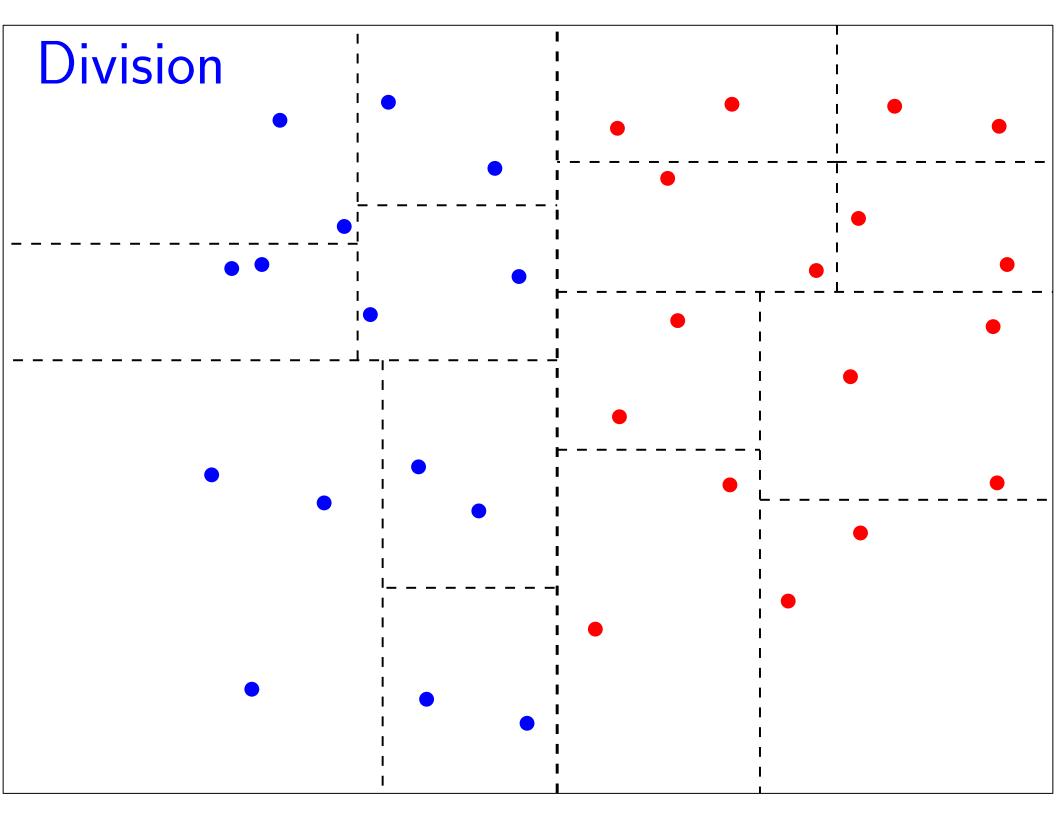


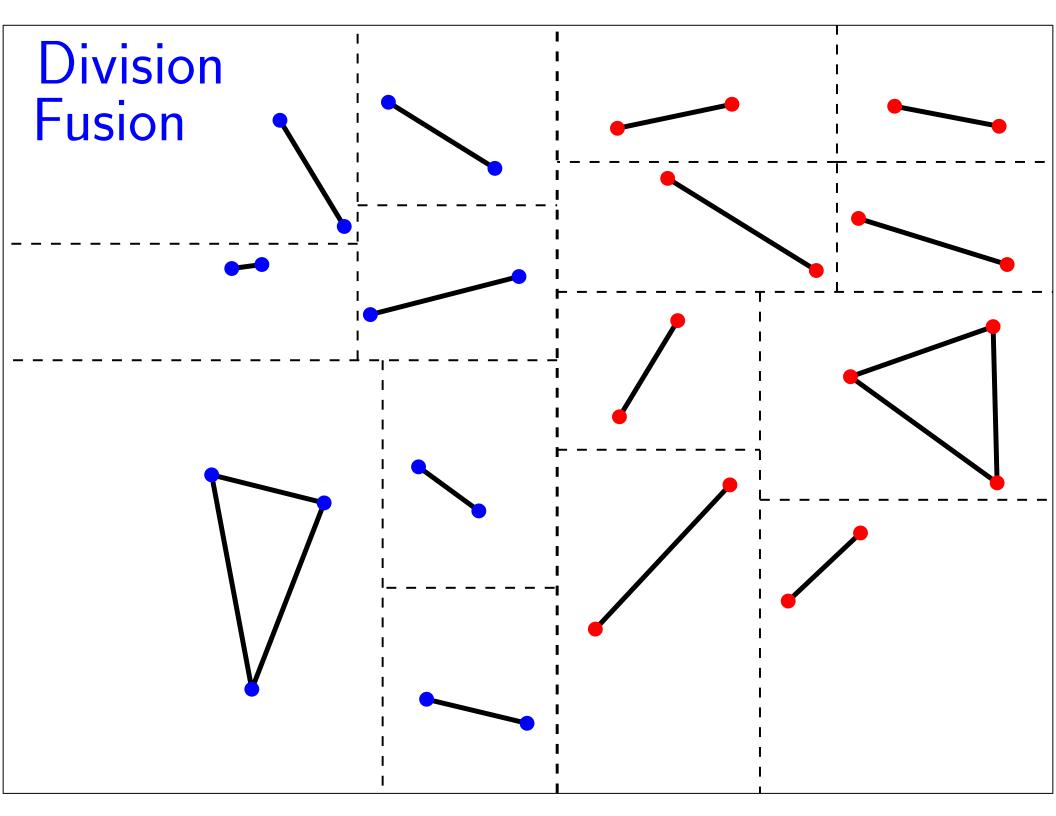


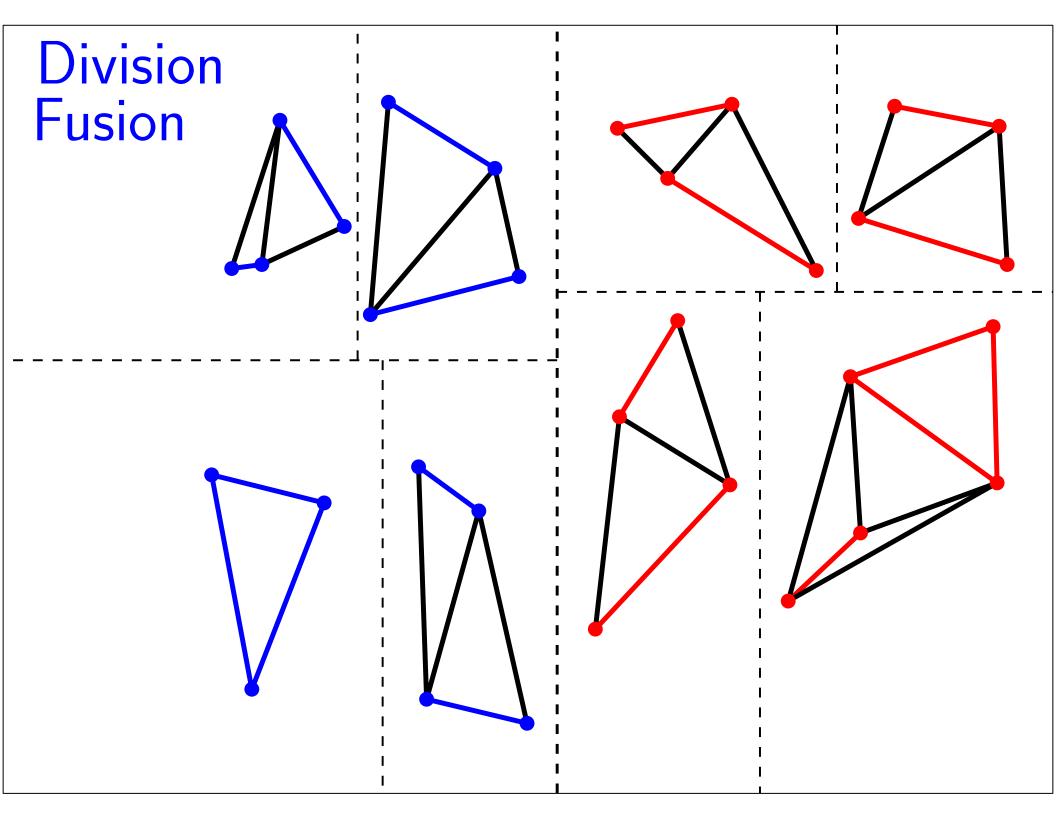


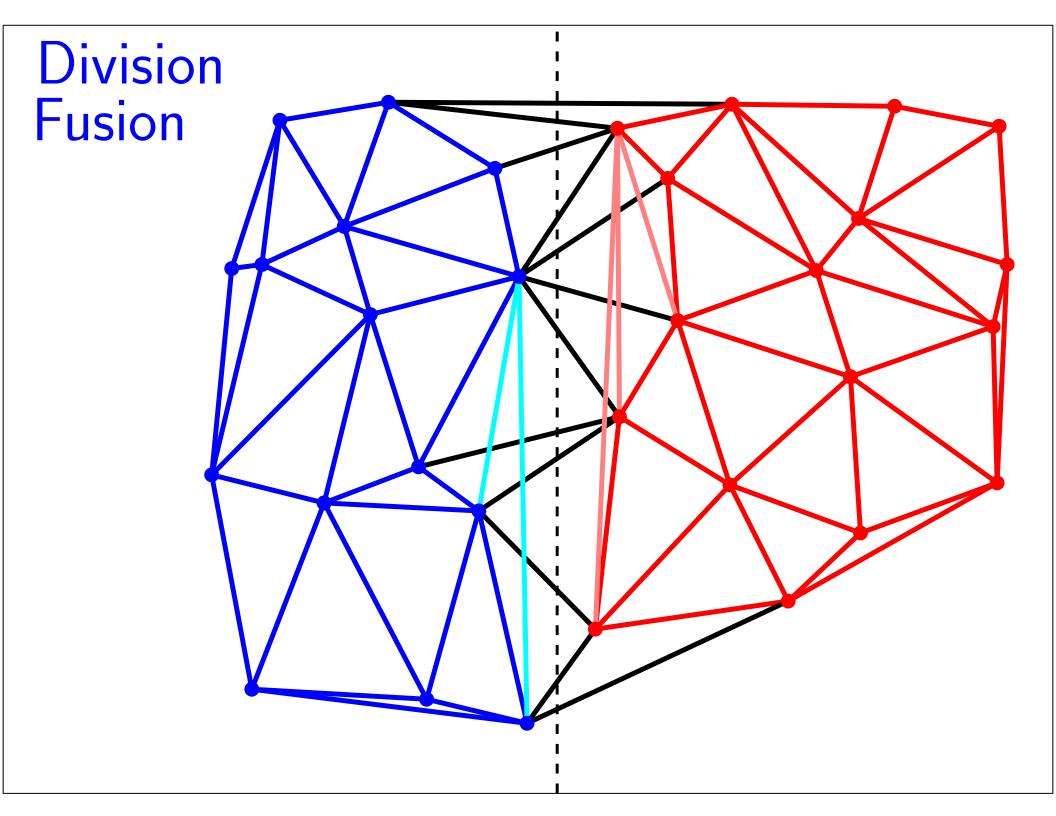


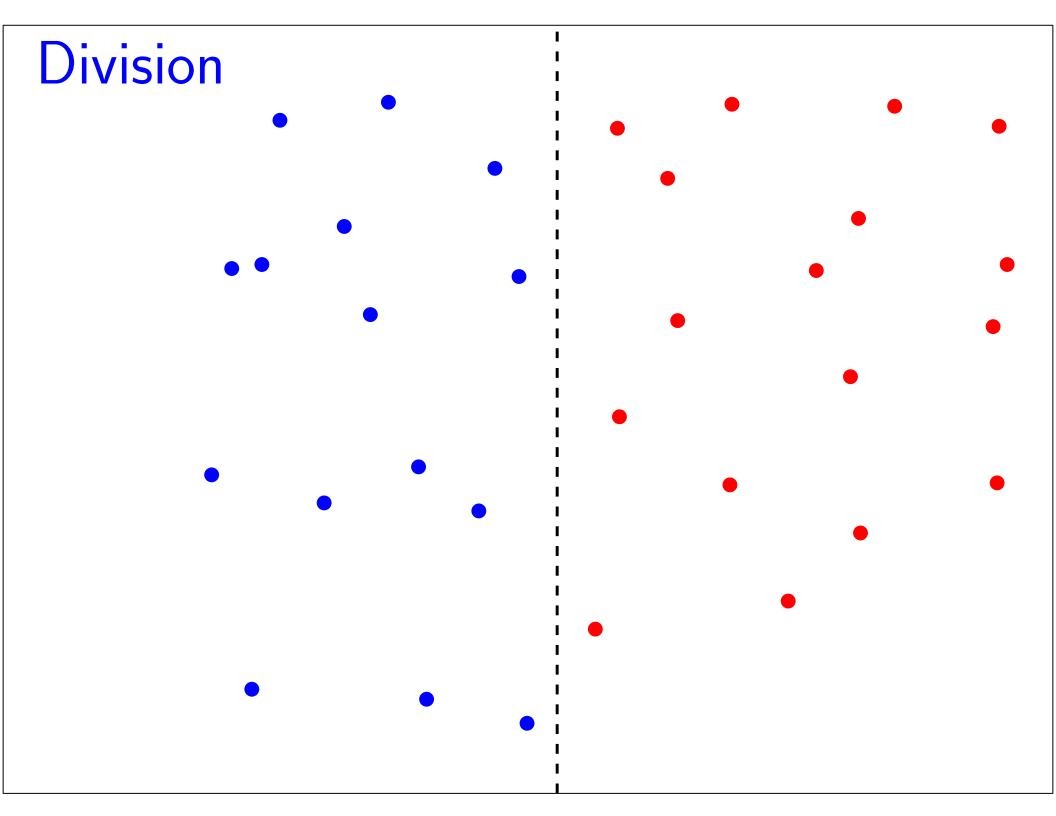


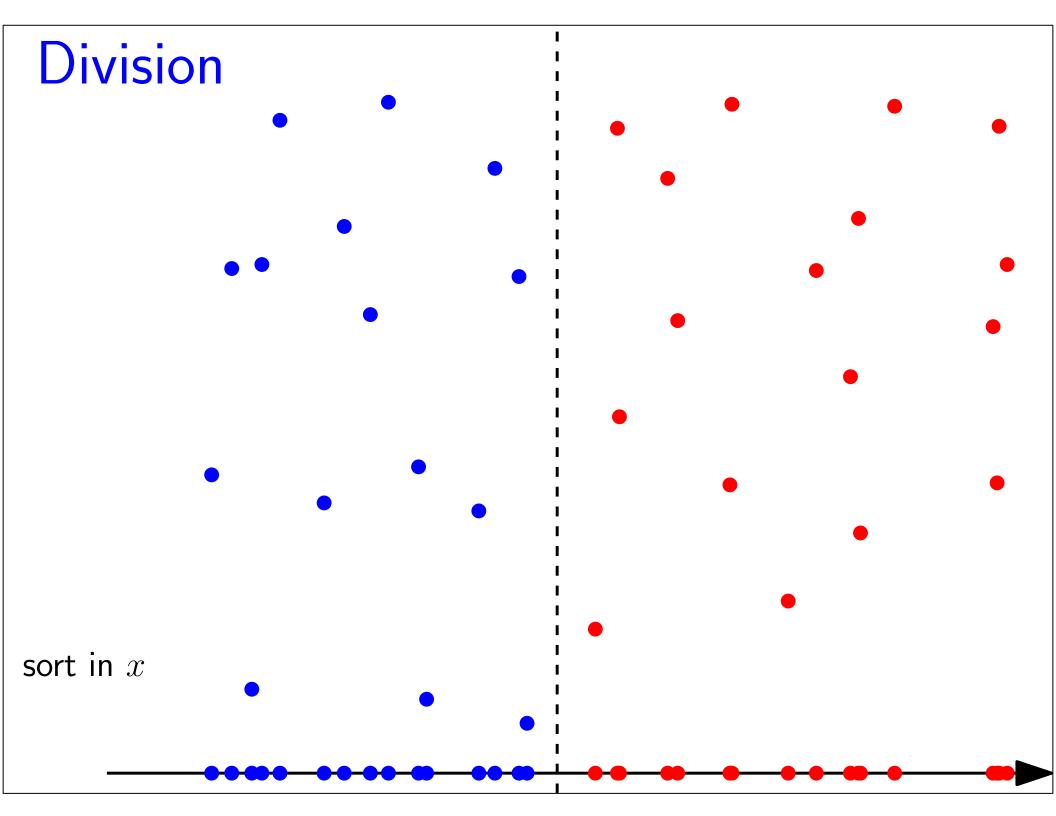


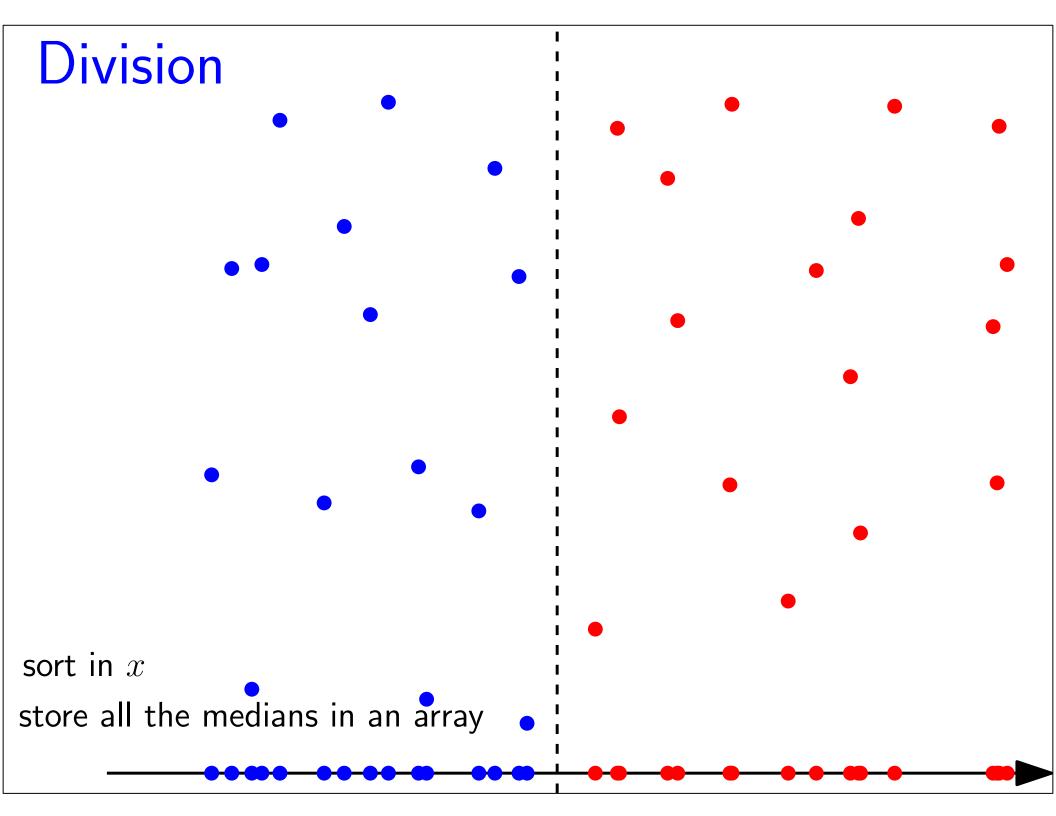


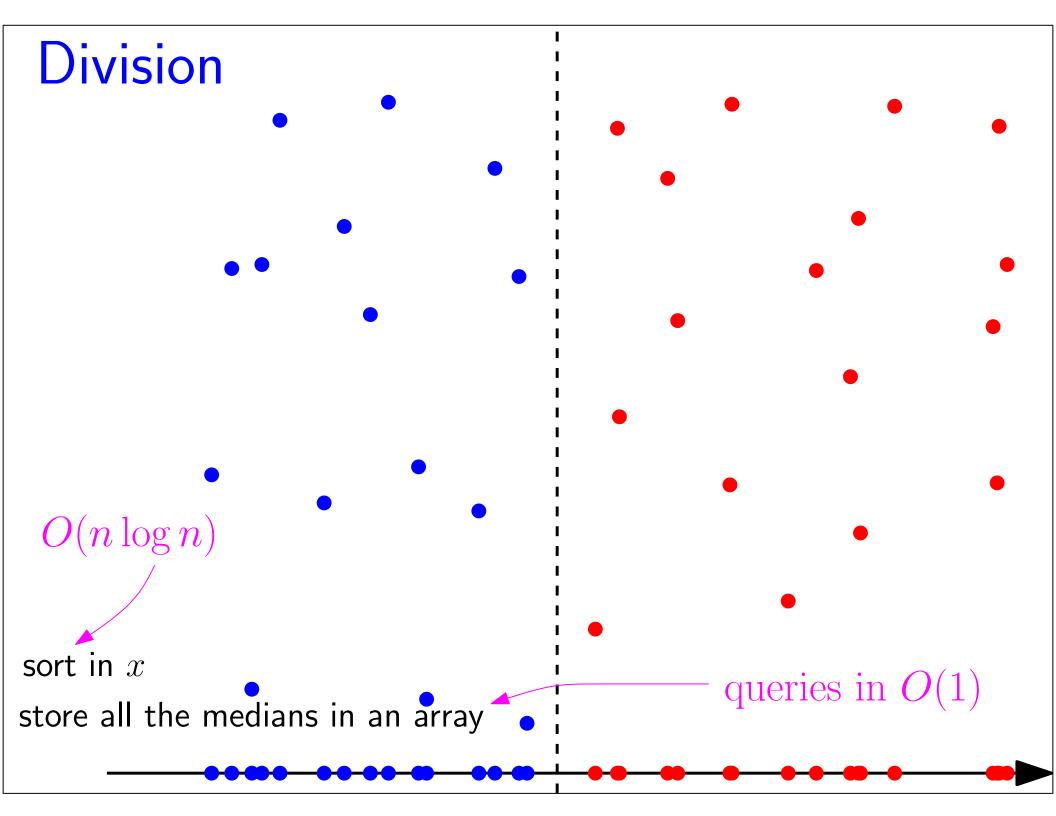




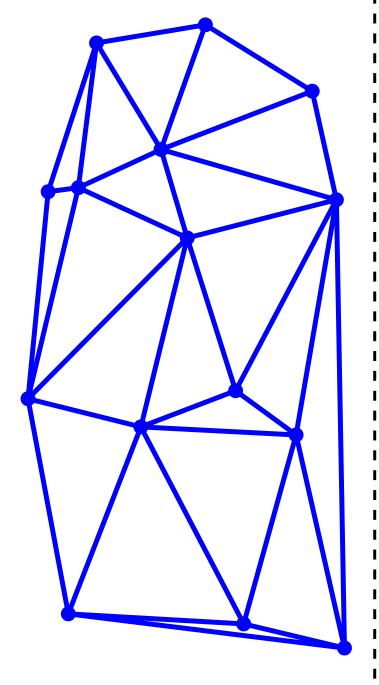


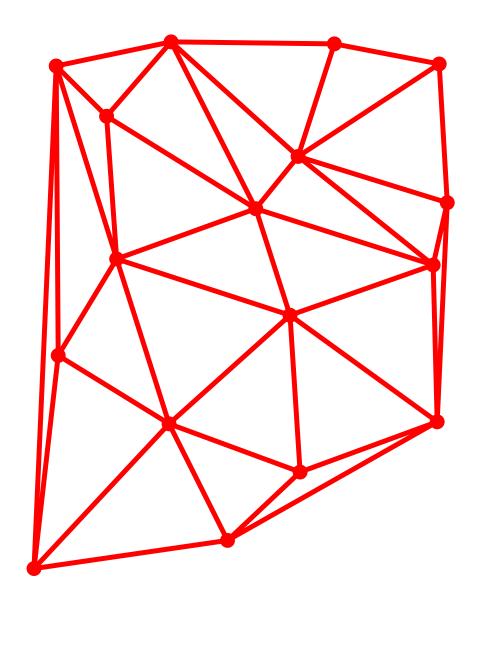


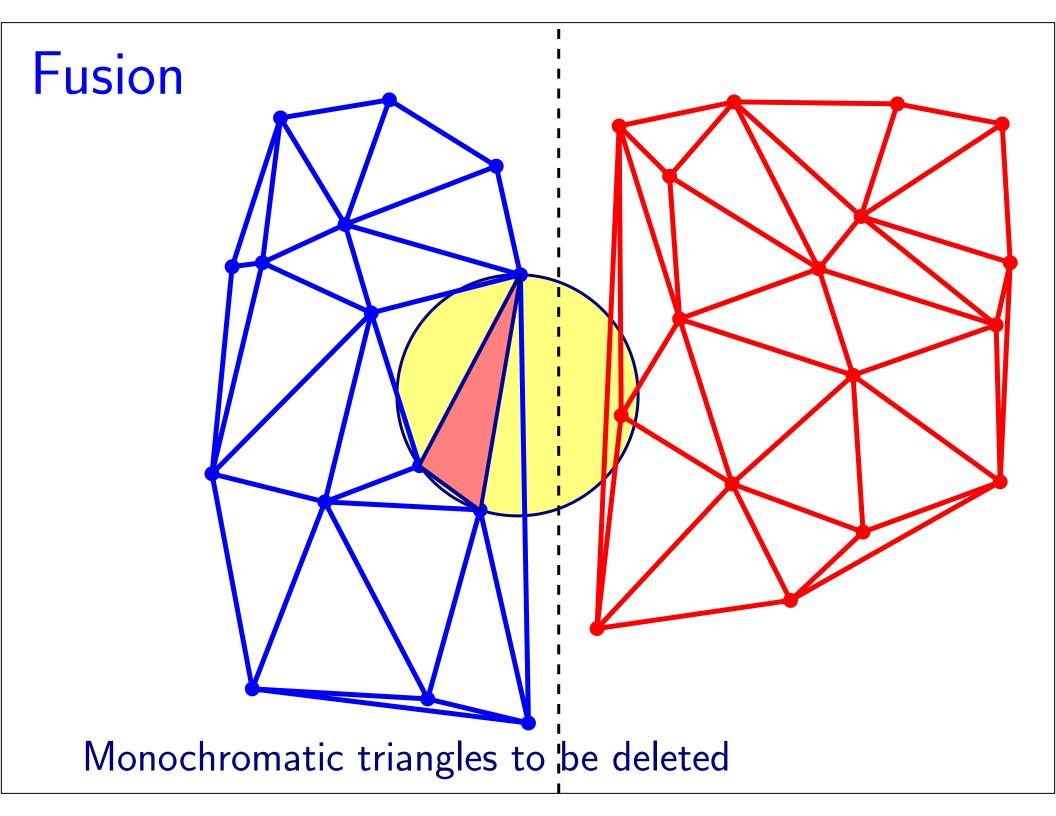


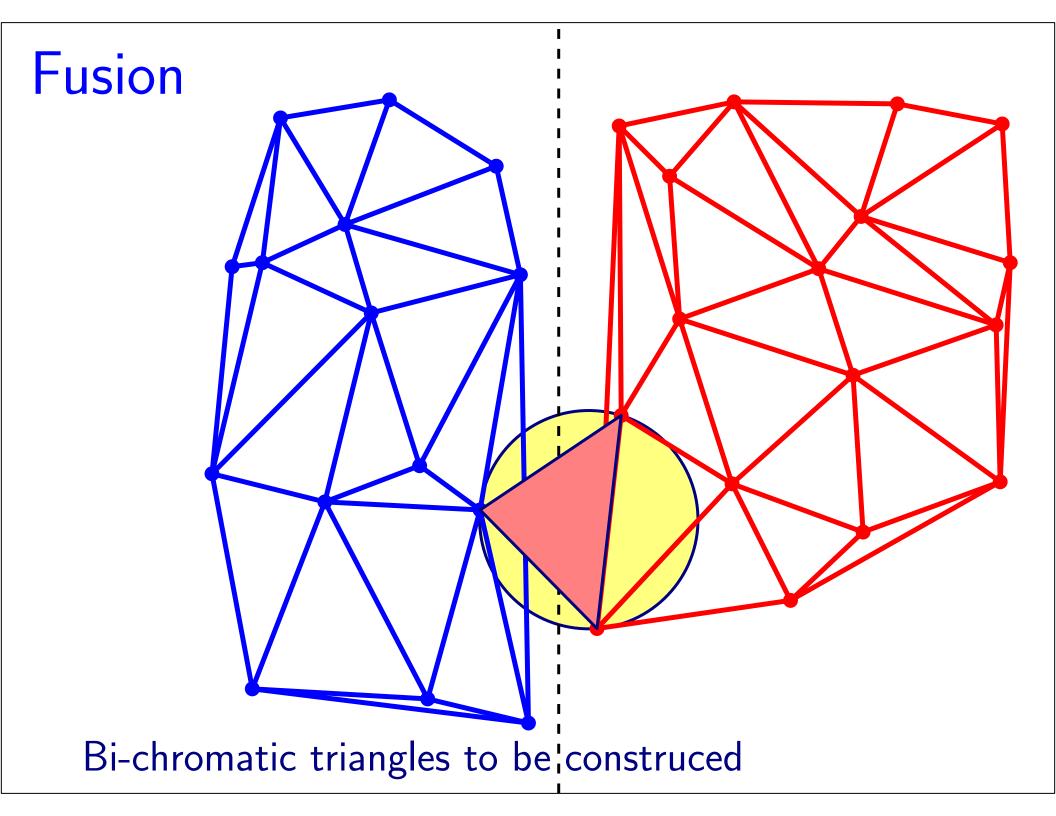


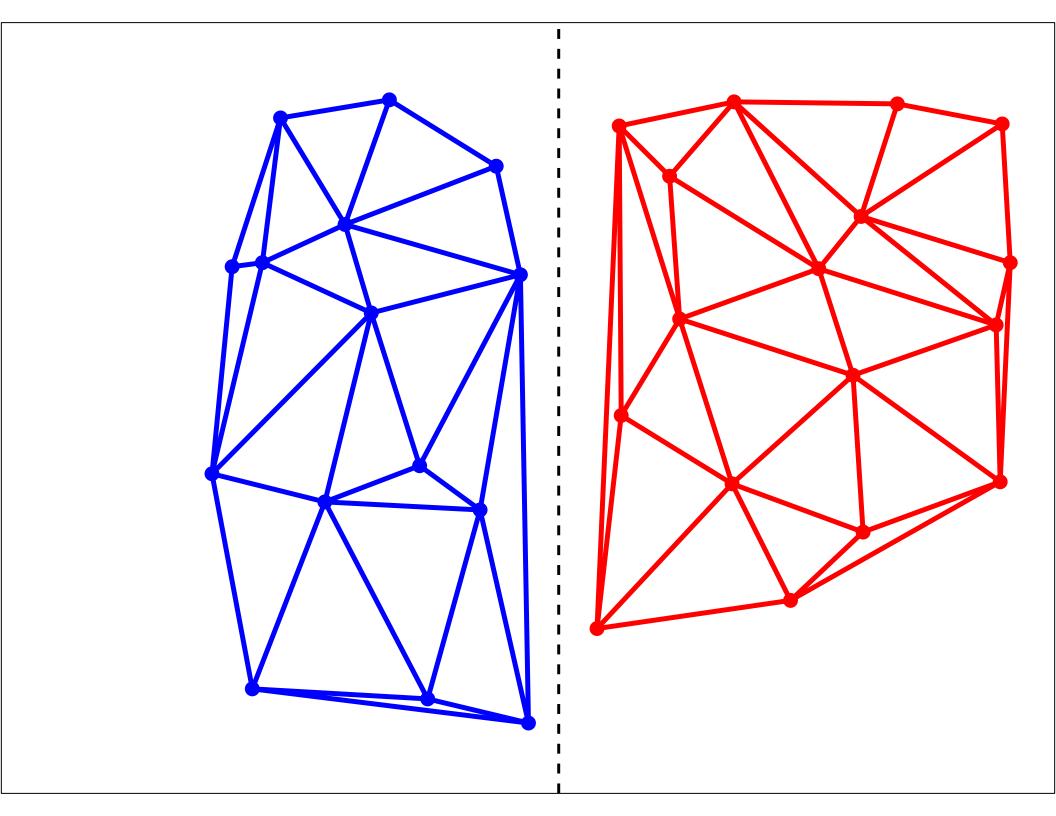
Fusion

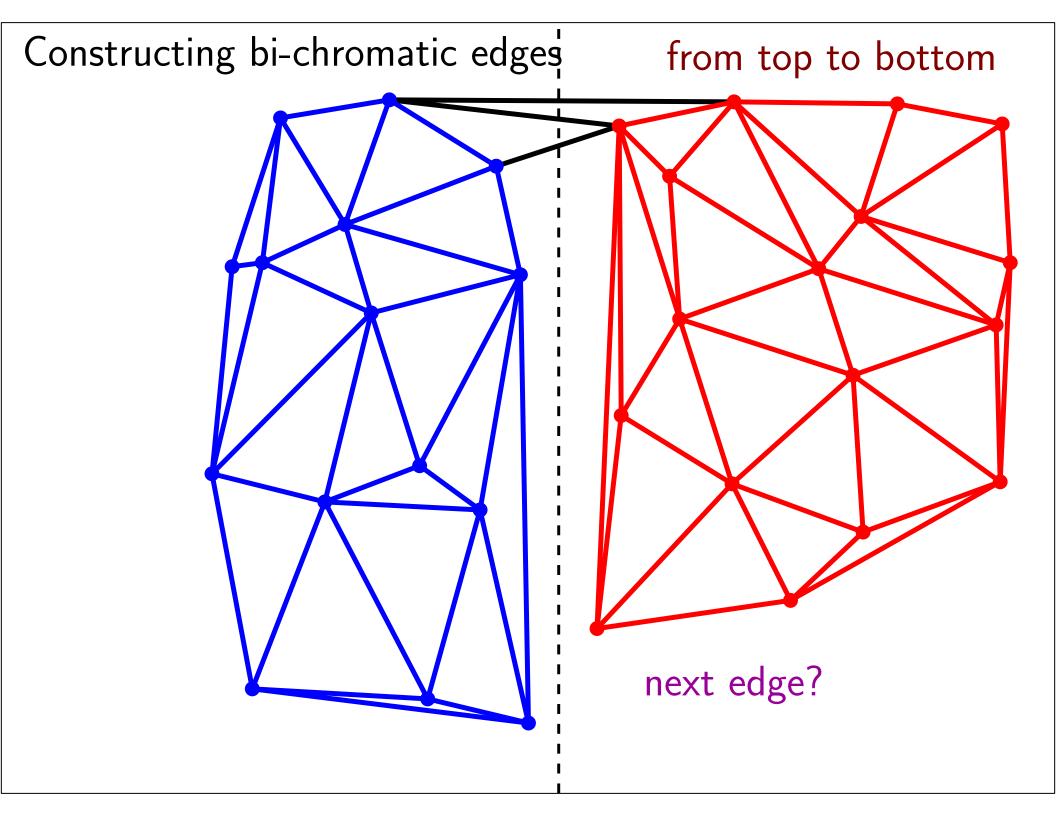


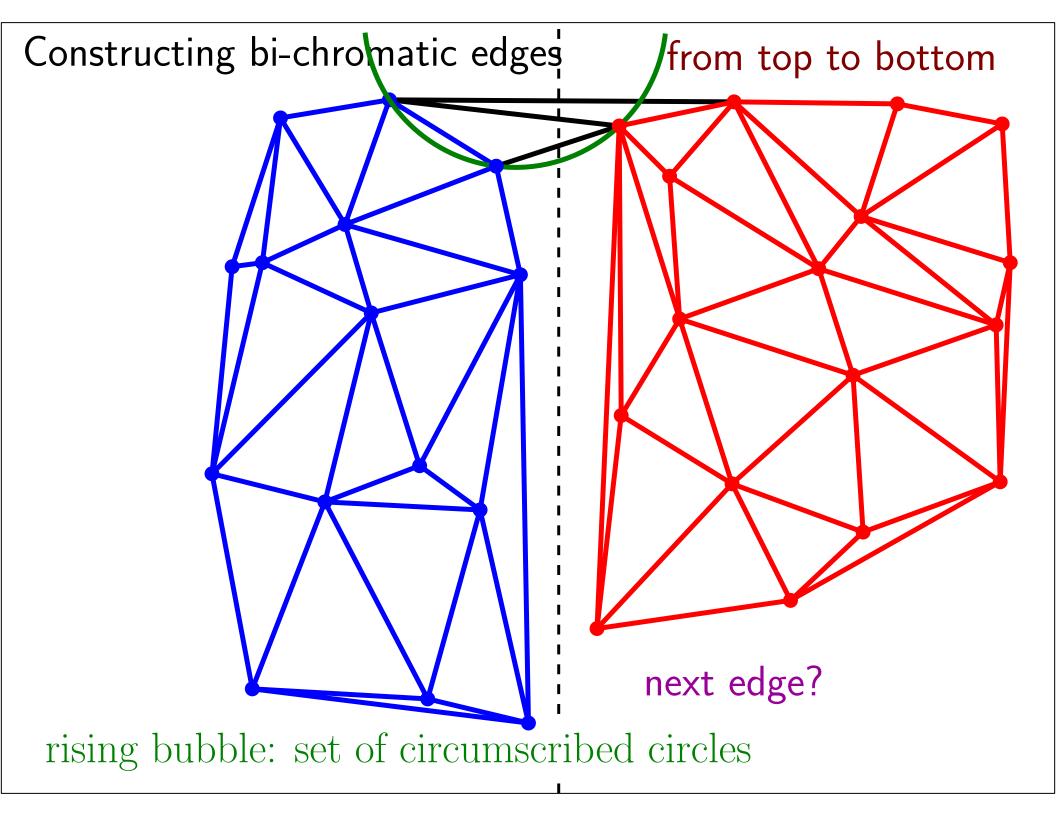


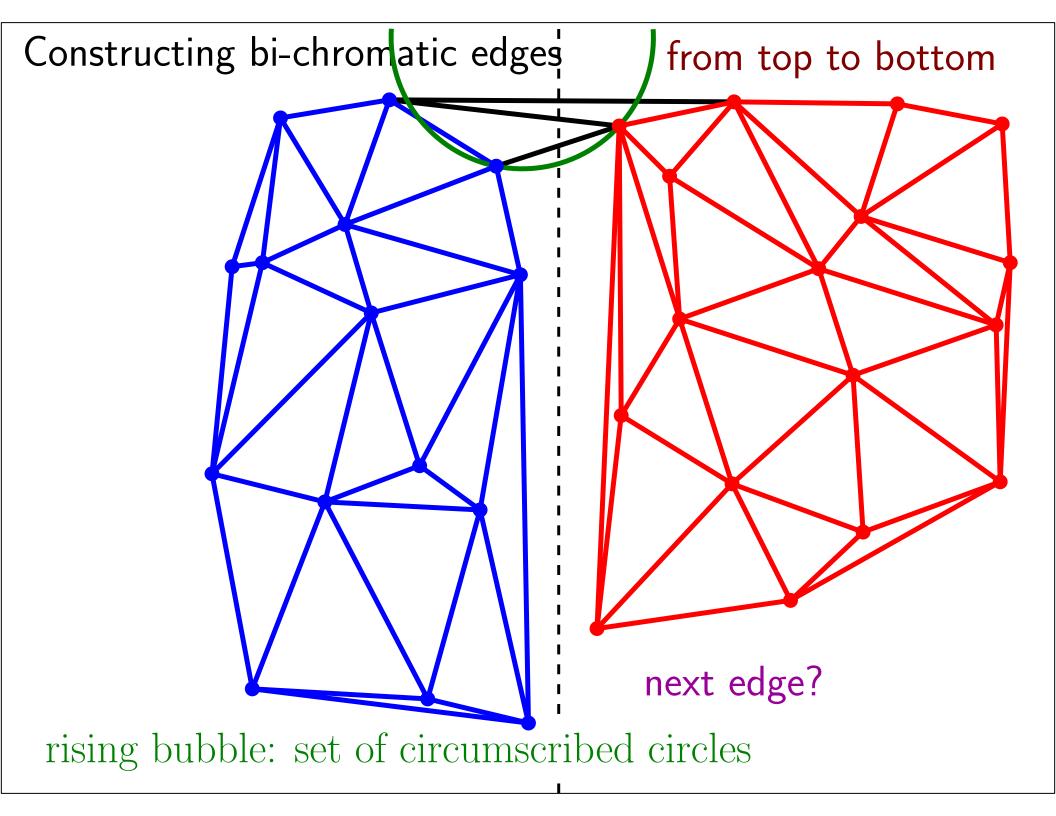


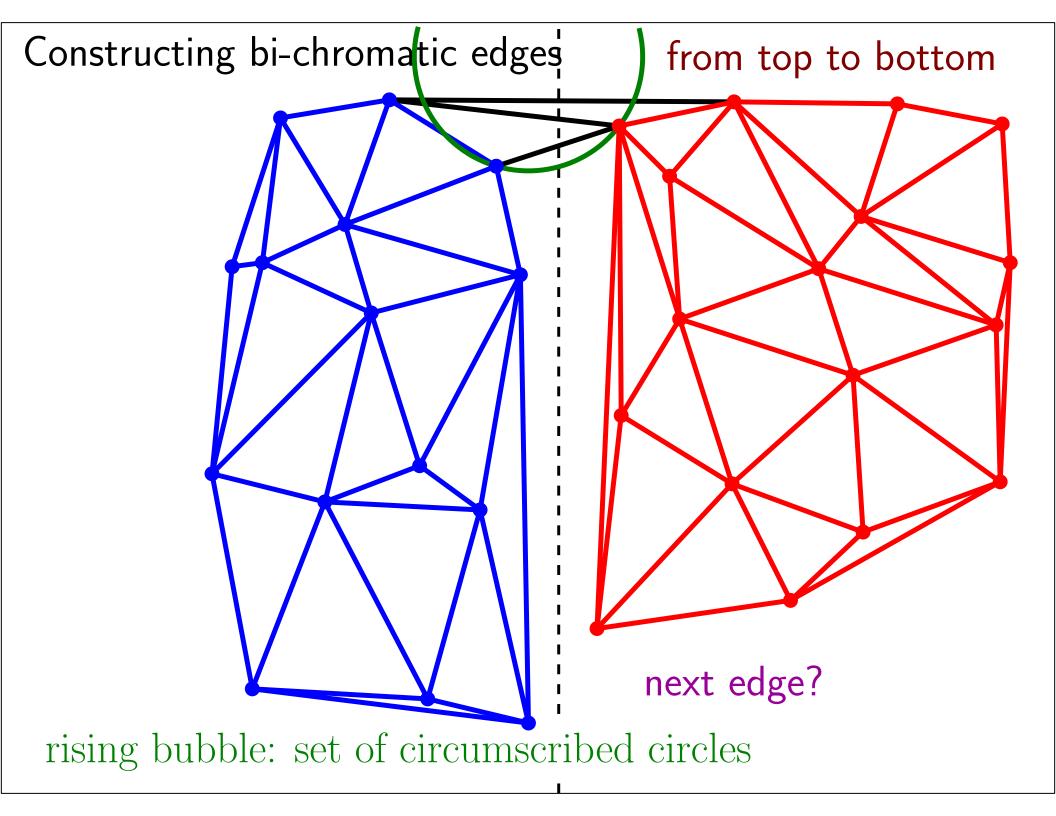


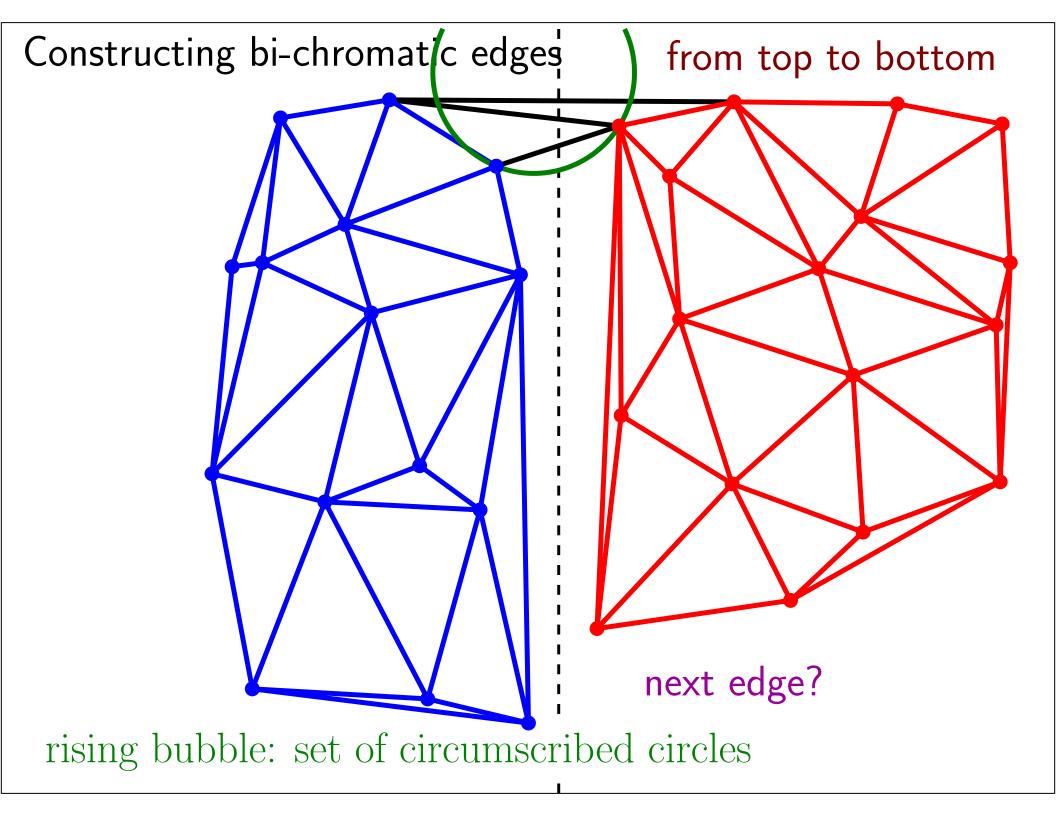


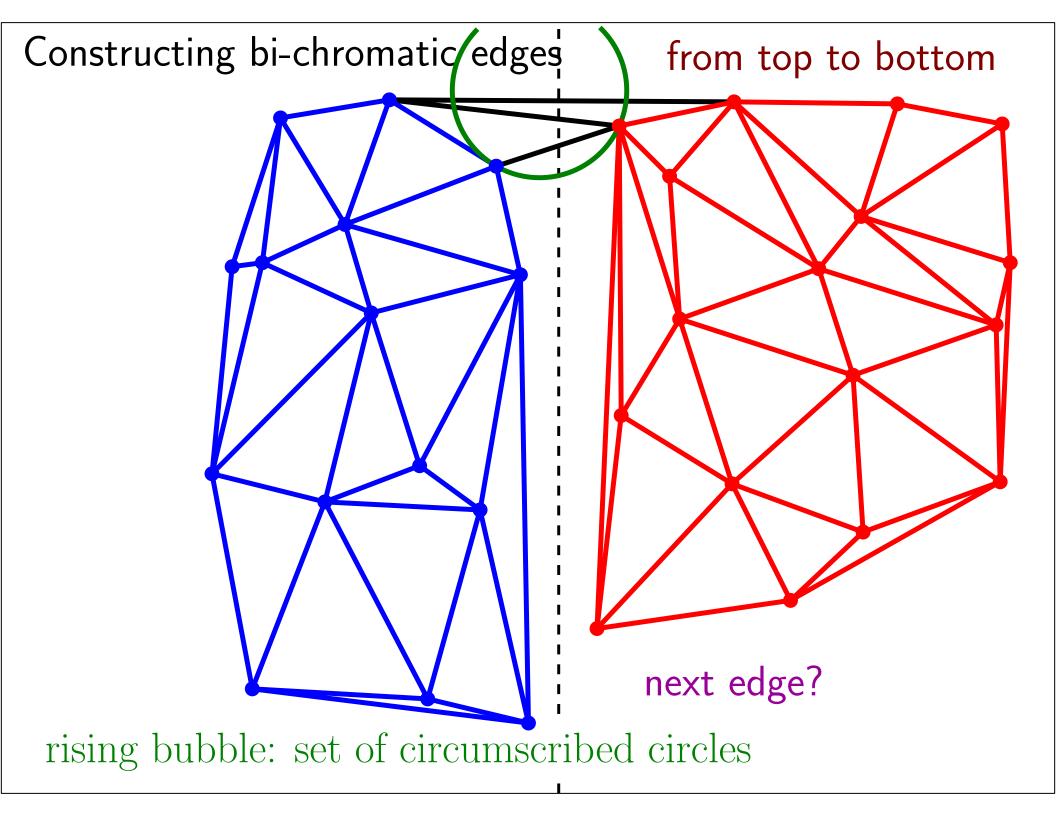


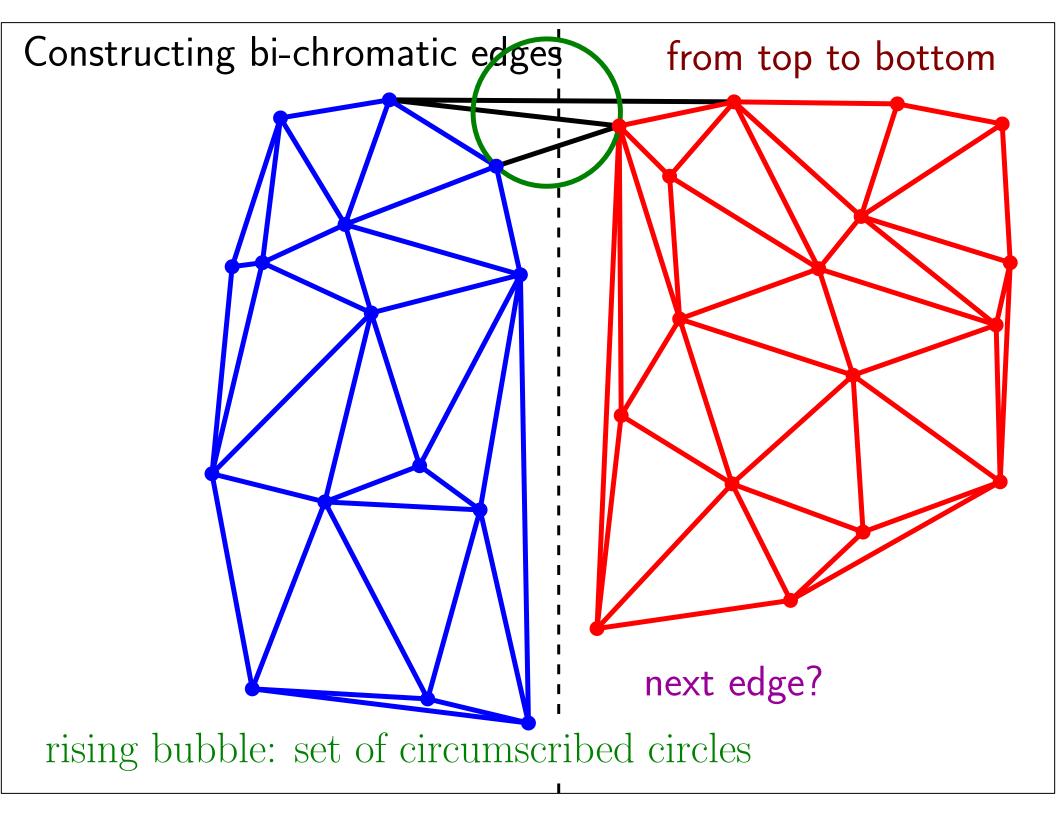


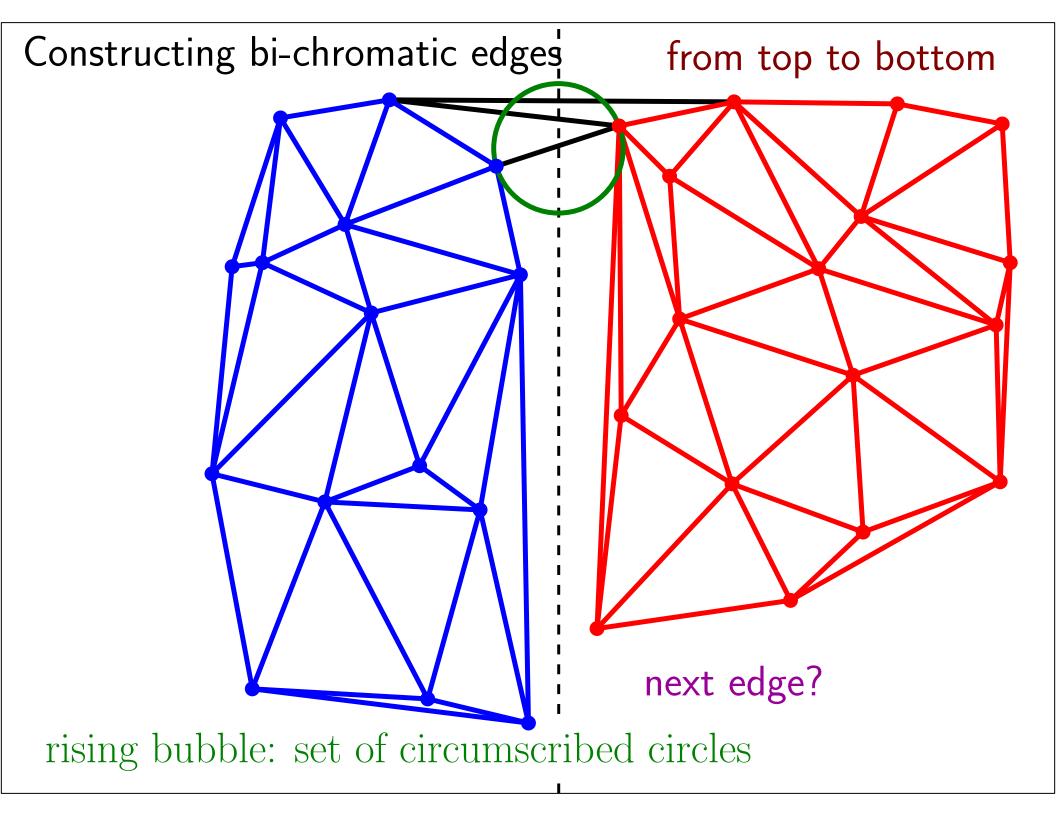


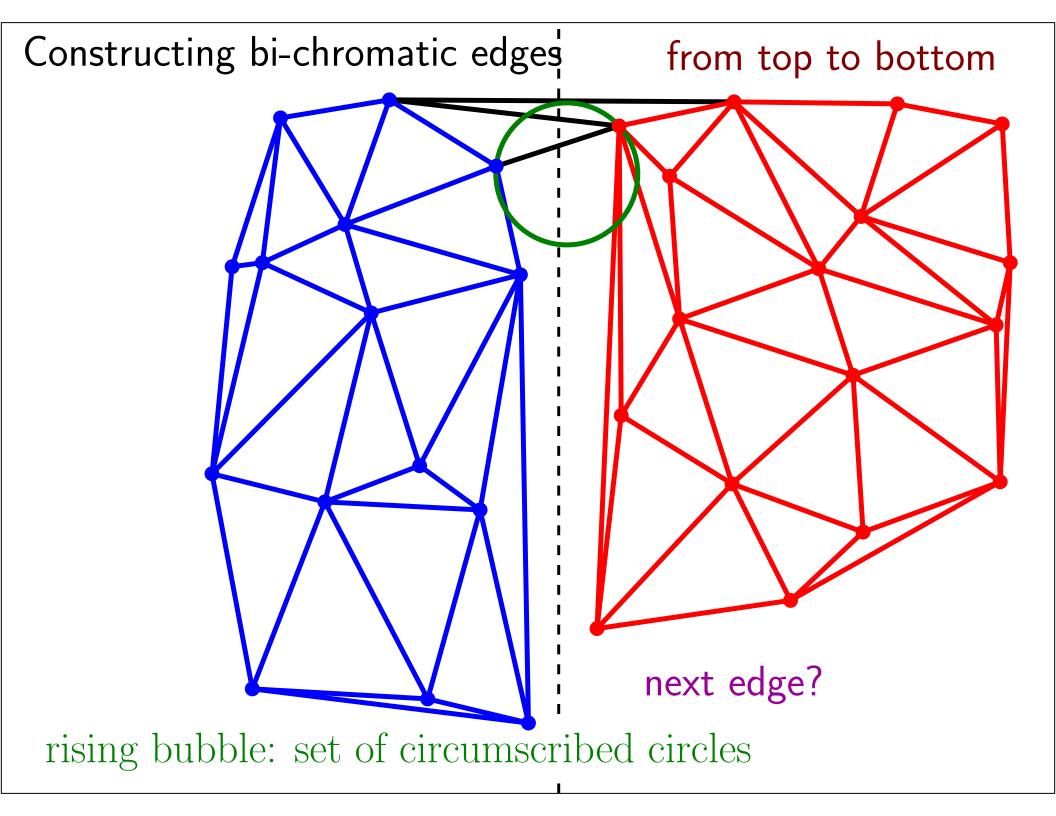


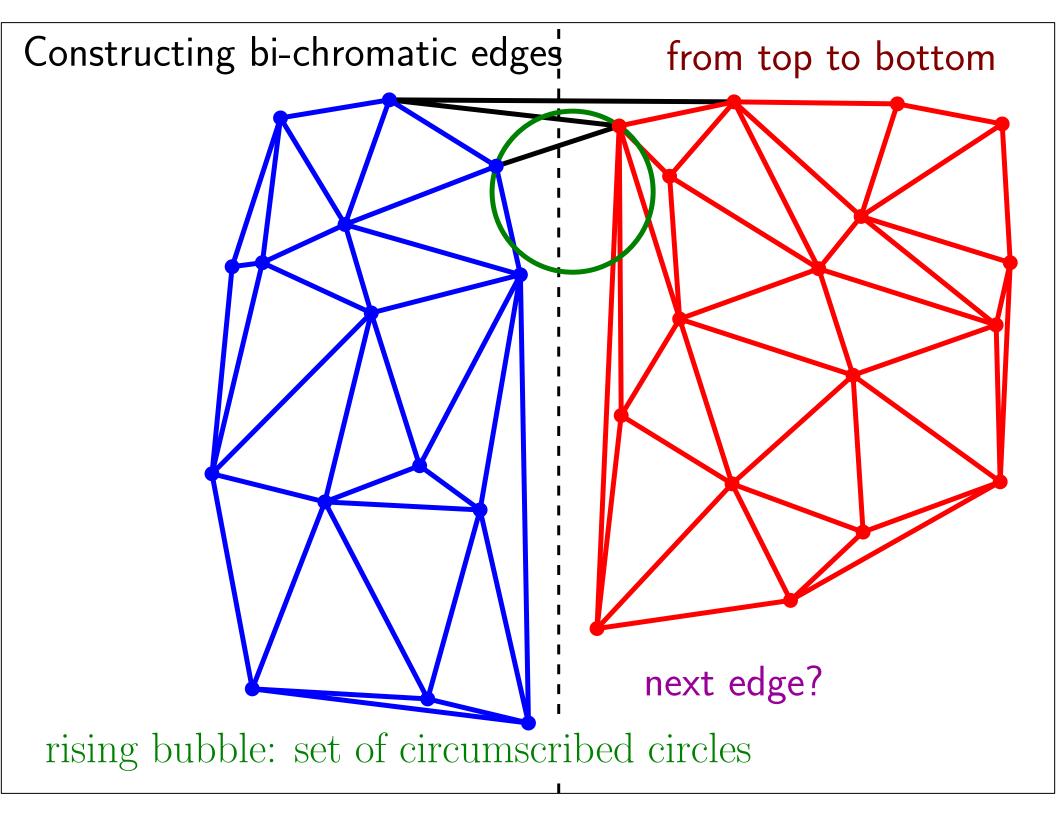


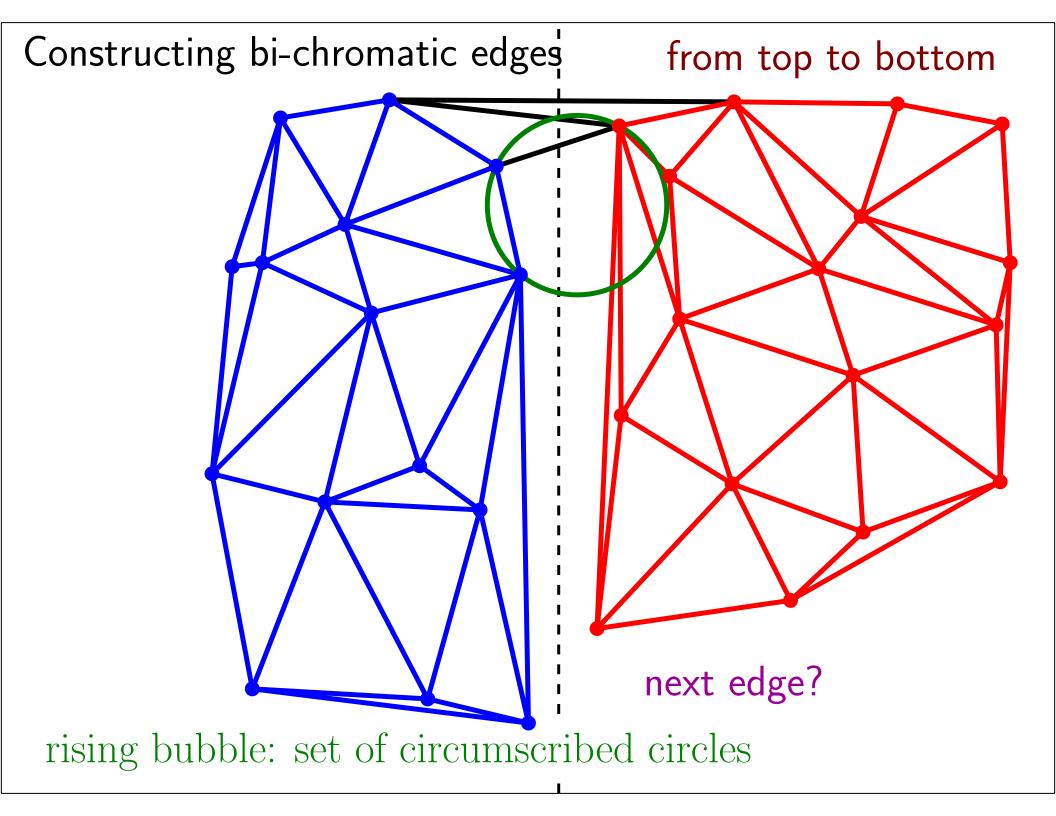


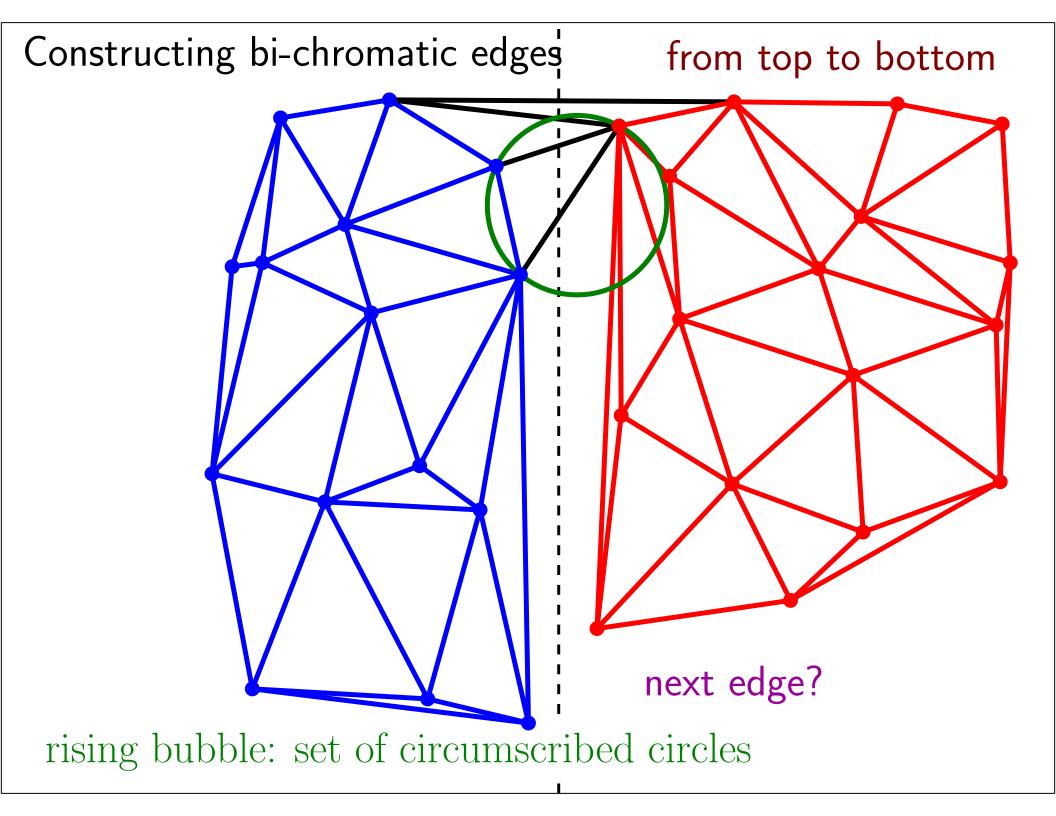


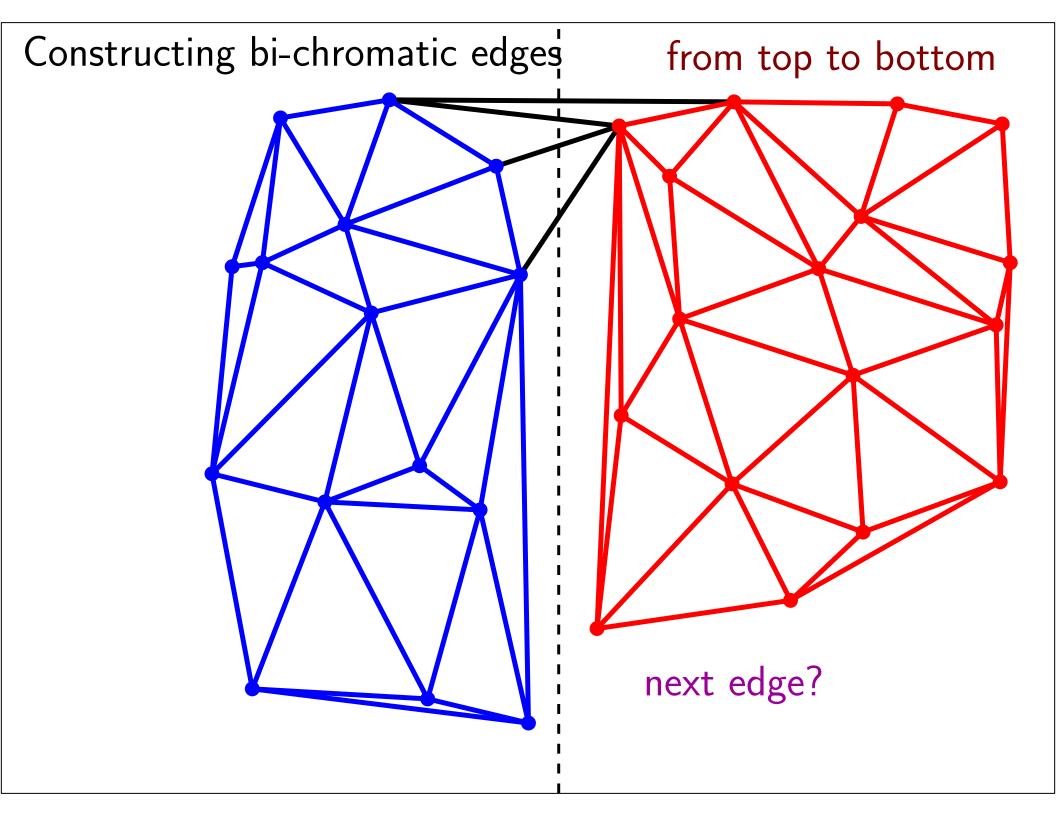


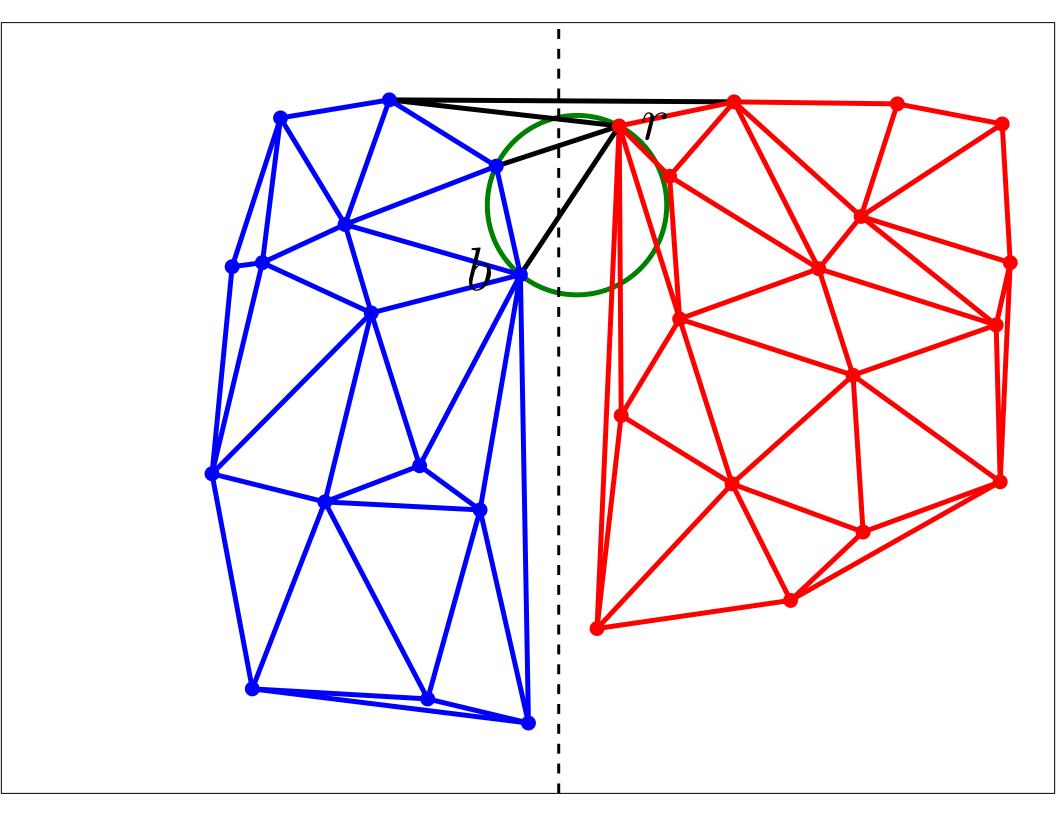




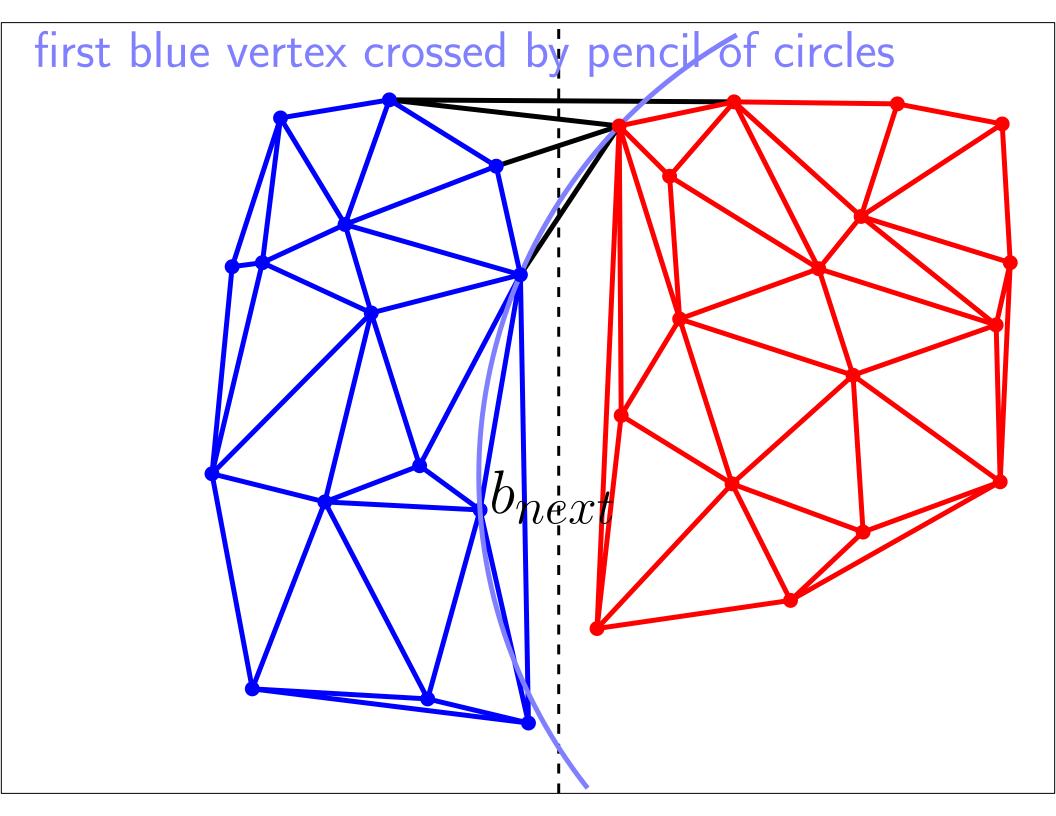


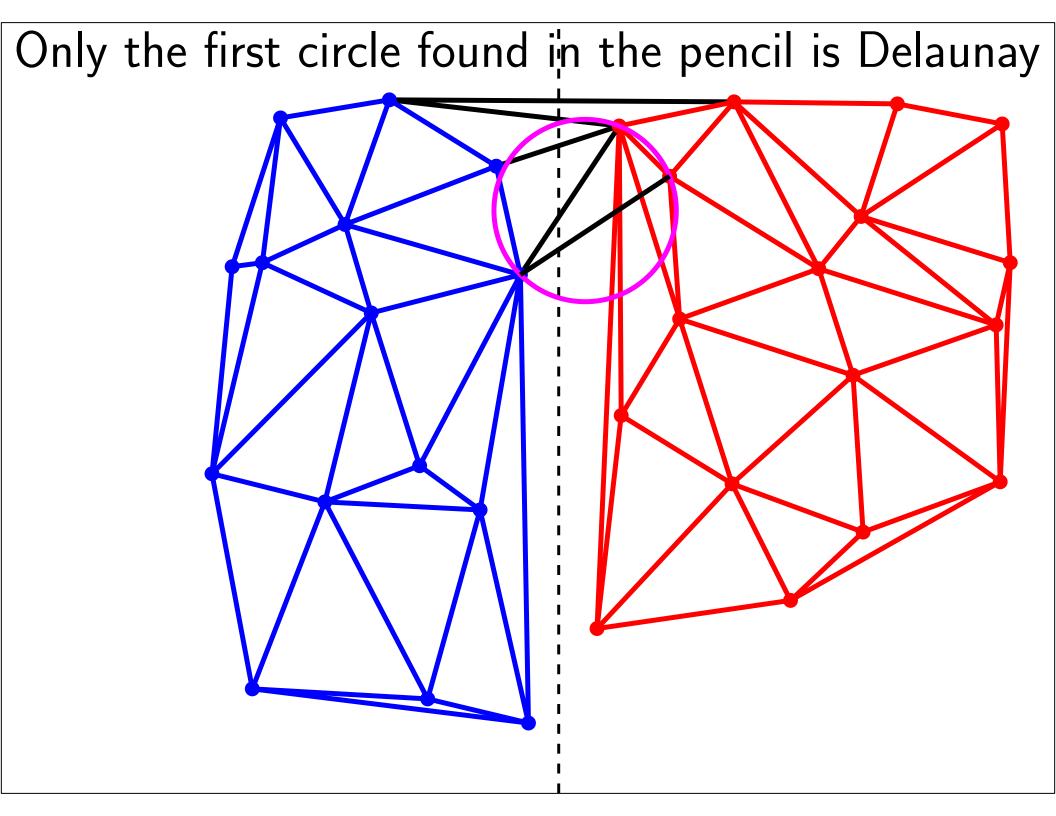


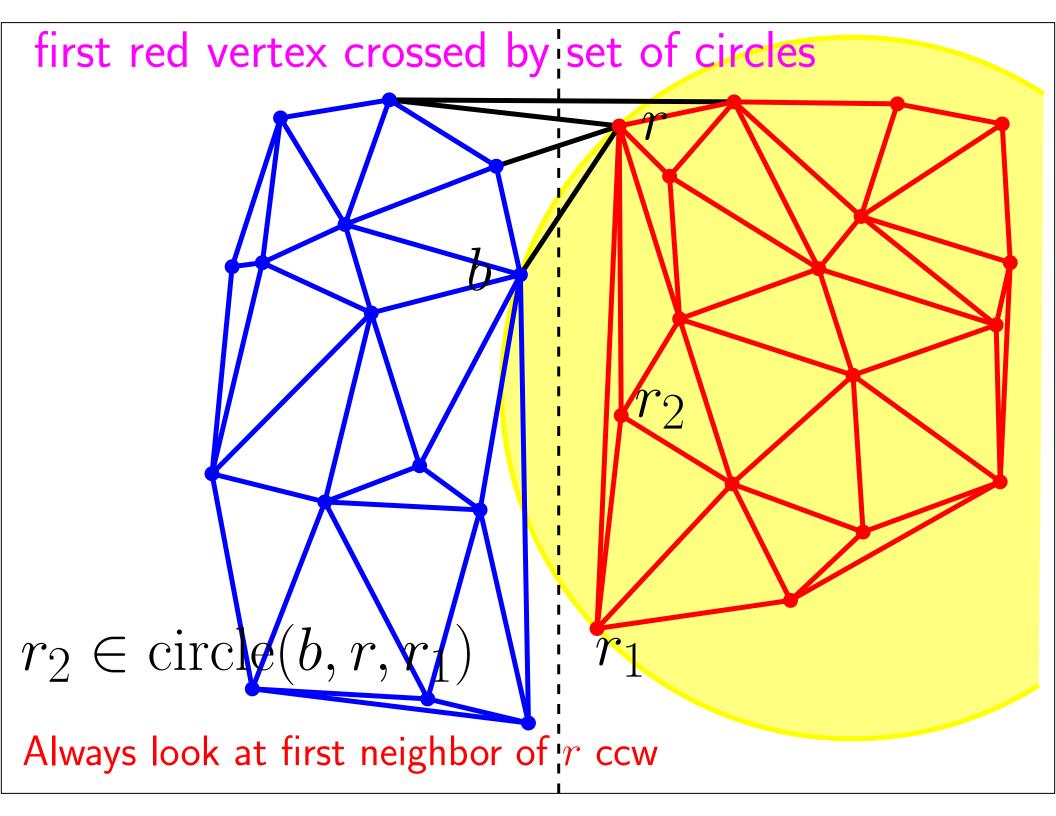


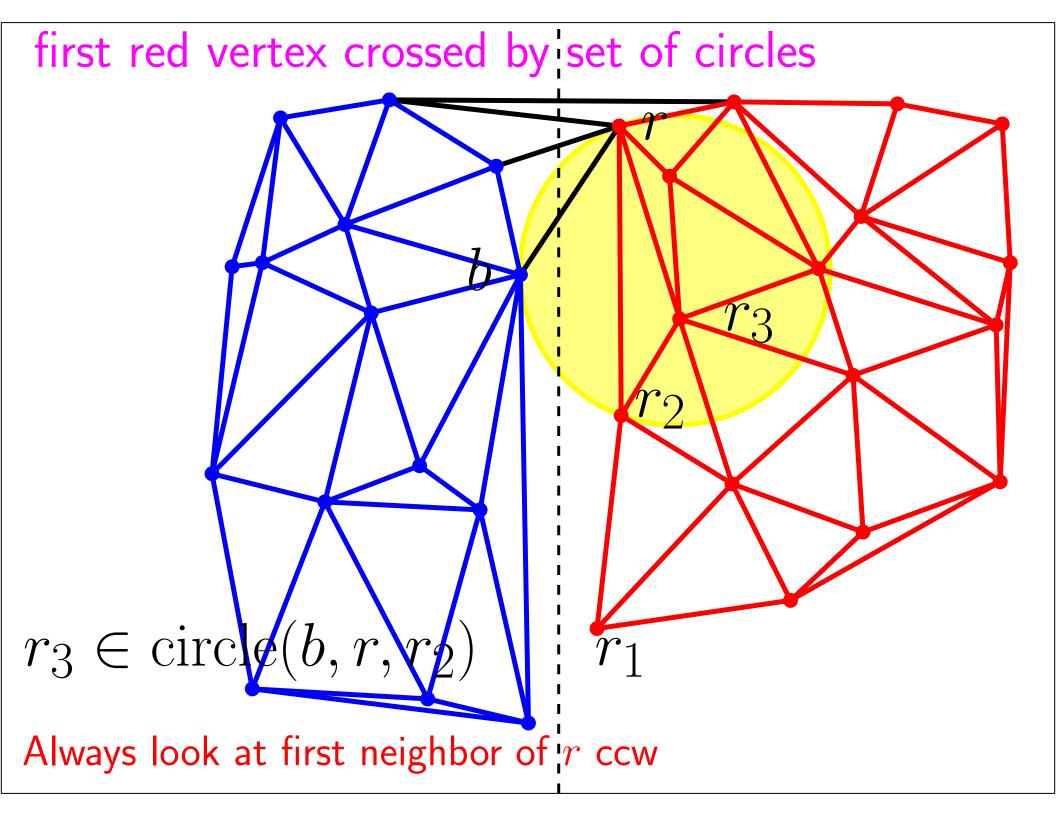


first red vertex crossed by pencil of circles

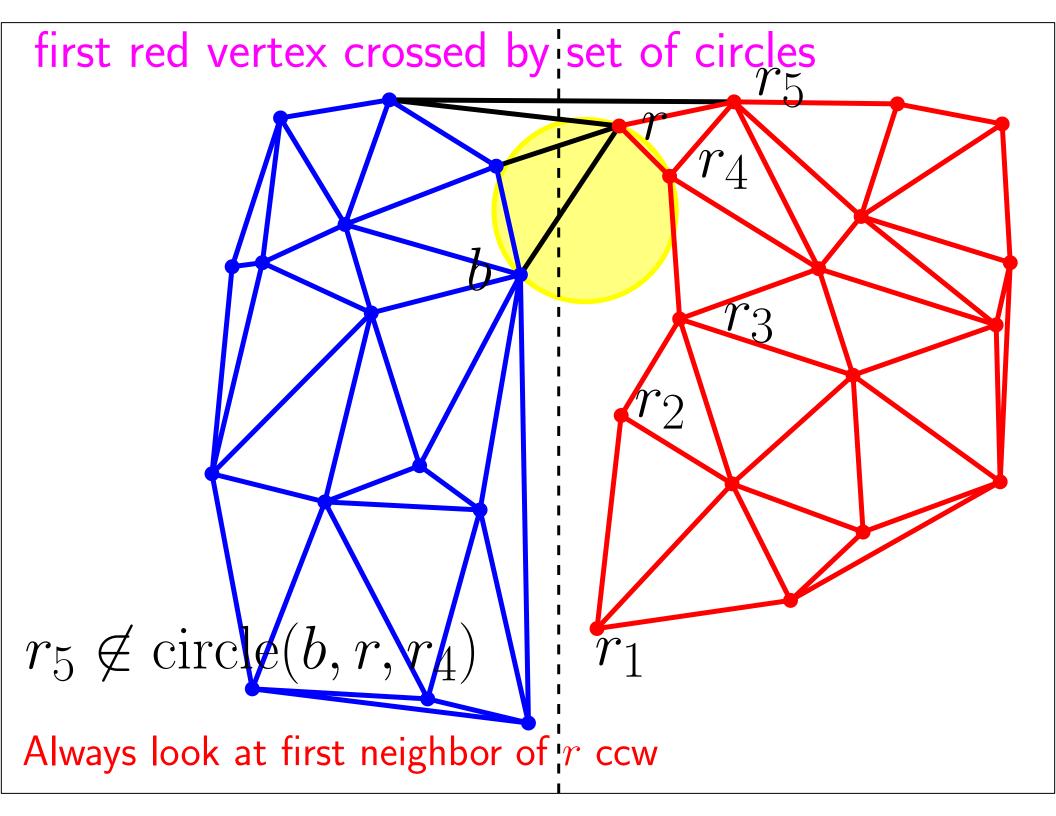


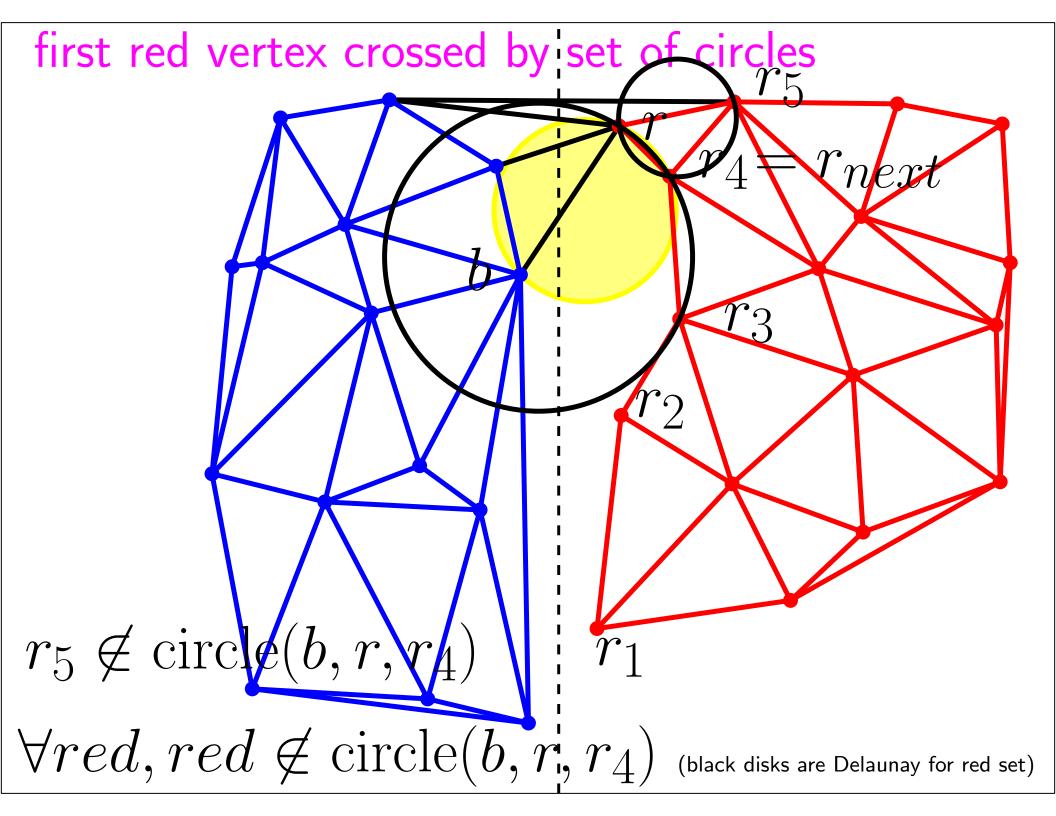


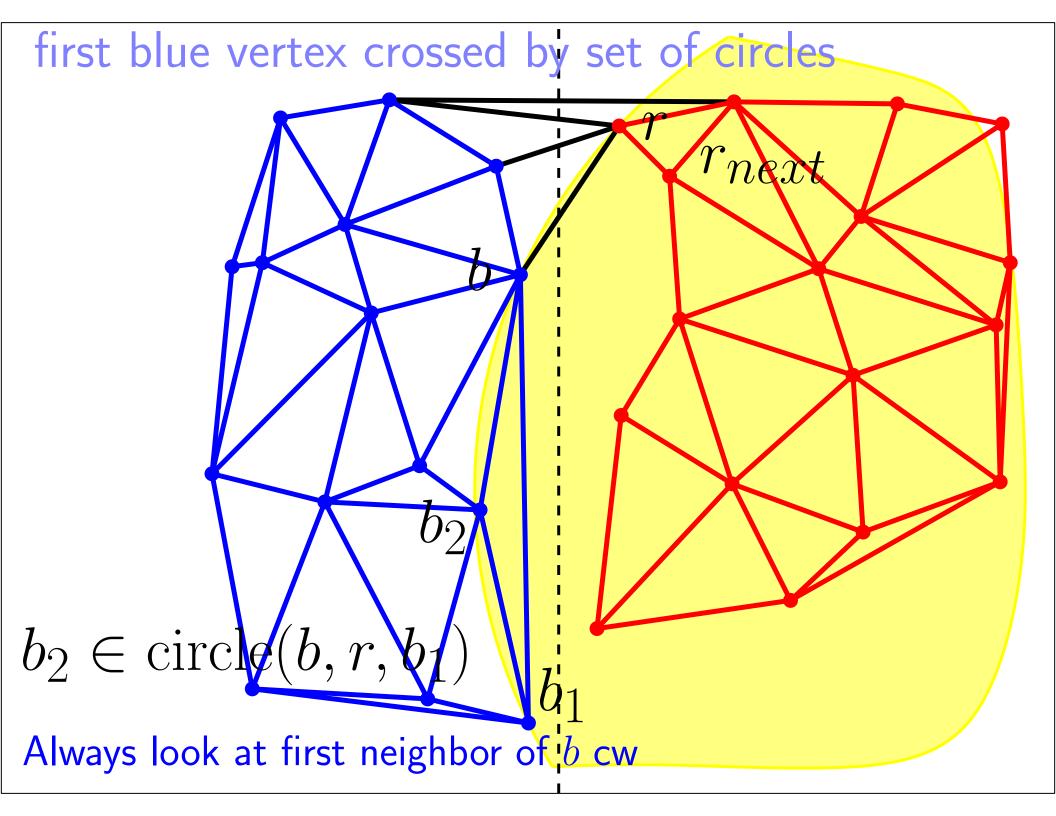


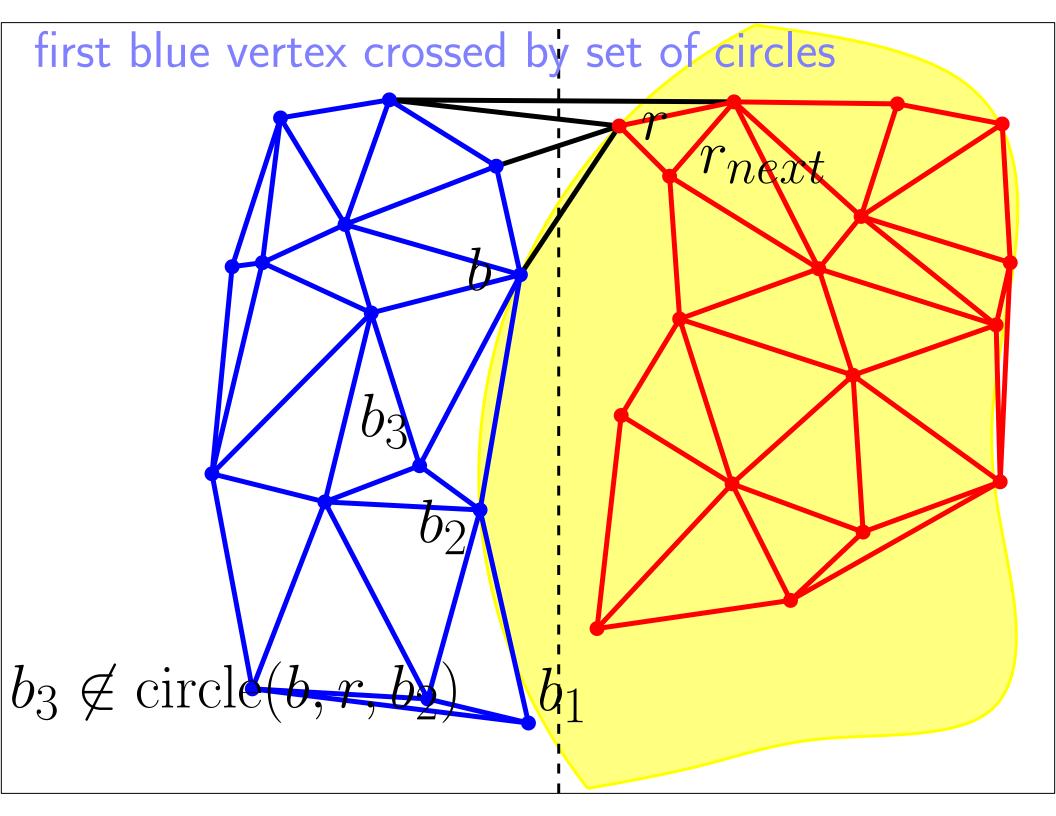


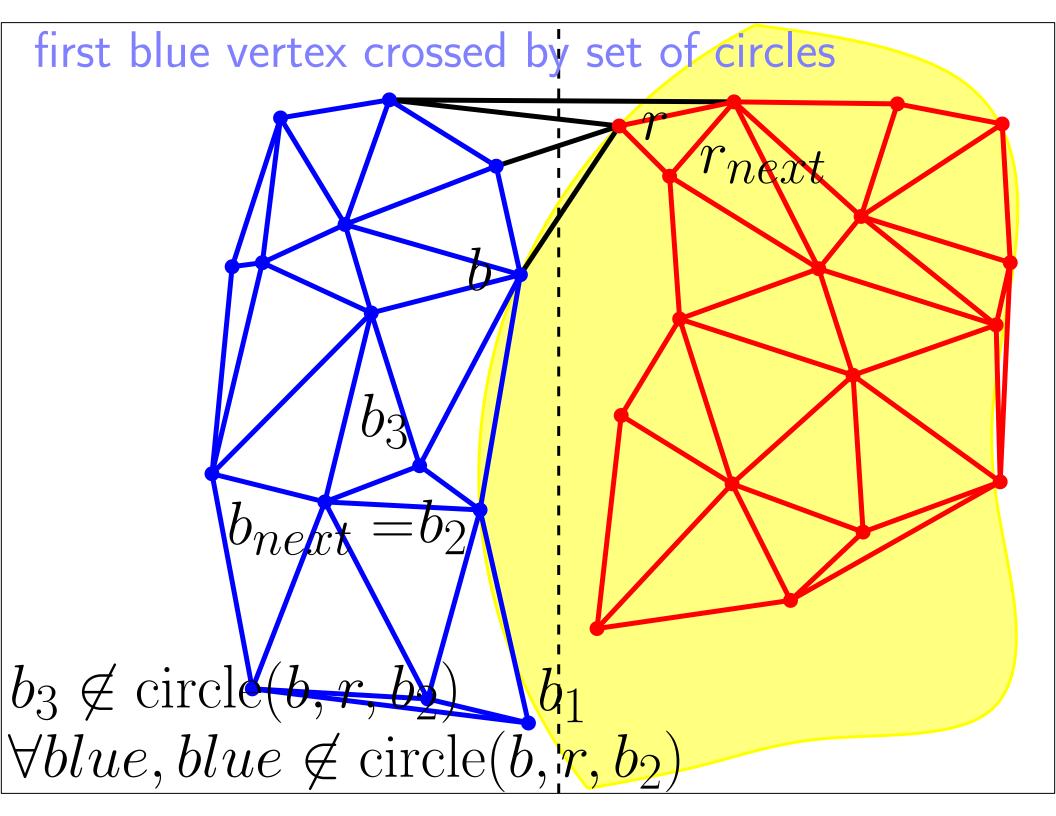


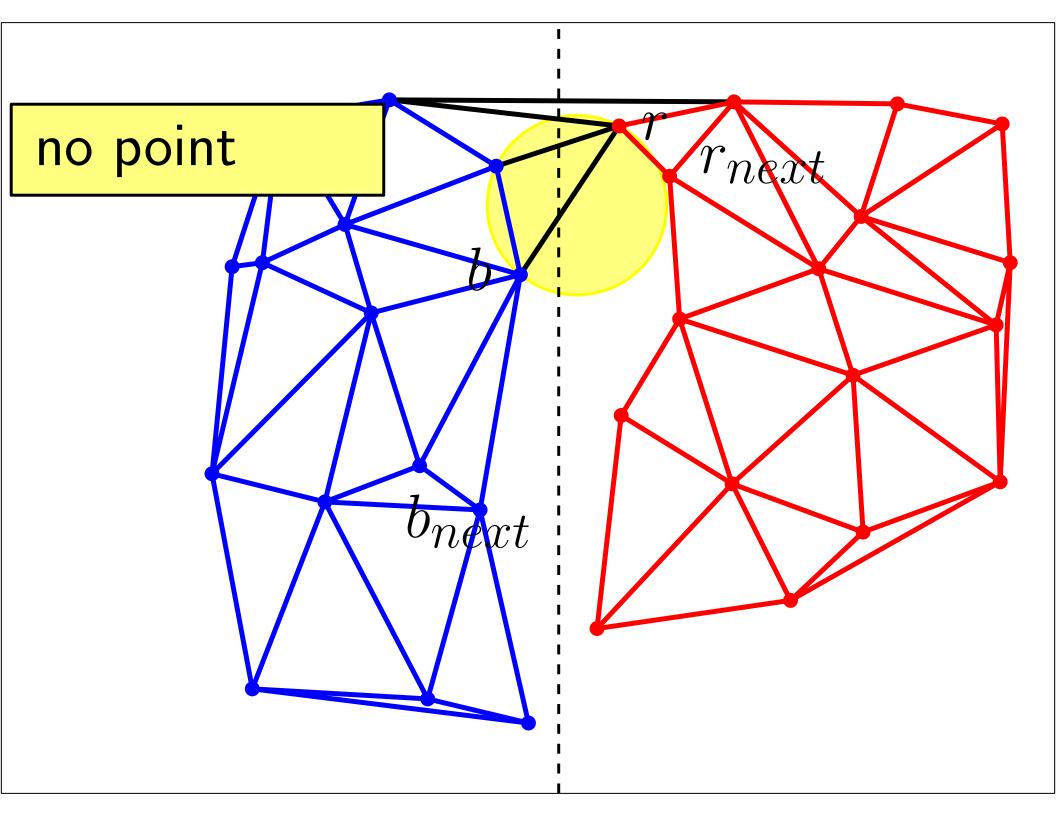


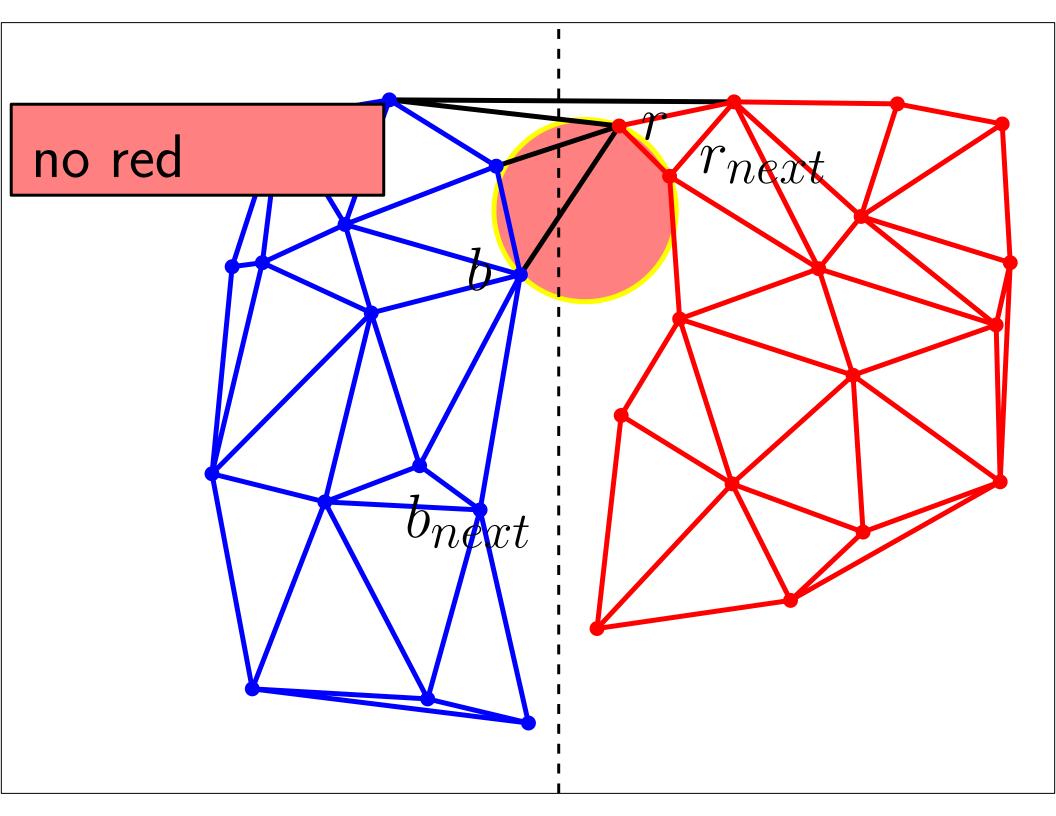


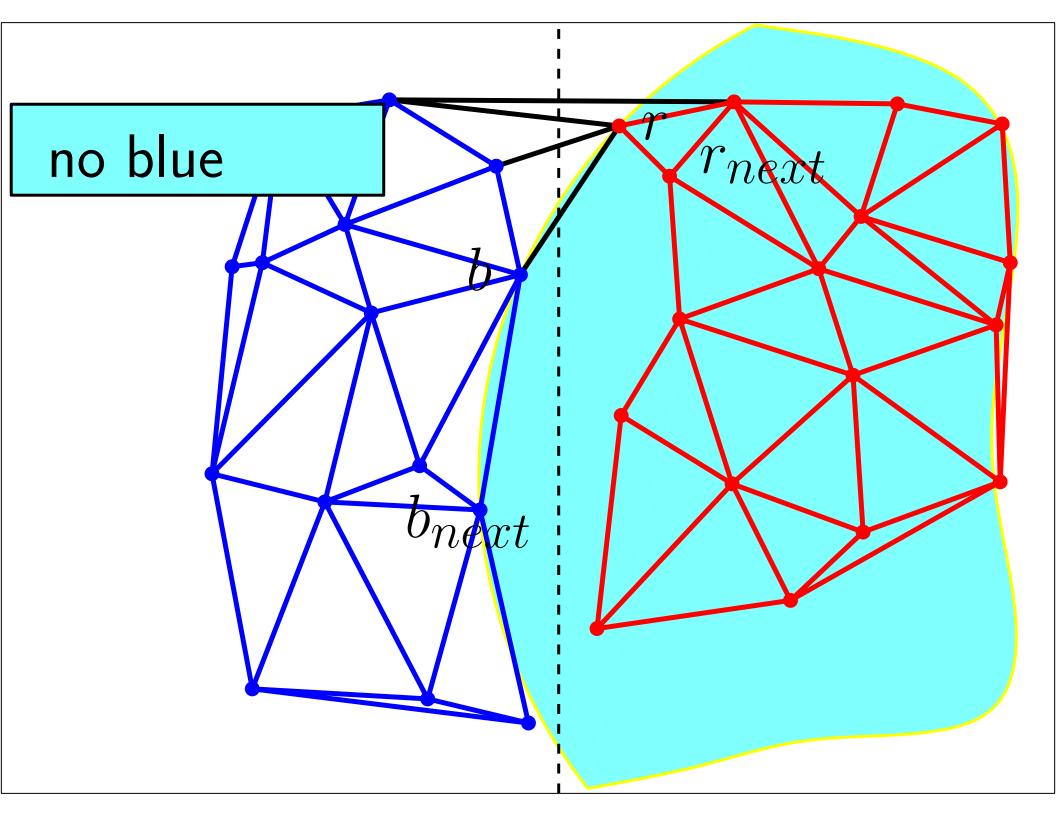


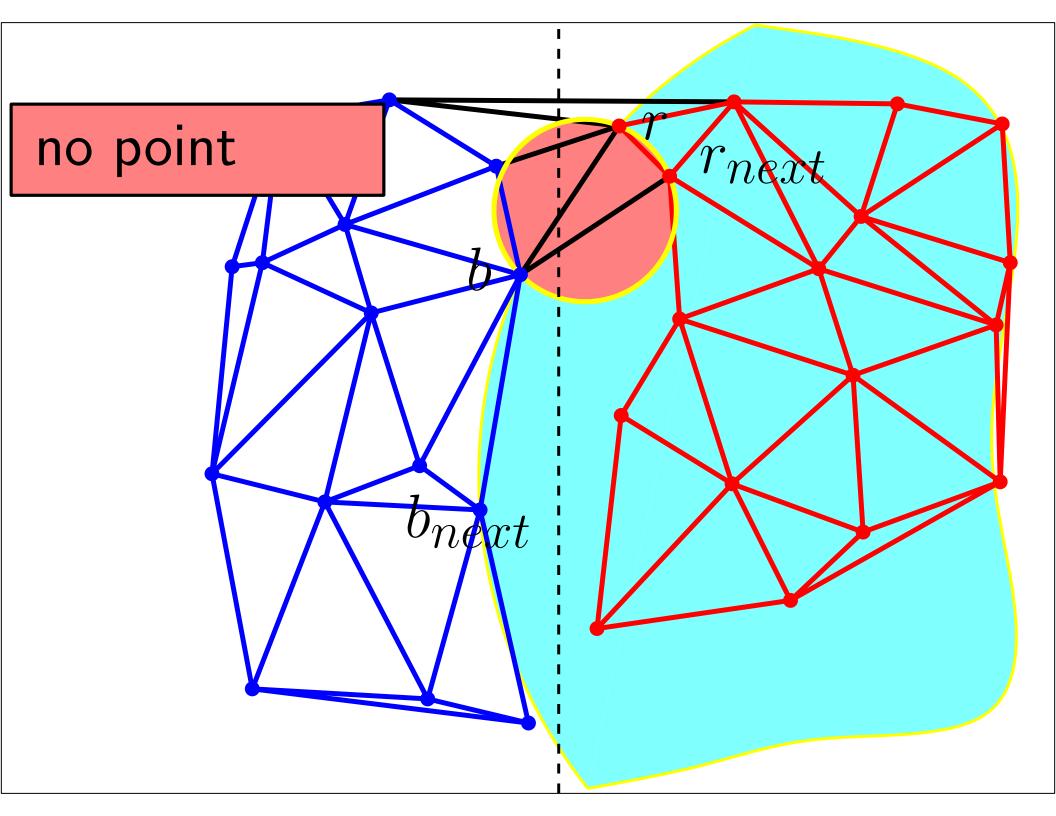


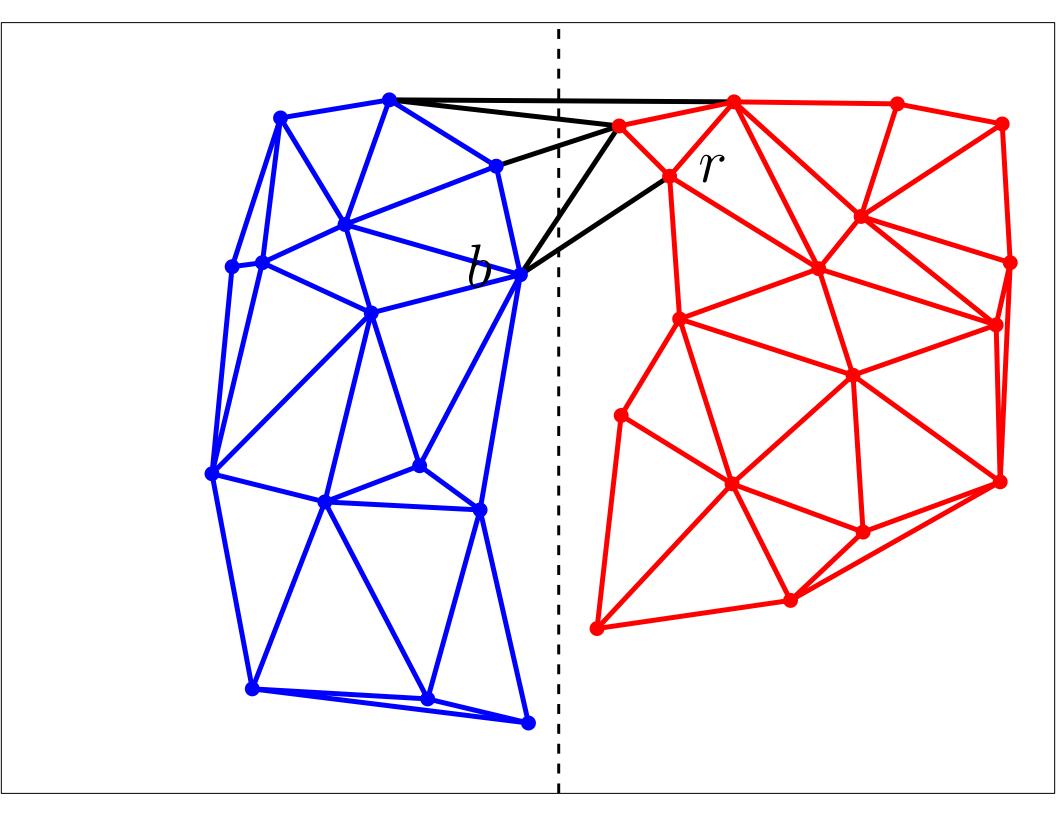


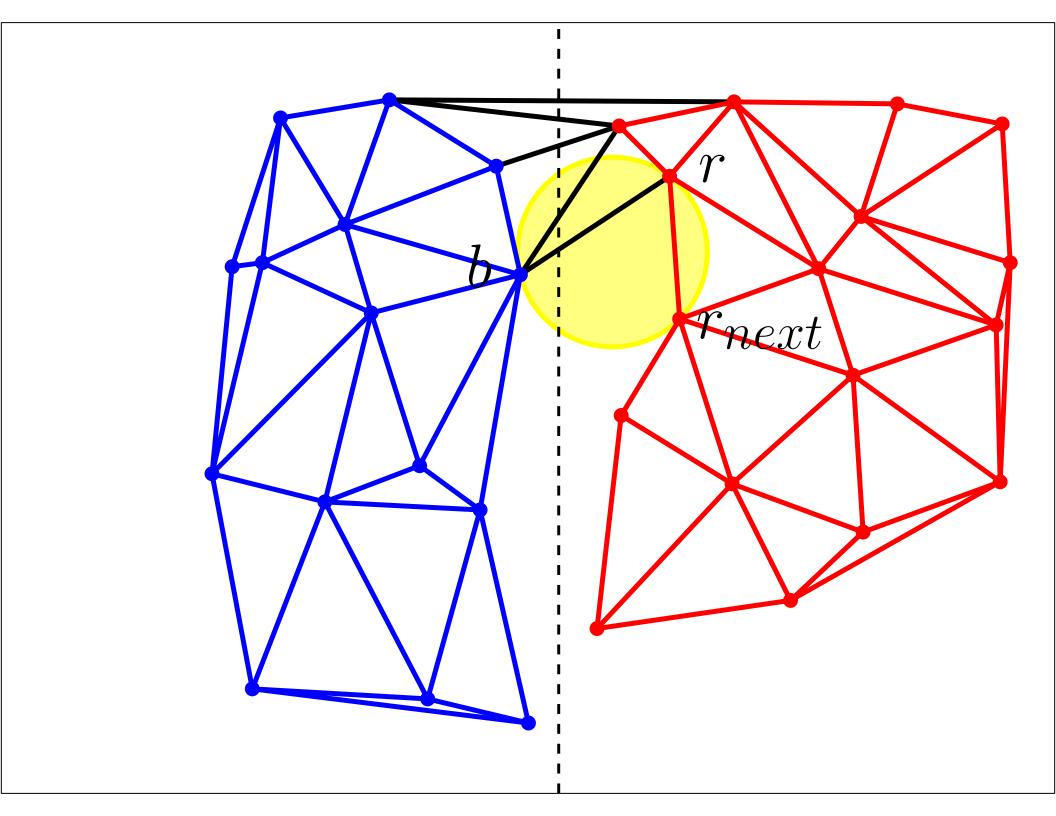


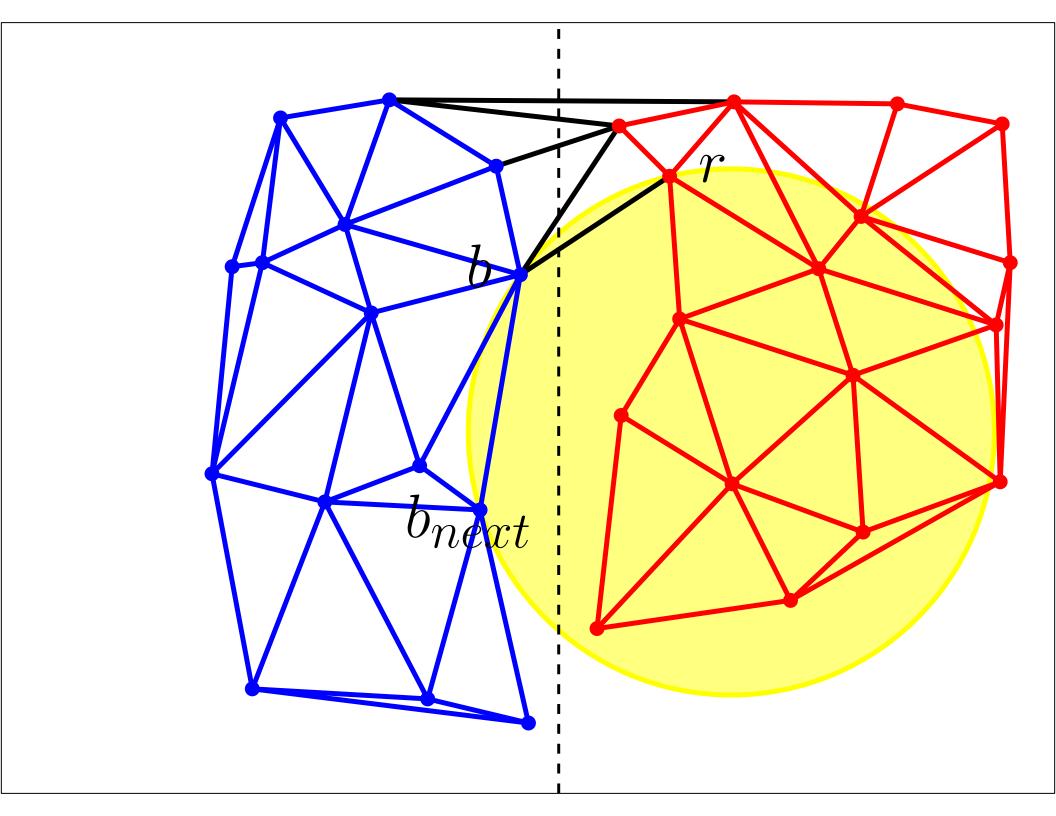


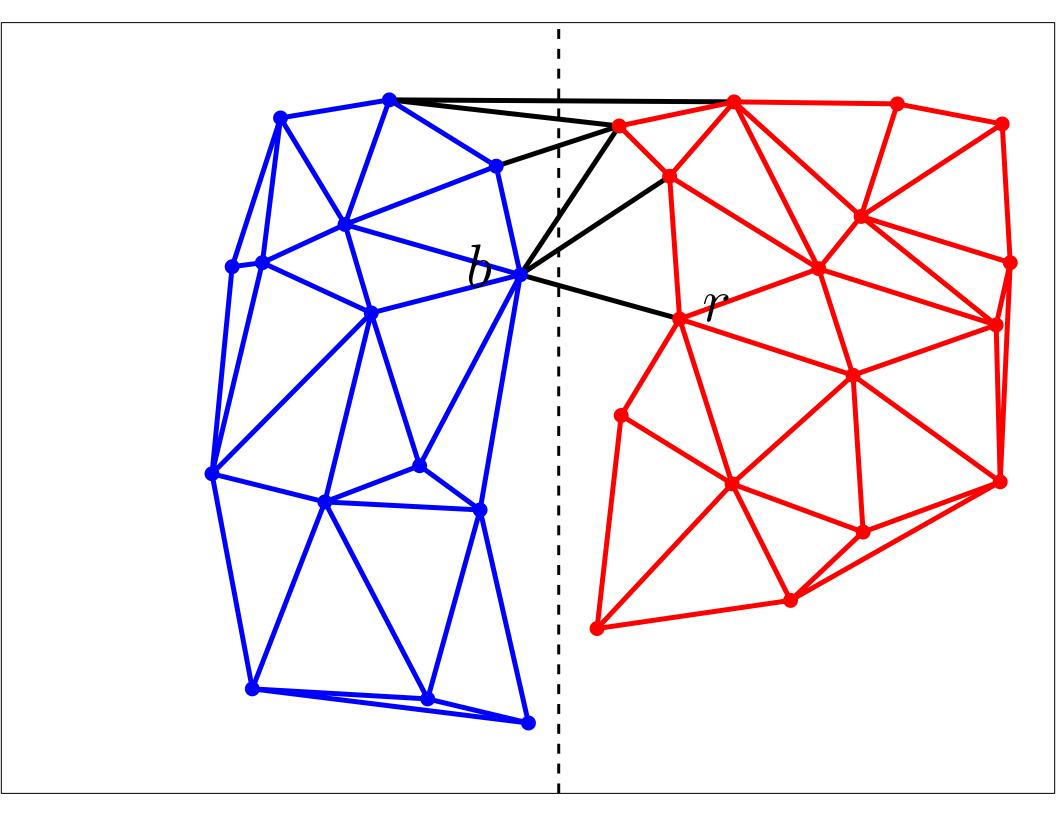


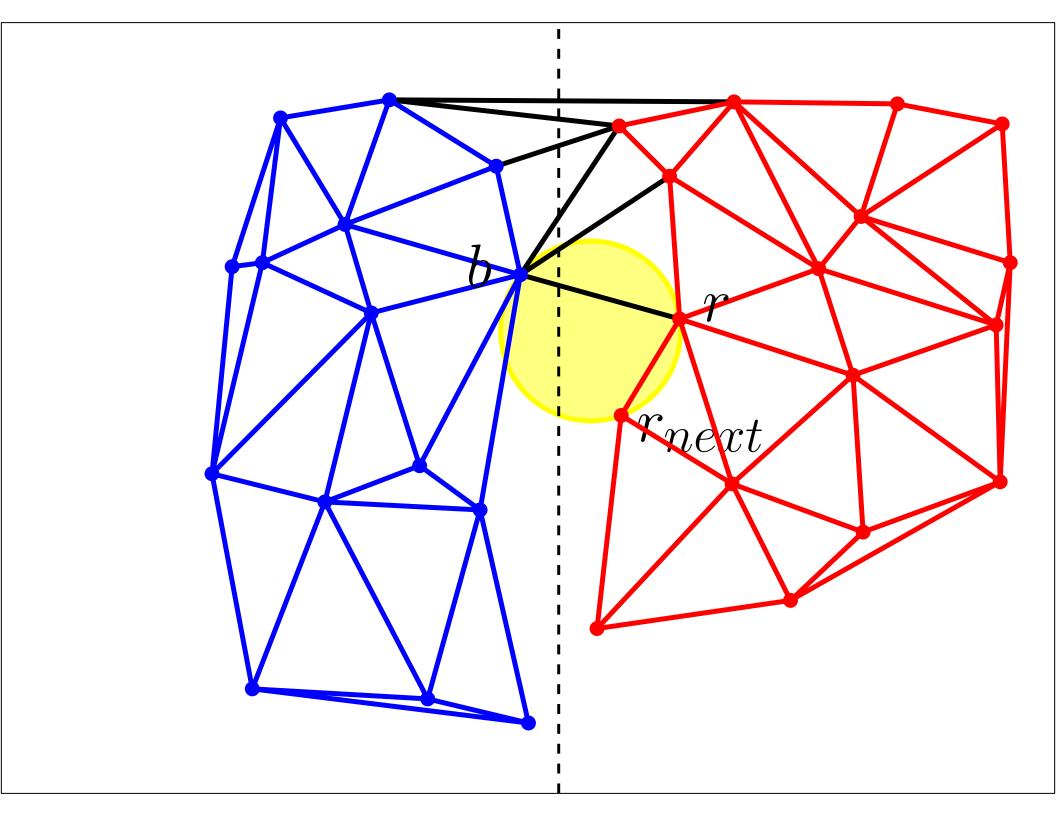


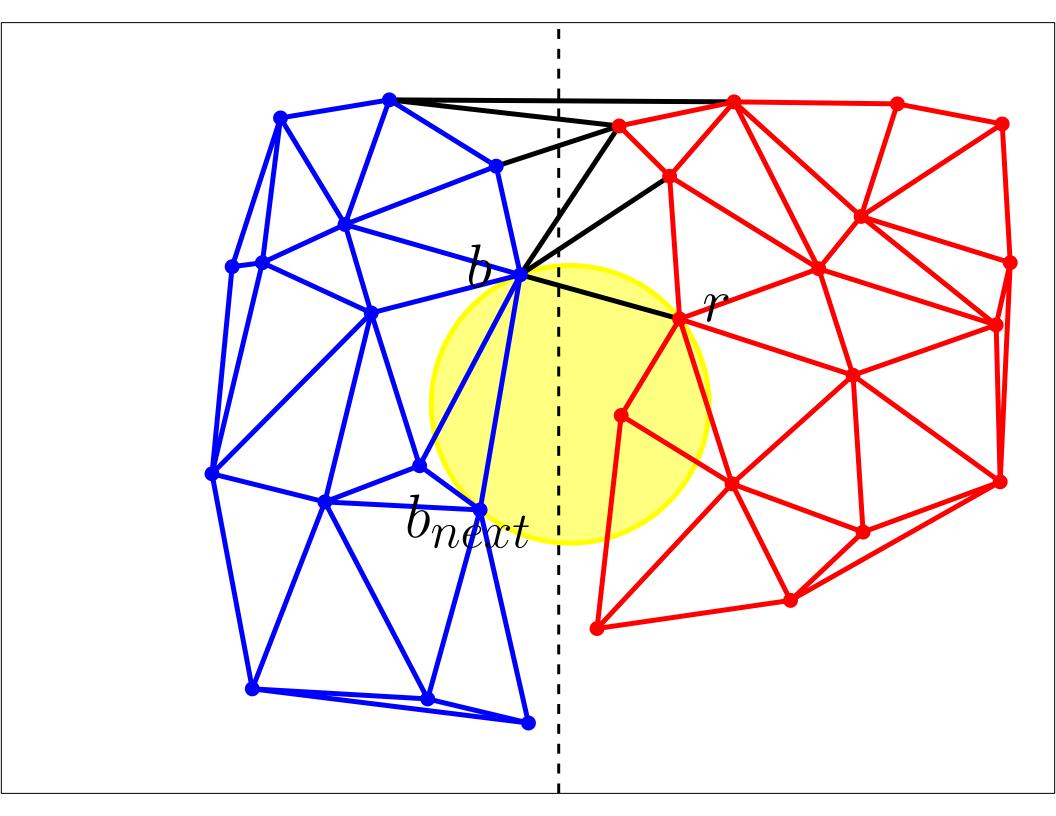


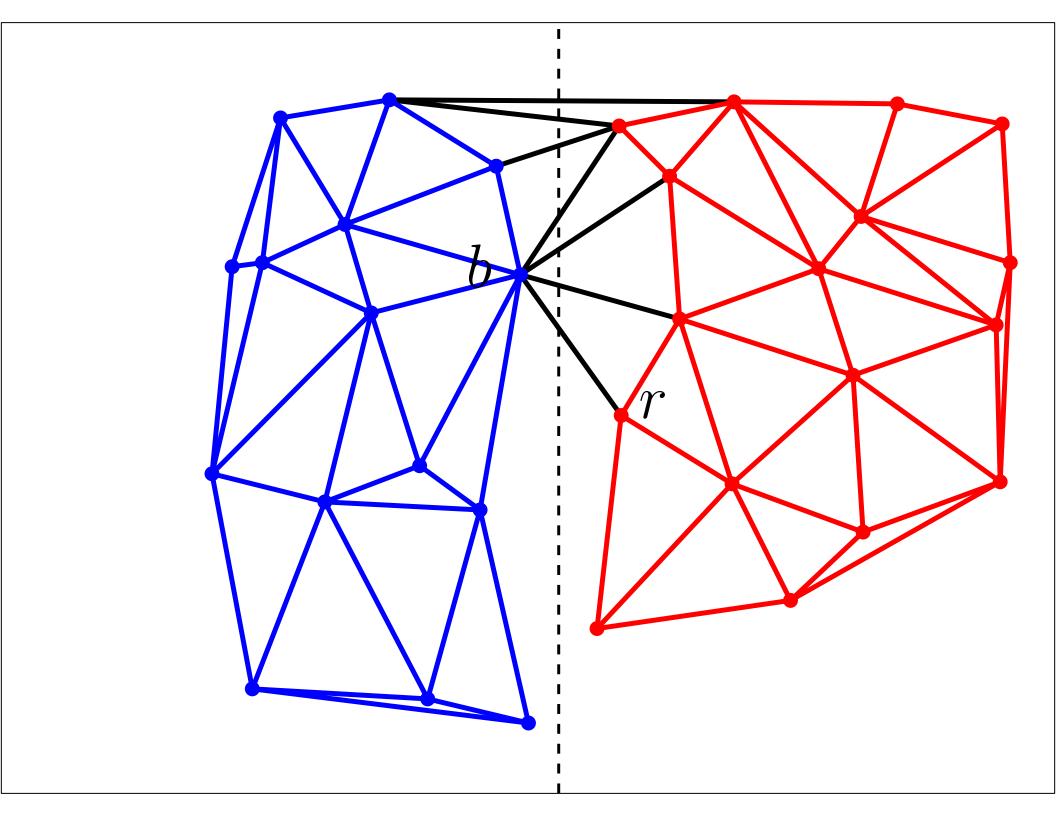


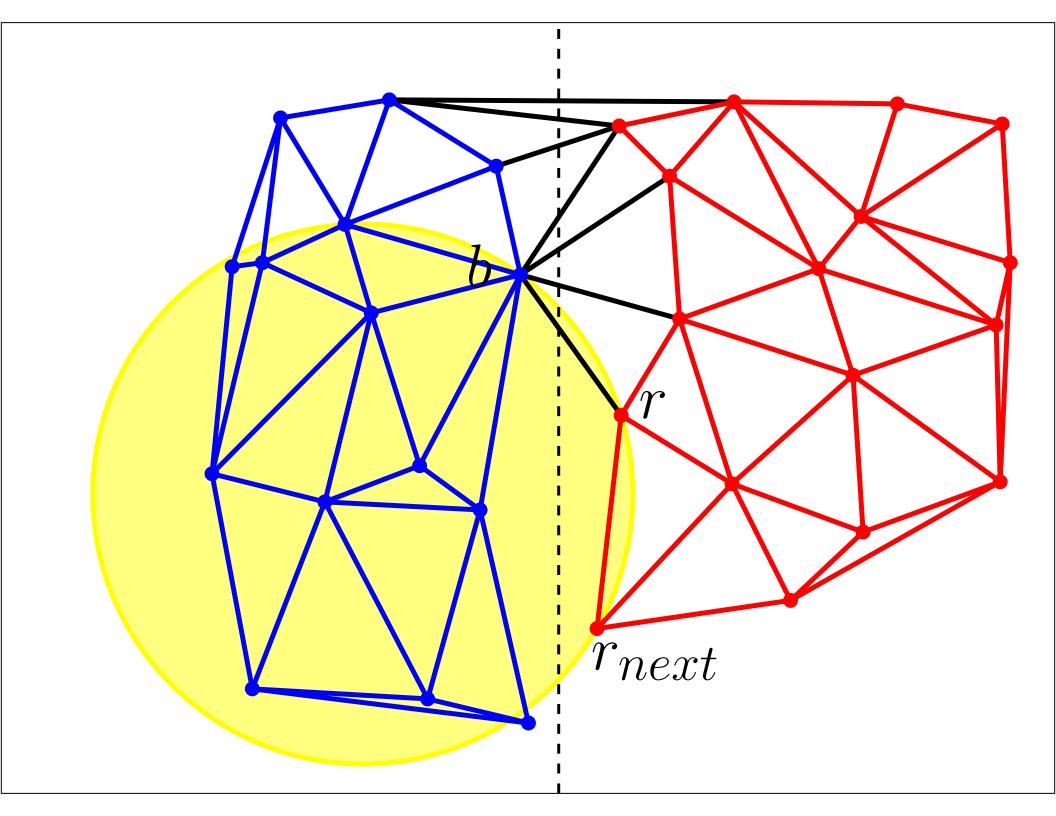


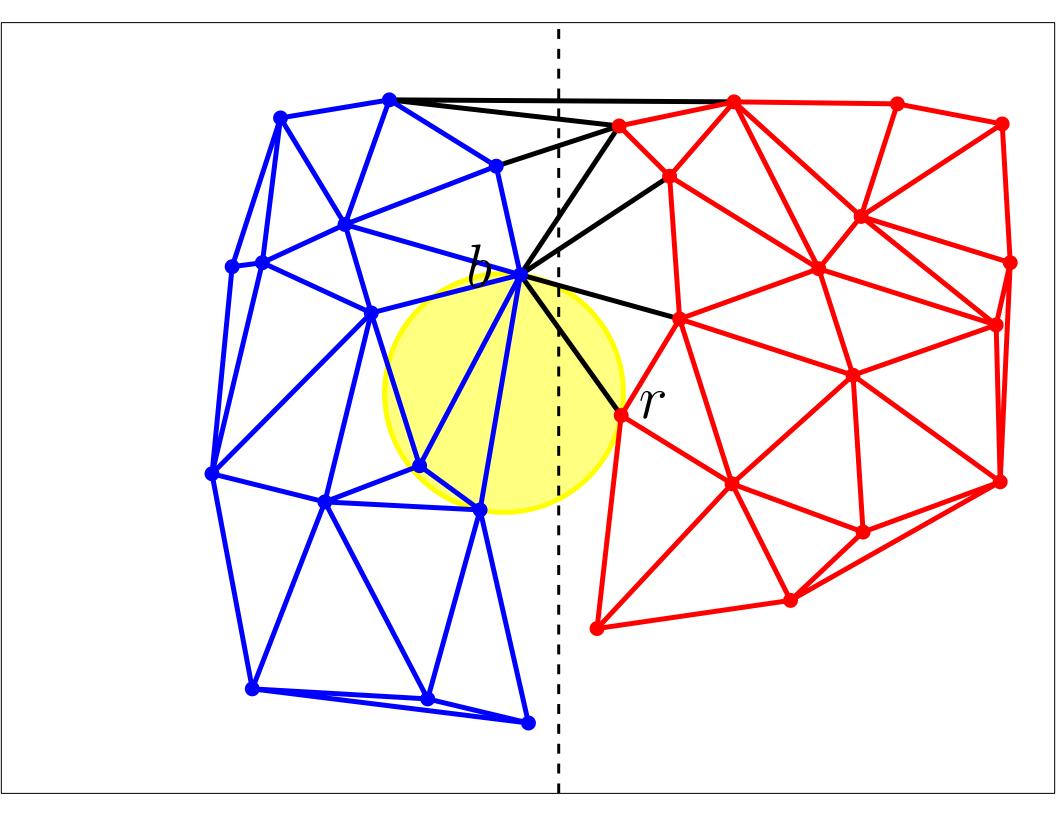


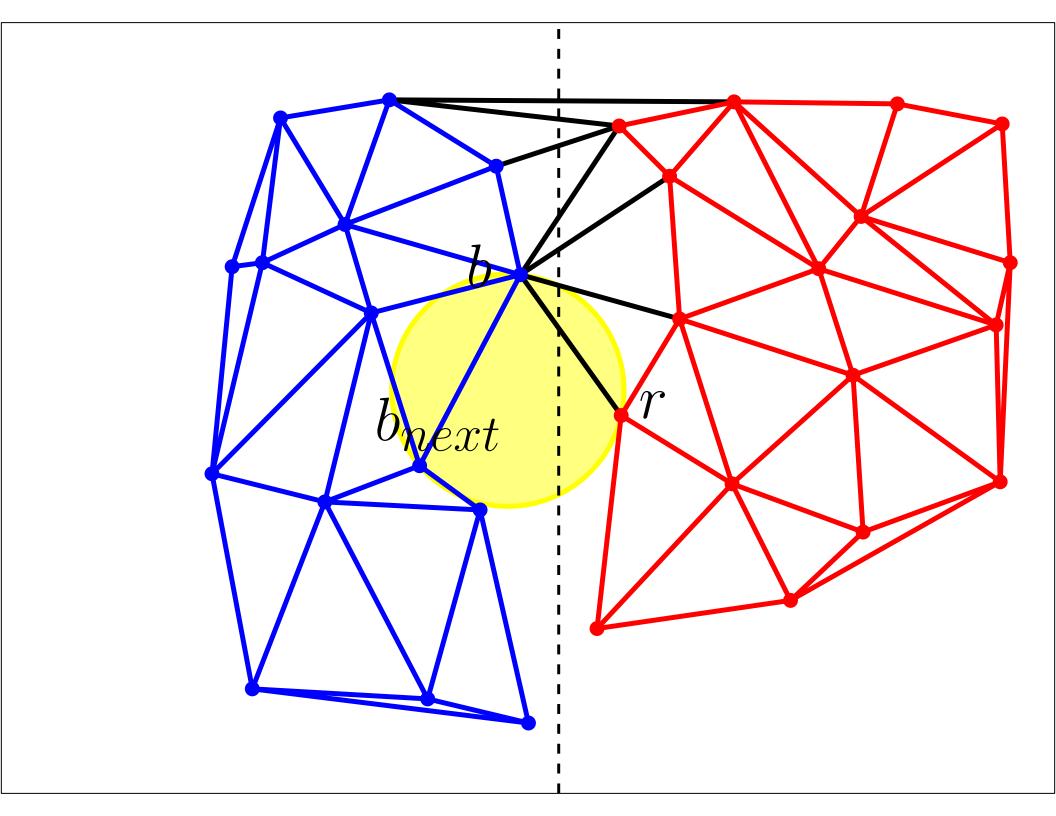


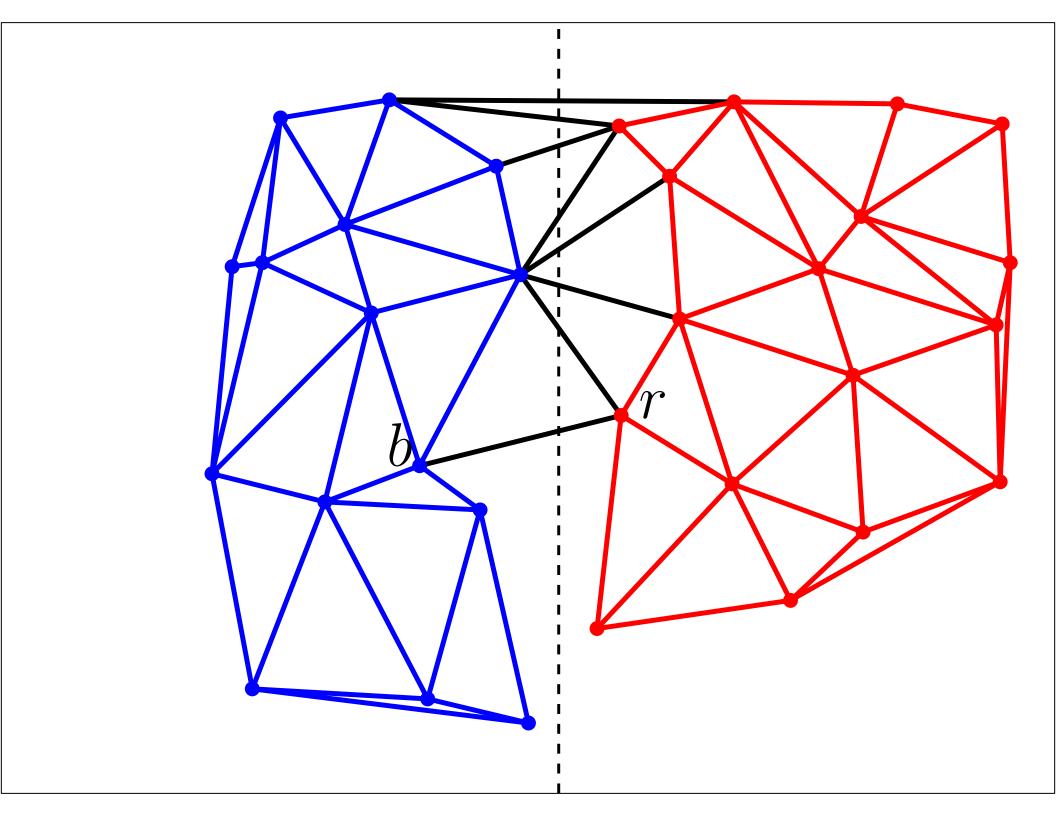


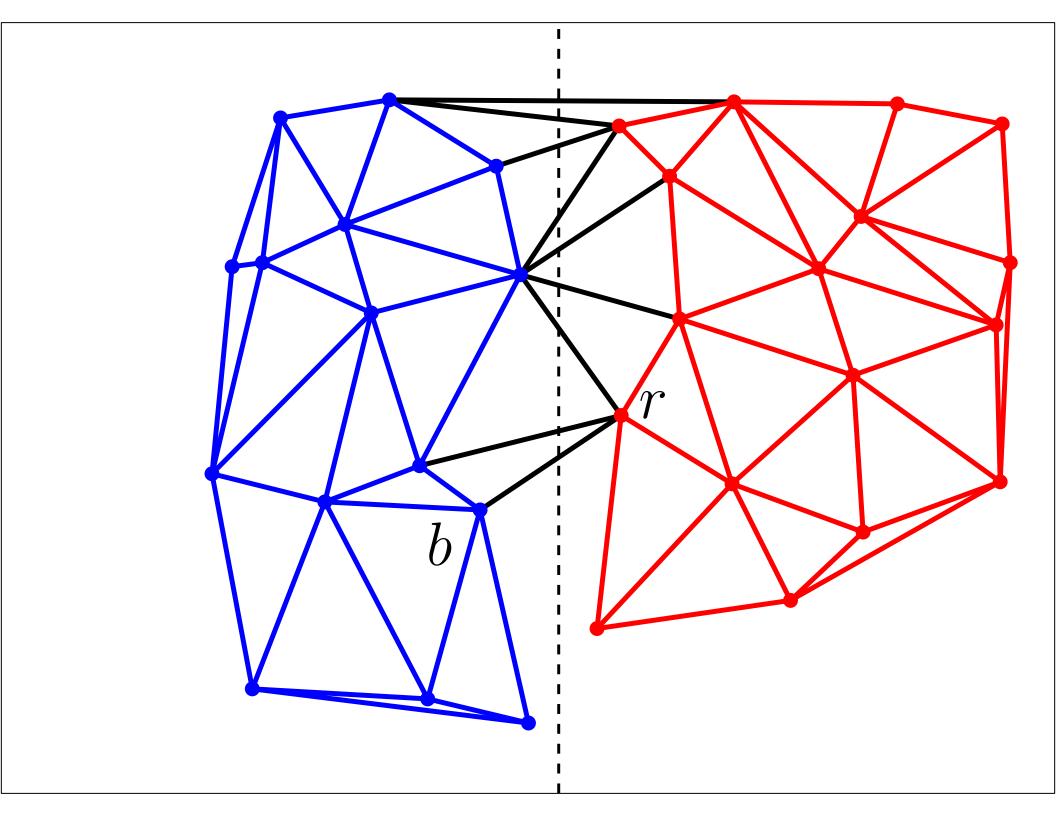


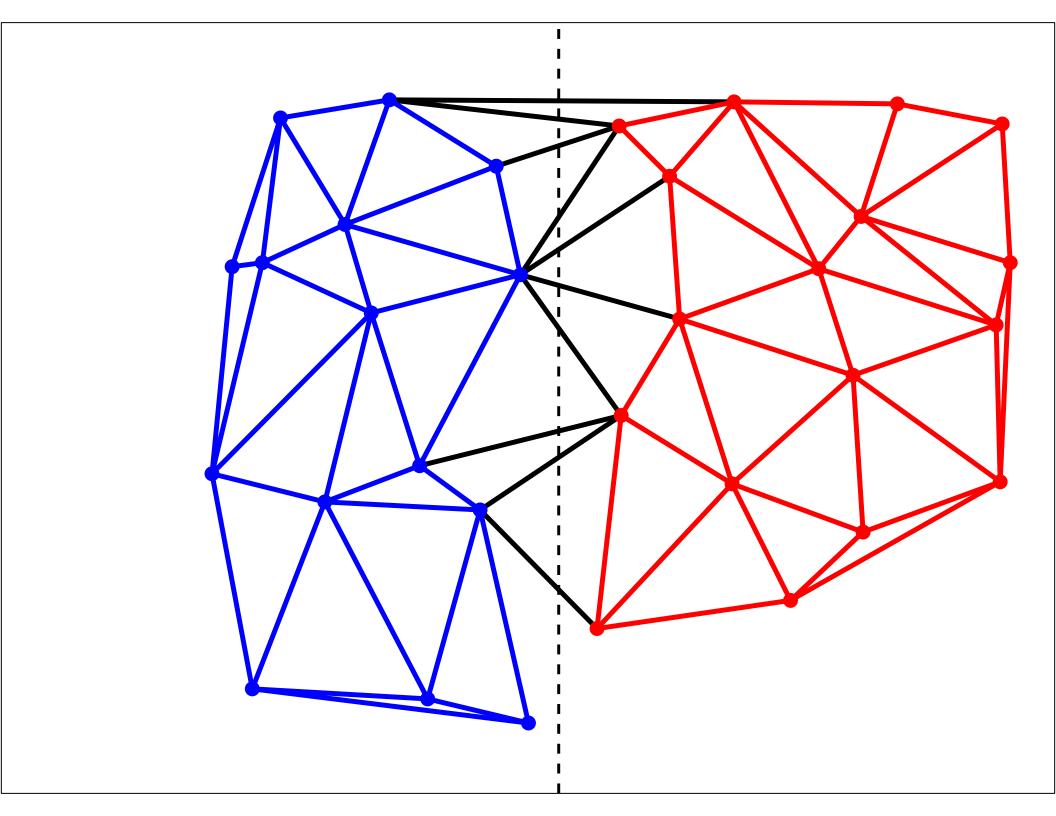


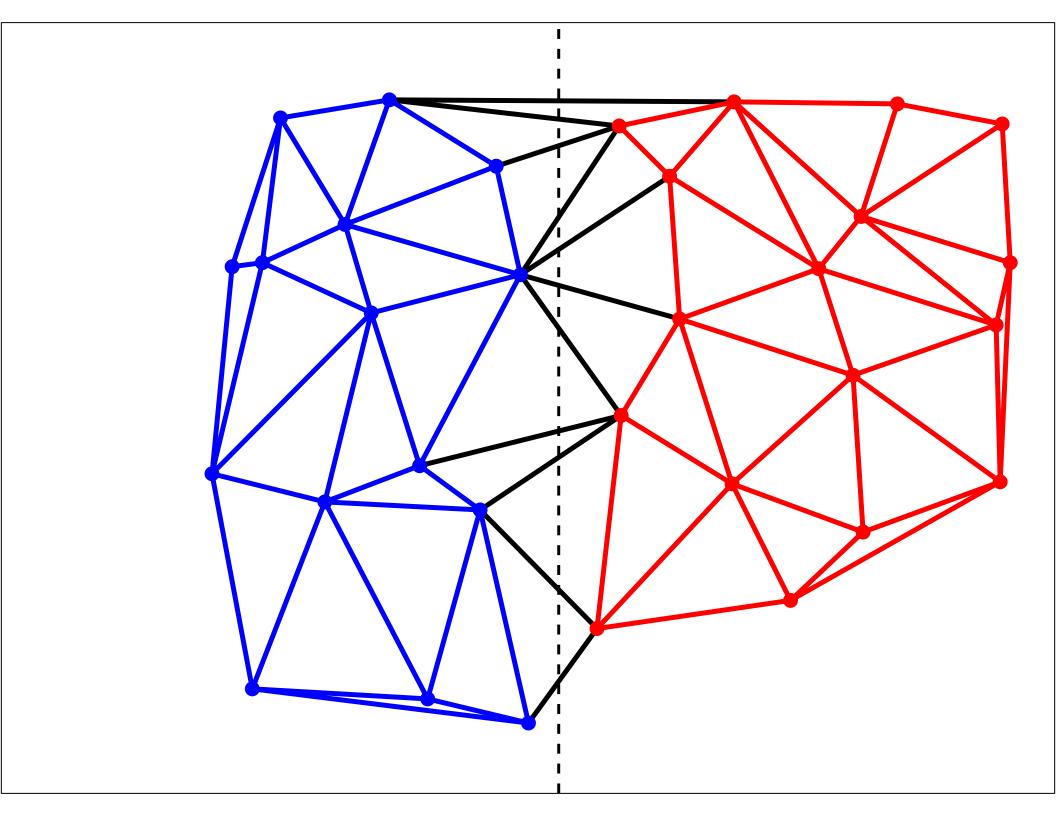


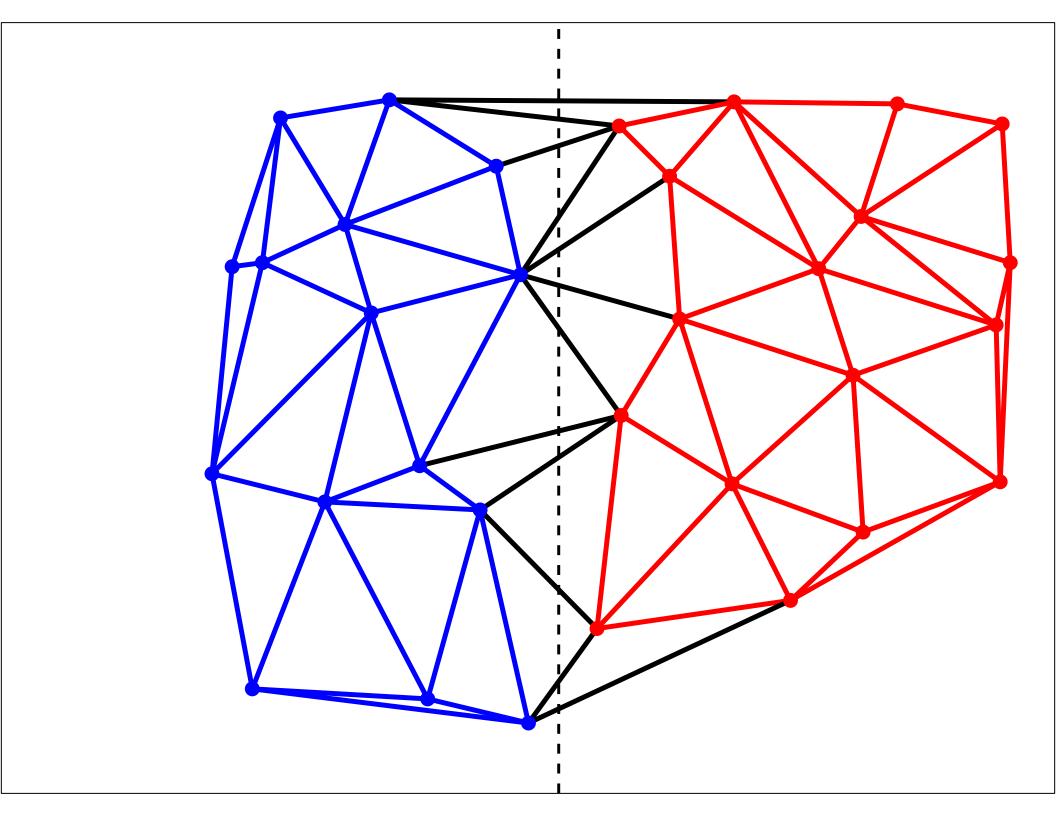












Complexity of Fusion

At each step of the search for r_{next}

A red edge is deleted

At each step of the search for b_{next}

A blue edge is deleted

After the choice between r_{next} and b_{next}

A black edge is created

Complexity of Fusion

```
\begin{array}{ll} \mathsf{Complexity} \leq & \sharp \; \mathsf{red} \; \mathsf{edges} \\ & + \sharp \; \mathsf{blue} \; \mathsf{edges} \\ & + \sharp \; \mathsf{black} \; \mathsf{edges} \end{array}
```

Complexity of Fusion

$$\begin{array}{ll} \mathsf{Complexity} \leq & \sharp \; \mathsf{red} \; \mathsf{edges} \\ & + \sharp \; \mathsf{blue} \; \mathsf{edges} \\ & + \sharp \; \mathsf{black} \; \mathsf{edges} \end{array}$$

$$\le 3\frac{n}{2} + 3\frac{n}{2} + 3n = O(n)$$

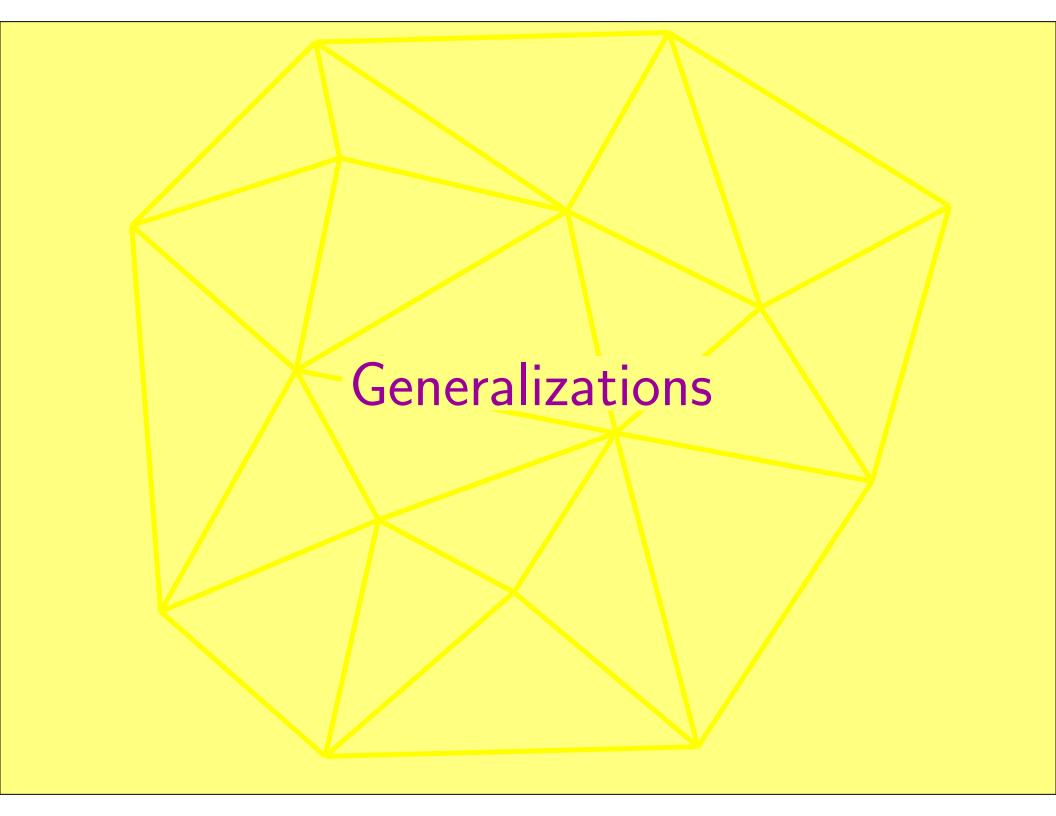
each colored triangulation has $\leq 3k$ edges, where k is the size of the subset of vertices the black edges are Delaunay \Rightarrow there are at most 3n of them

Overall Complexity

Division = O(k) on sub-problem of size k + $O(n \log n)$ preprocessing

Fusion = O(k) on sub-problem of size k

Division-Fusion $\Longrightarrow O(n \log n)$



Q

Nearest neighbor of q among \mathcal{S}

Q

Nearest neighbor of q among S

Change

ambient space (for q)

 $I\!\!R^2$ $I\!\!R^3$

Nearest neighbor of q among S

Change

metrics

Euclidean L_2

 L_1, L_{∞}, L_p

hyperbolic

additive weights

multiplicative weights

Q

Nearest neighbor of q among S

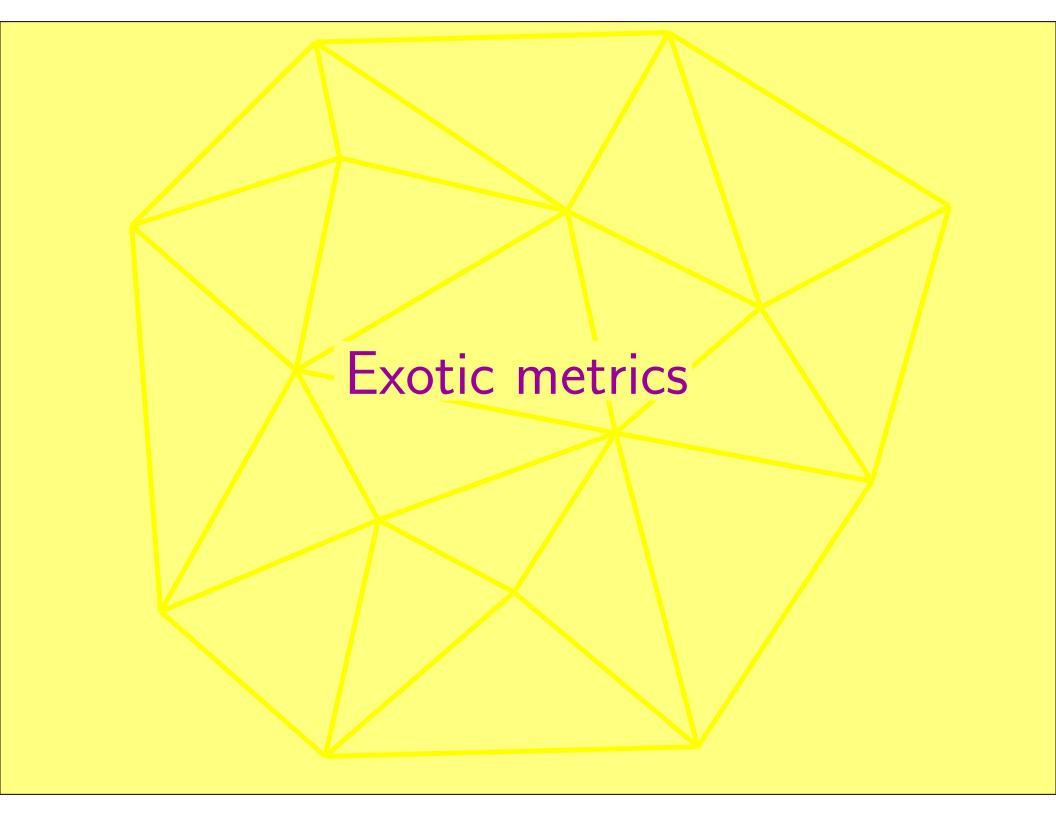
Change

universal set $\supset \mathcal{S}$

points of $I\!\!R^d$

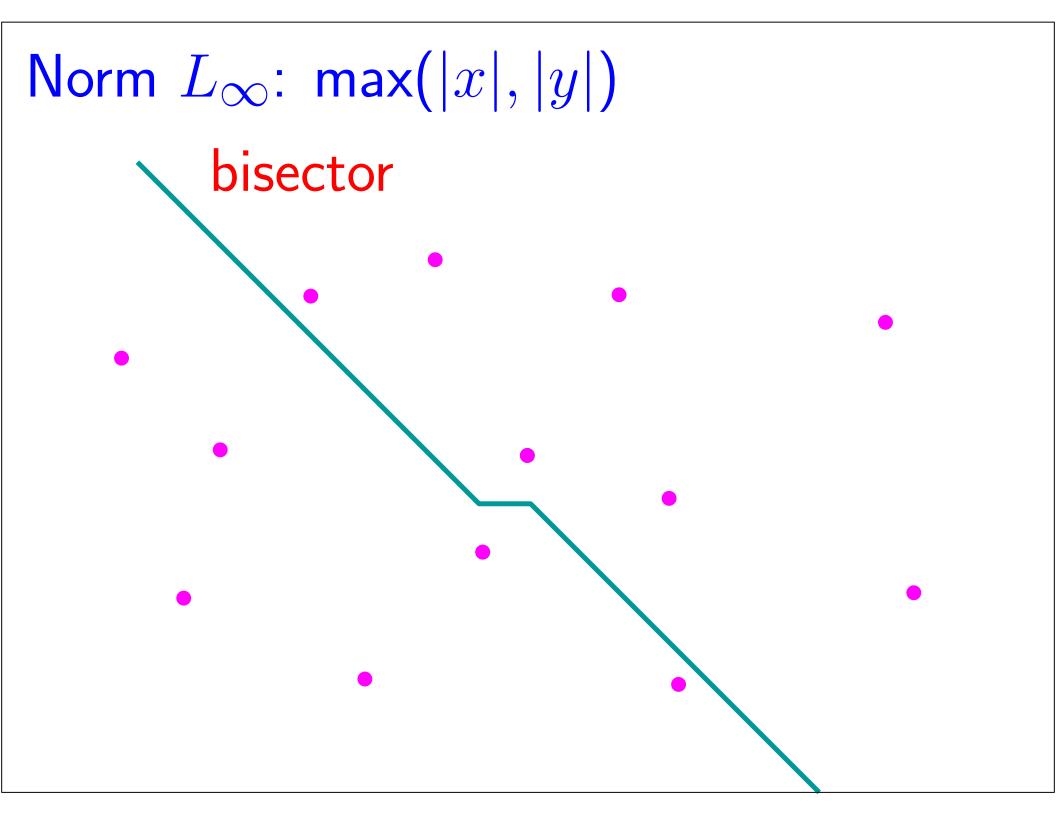
segments of $I\!\!R^d$

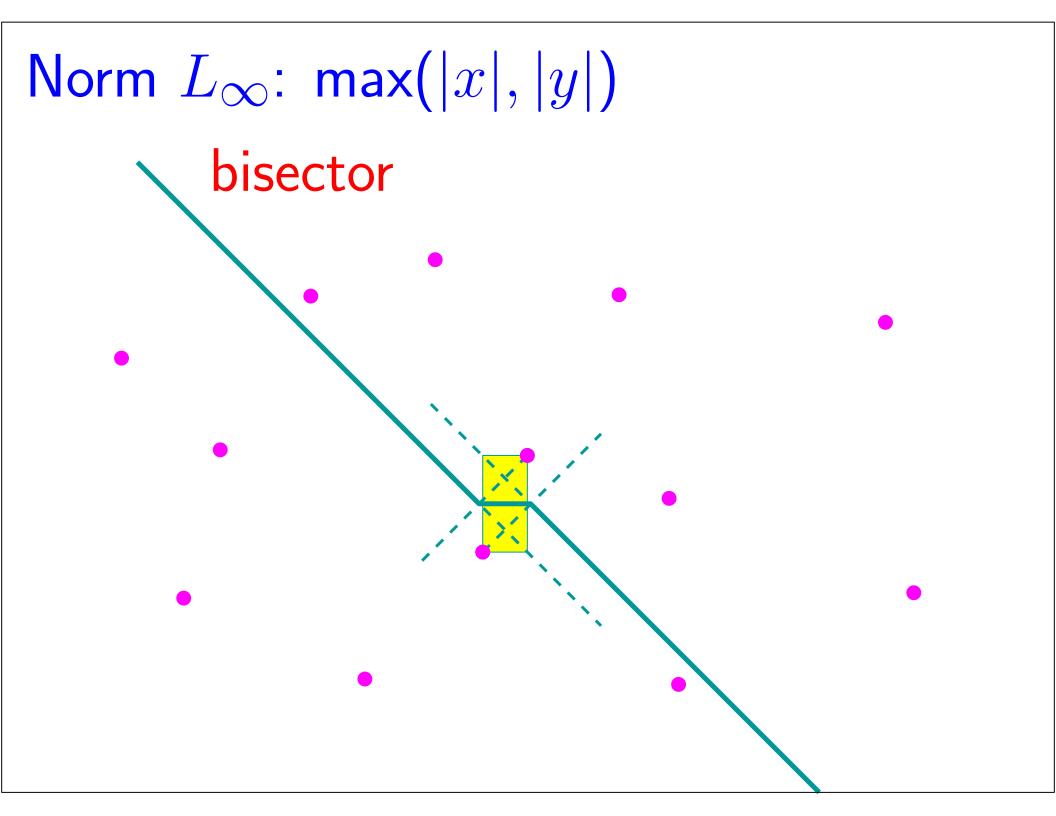
spheres of $I\!\!R^d$

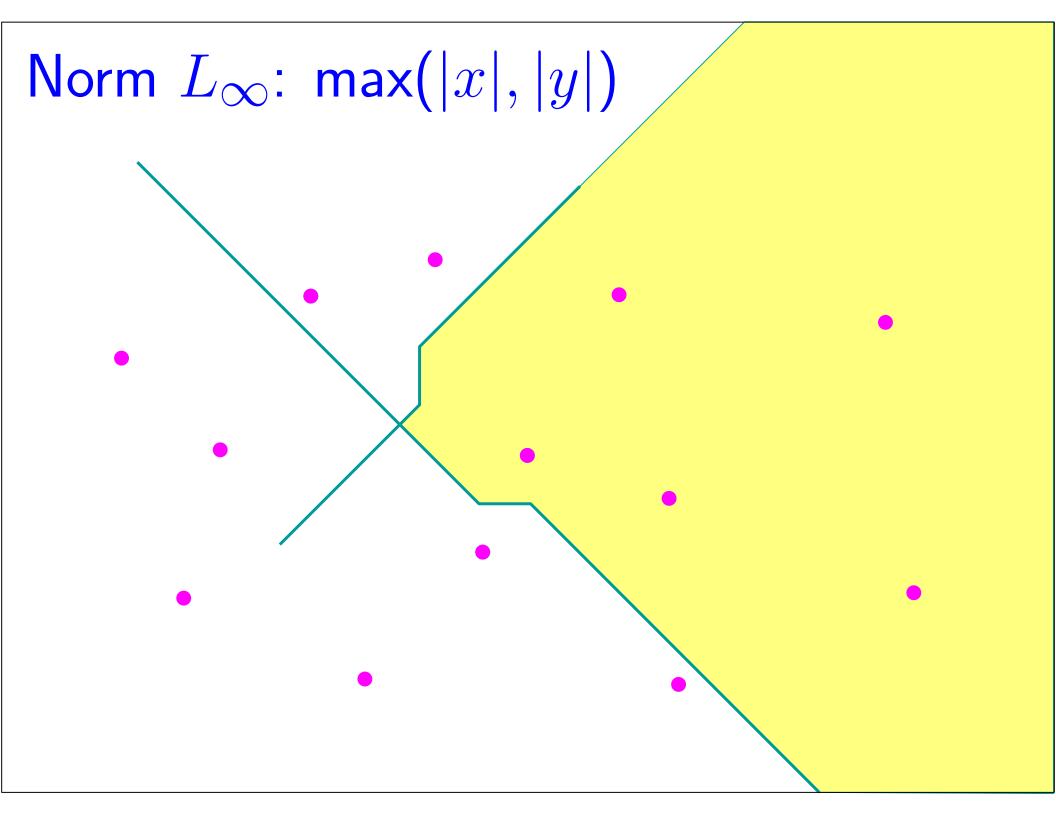


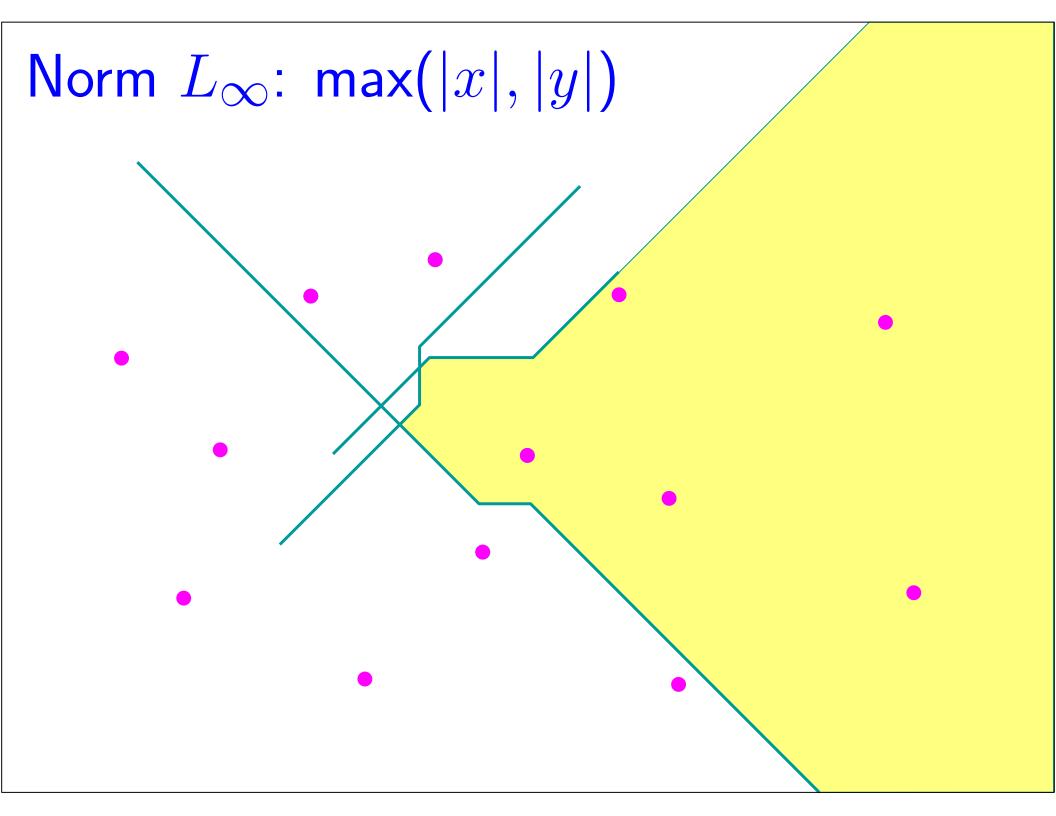
```
Norm L_{\infty}: max(|x|, |y|)
```

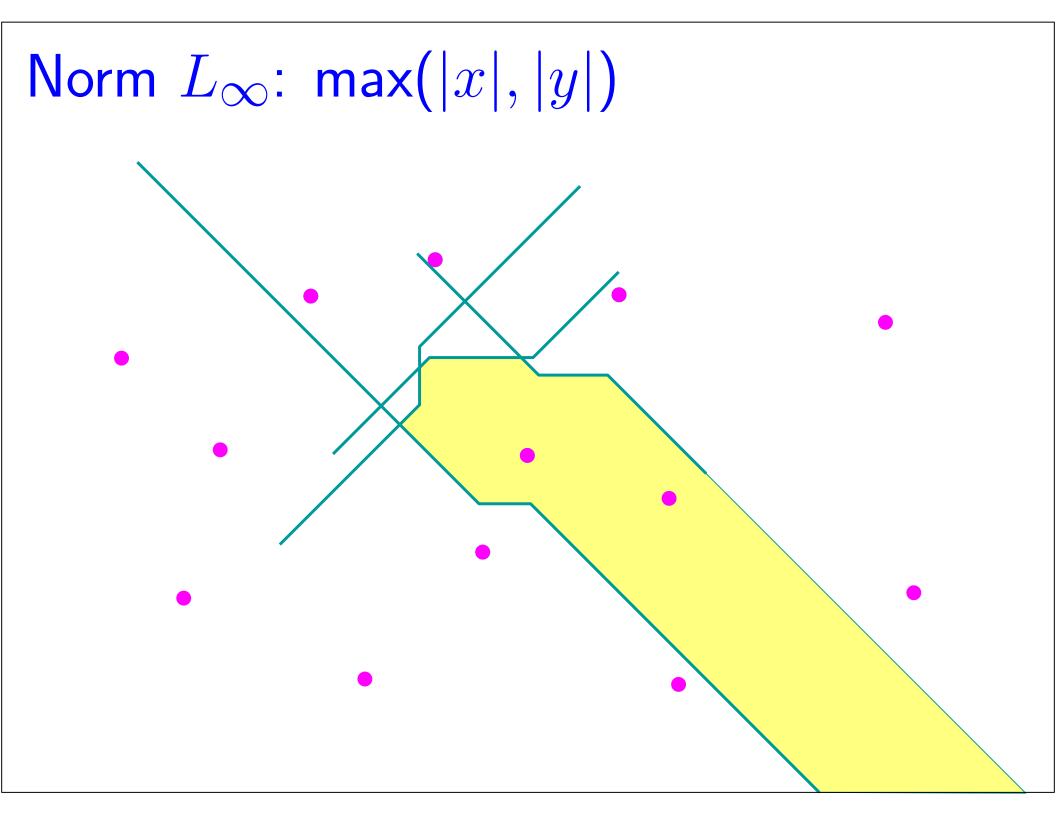
```
Norm L_{\infty}: max(|x|, |y|)
query
```

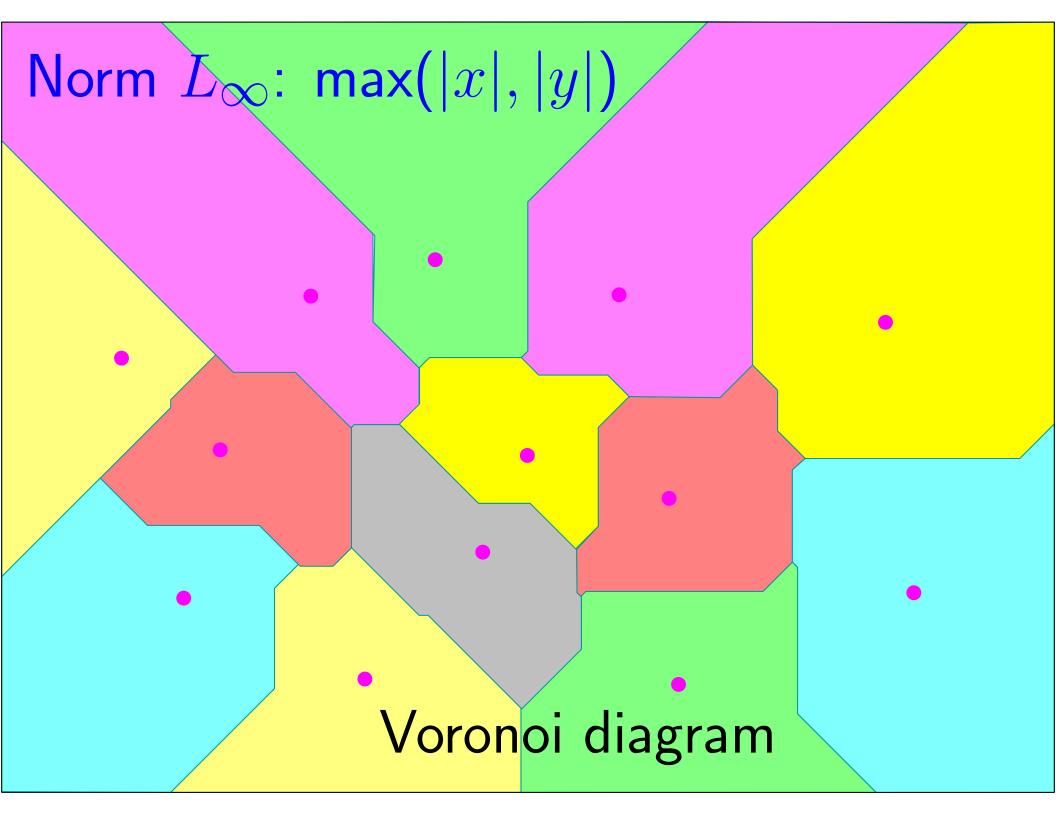


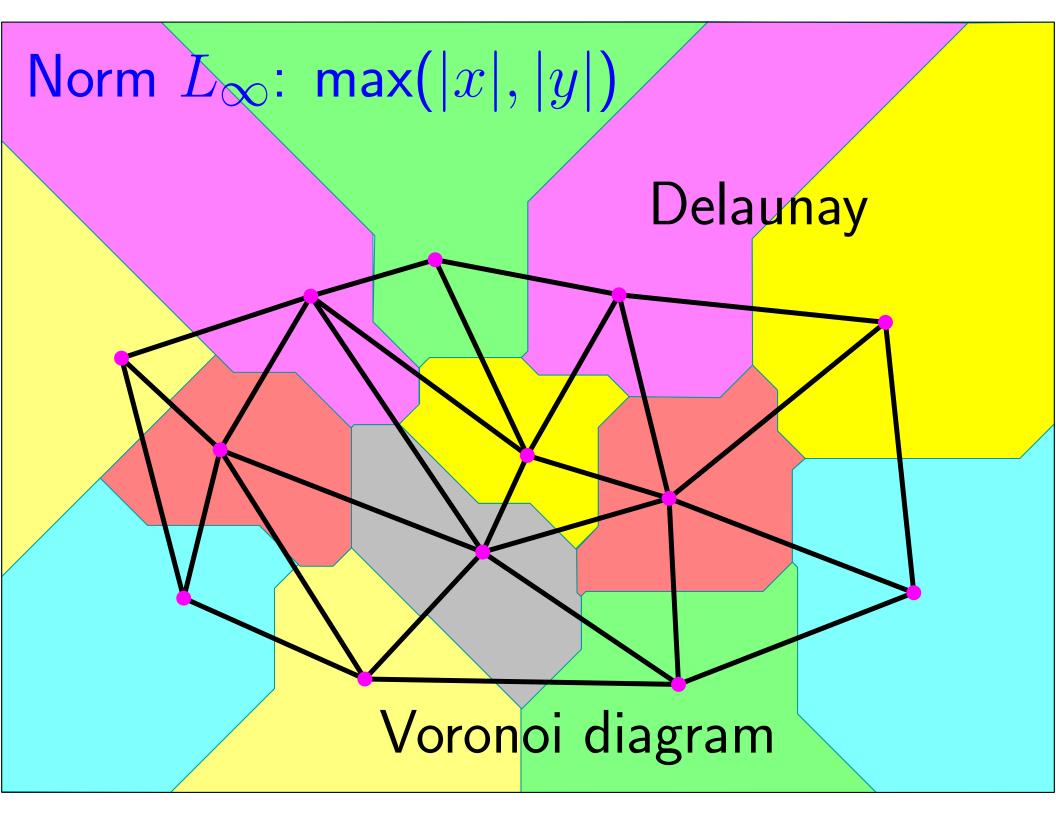




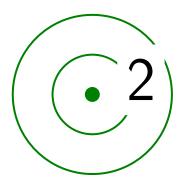


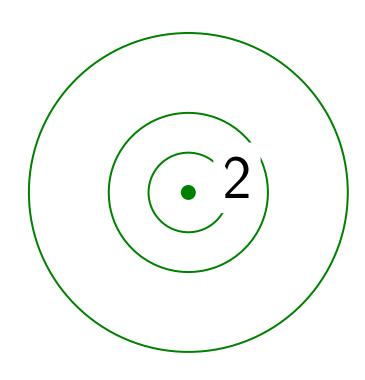


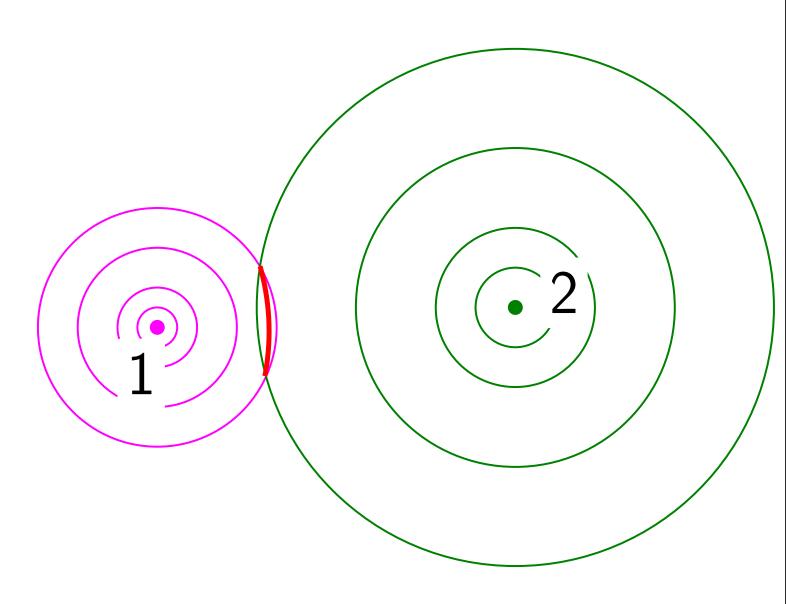


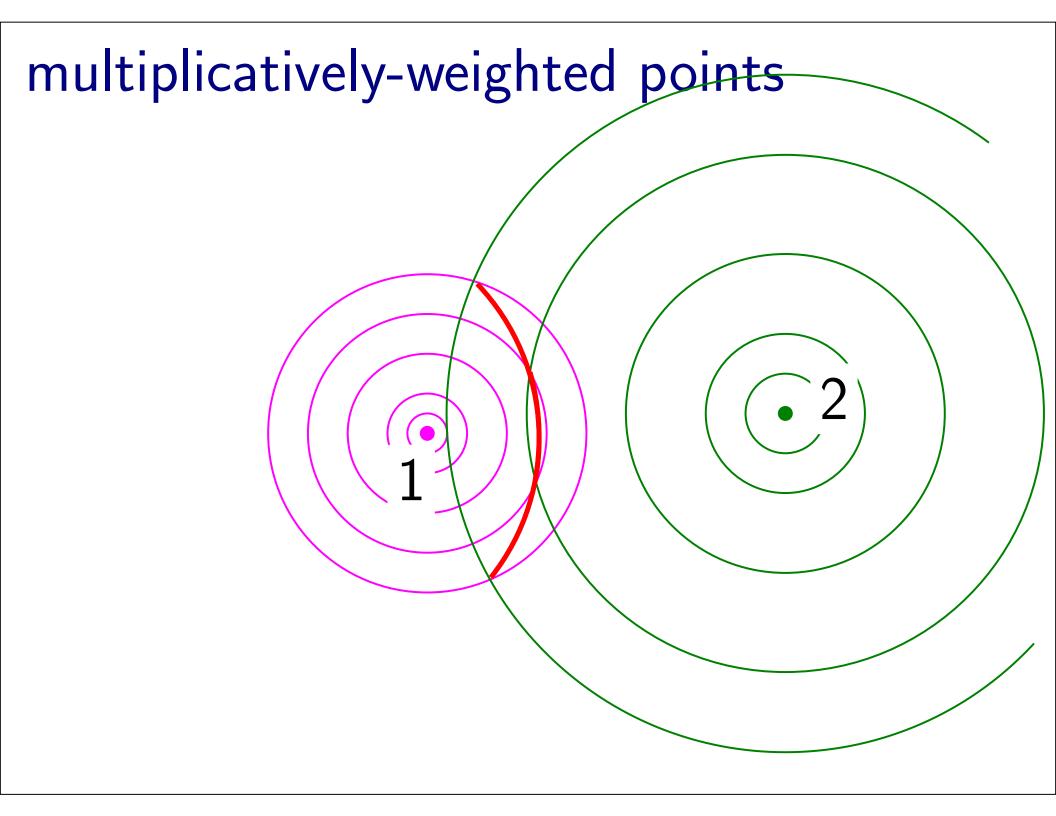


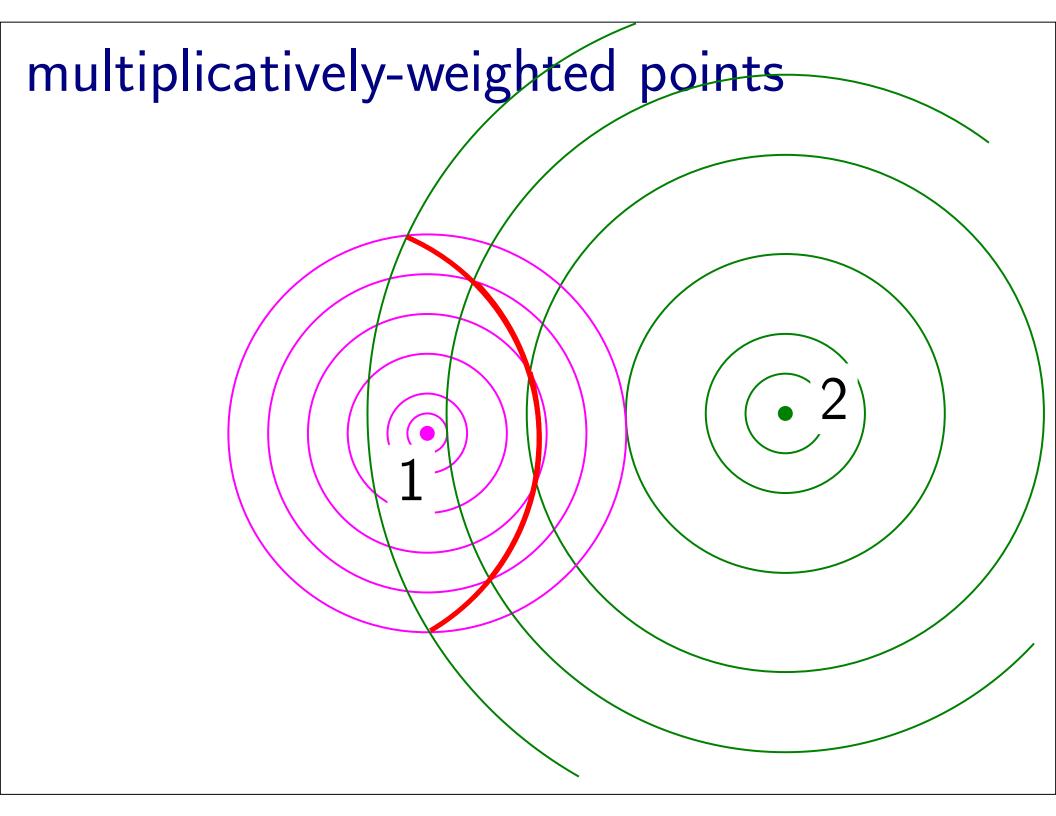
• 4

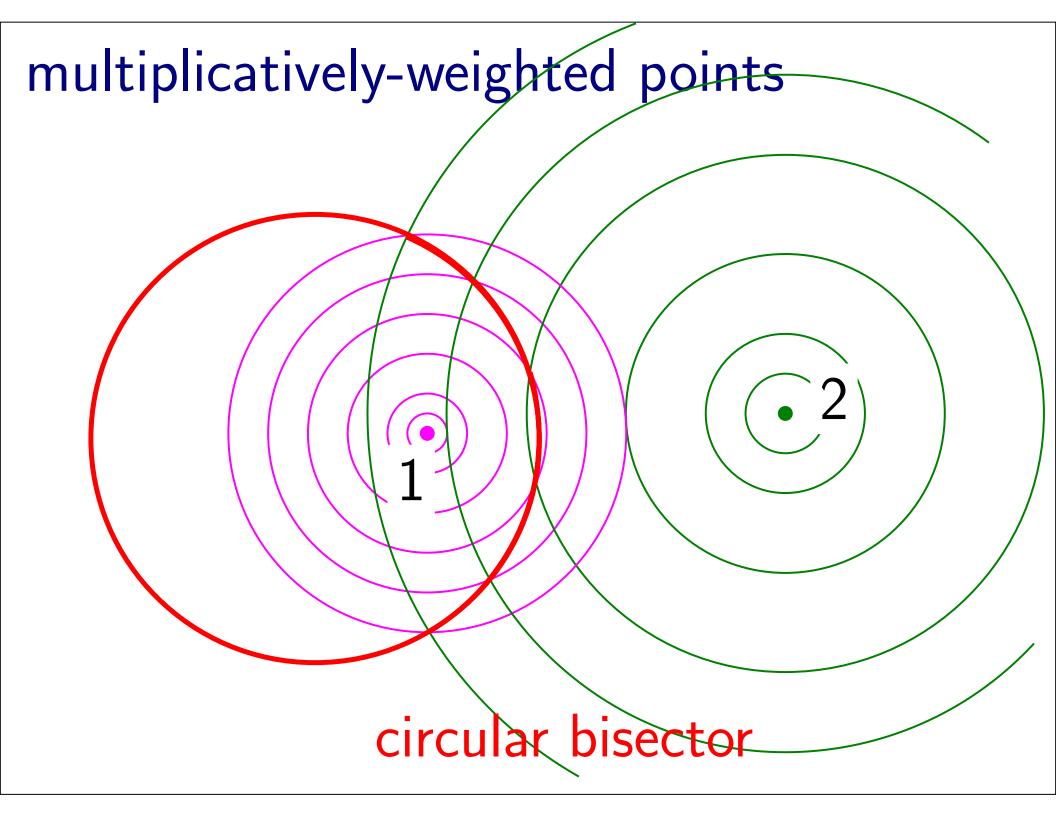


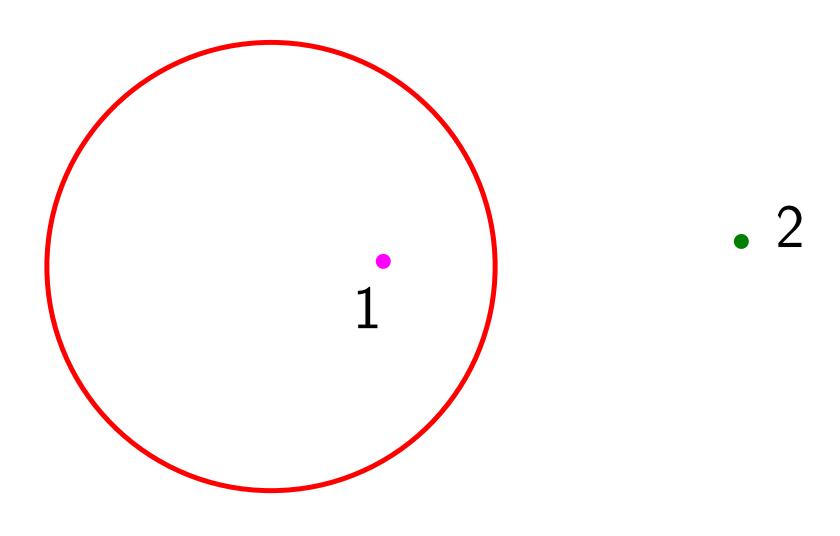




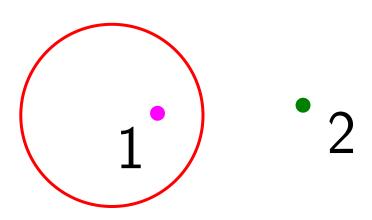


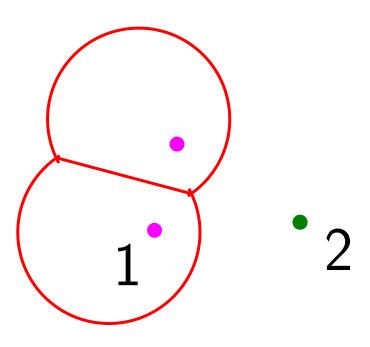


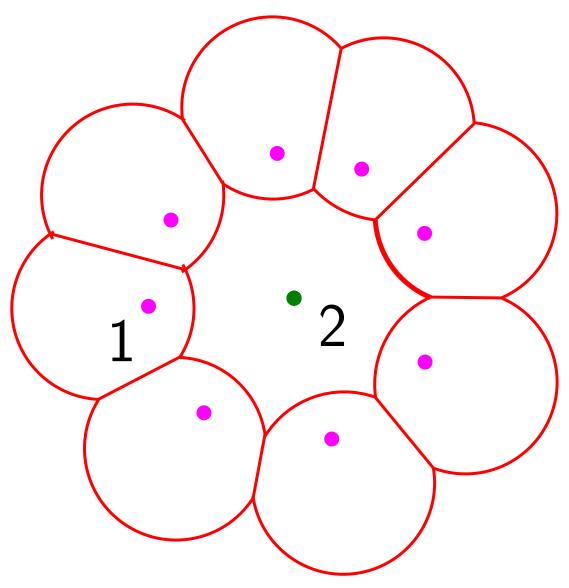




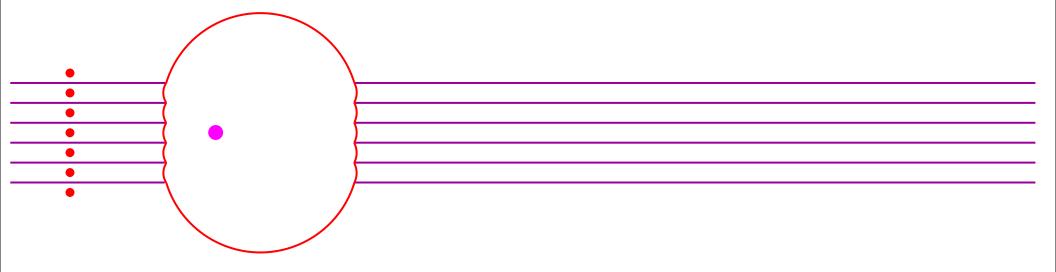
circular bisector

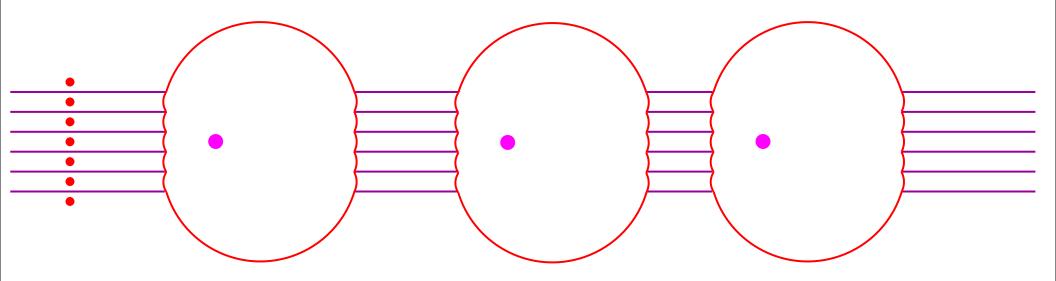




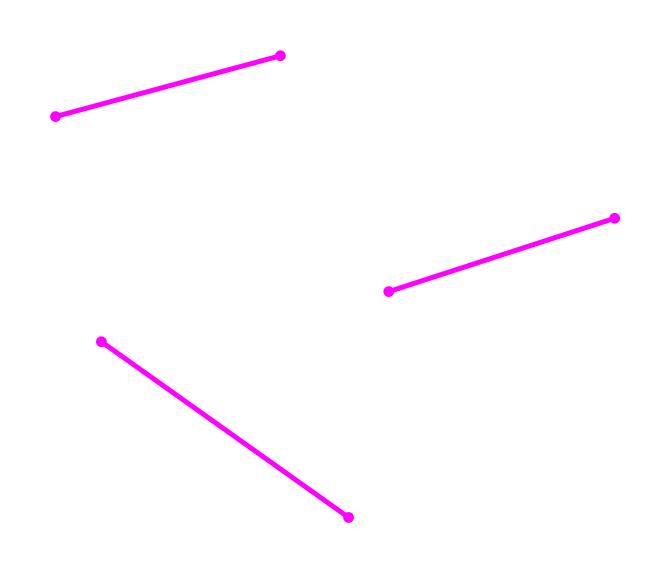


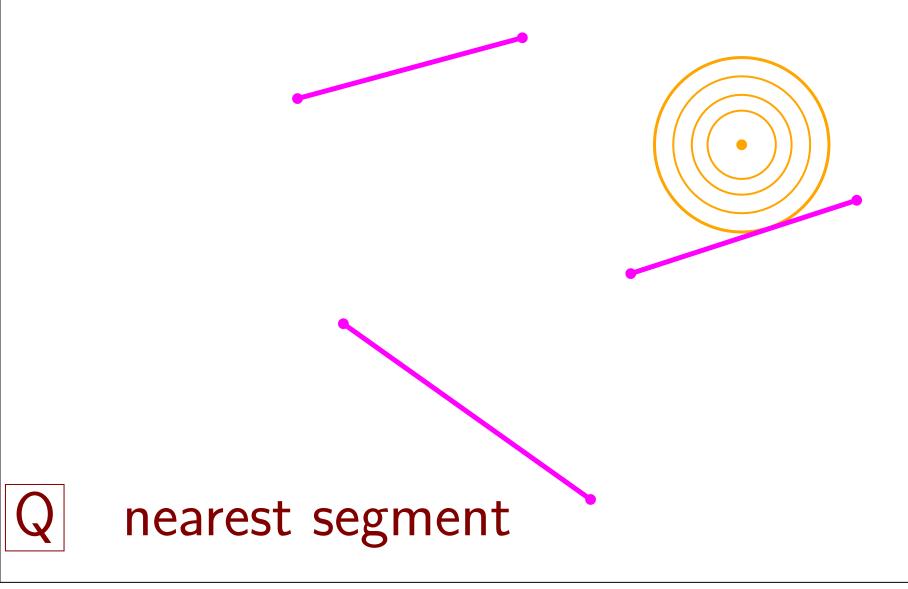
disconnected cell

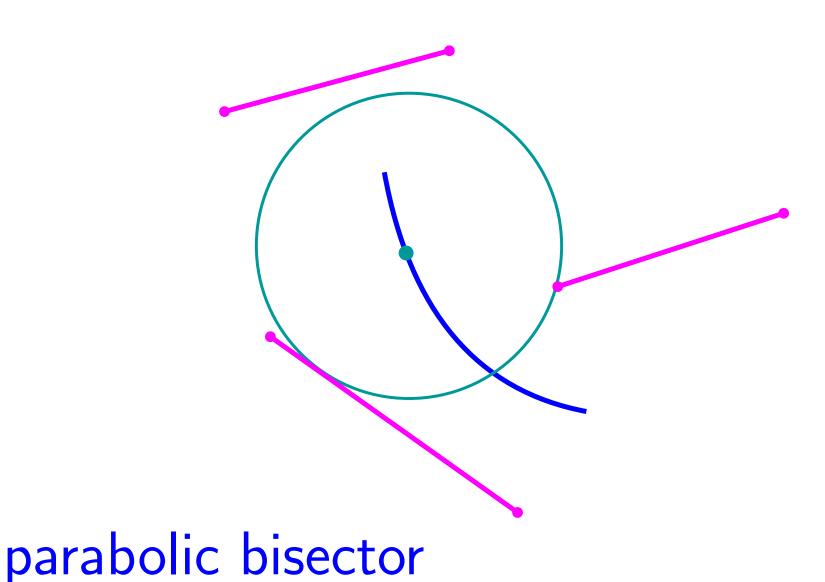


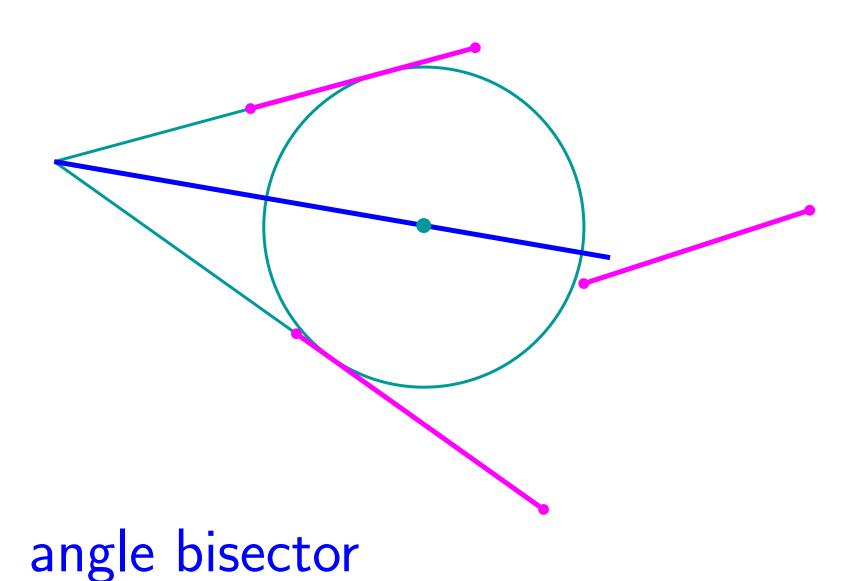


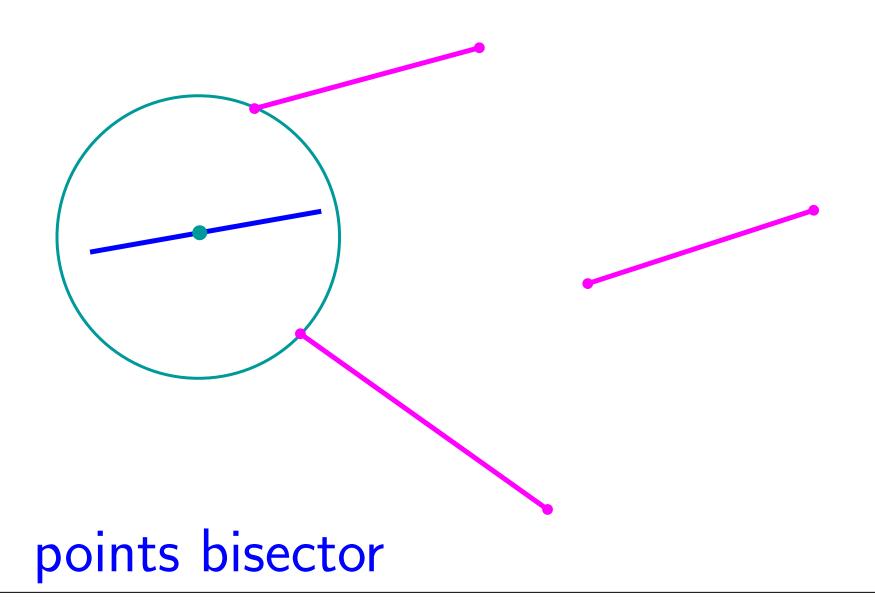
quadratic size

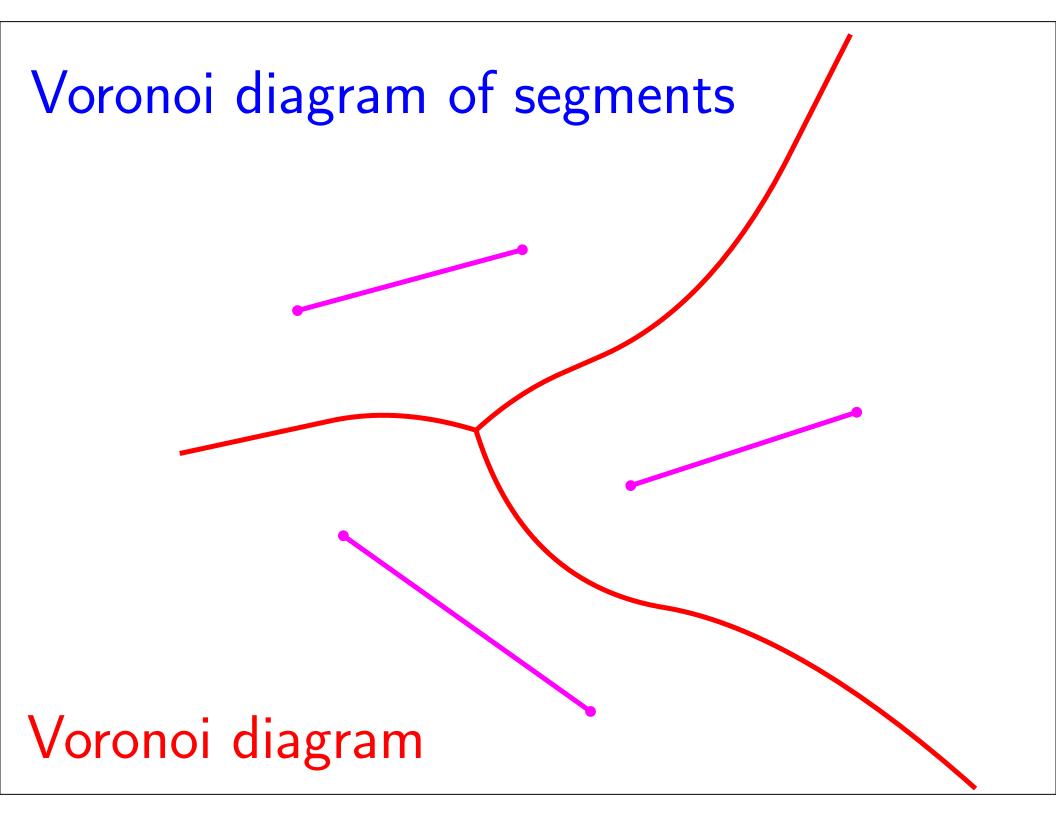


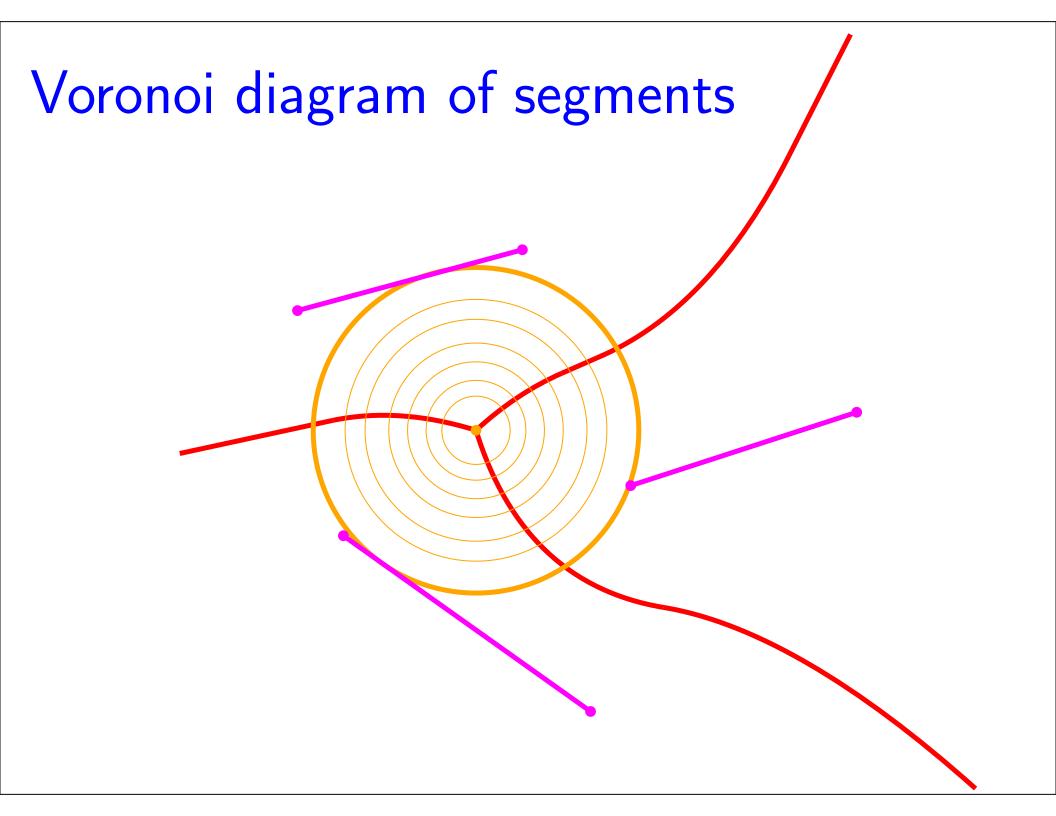


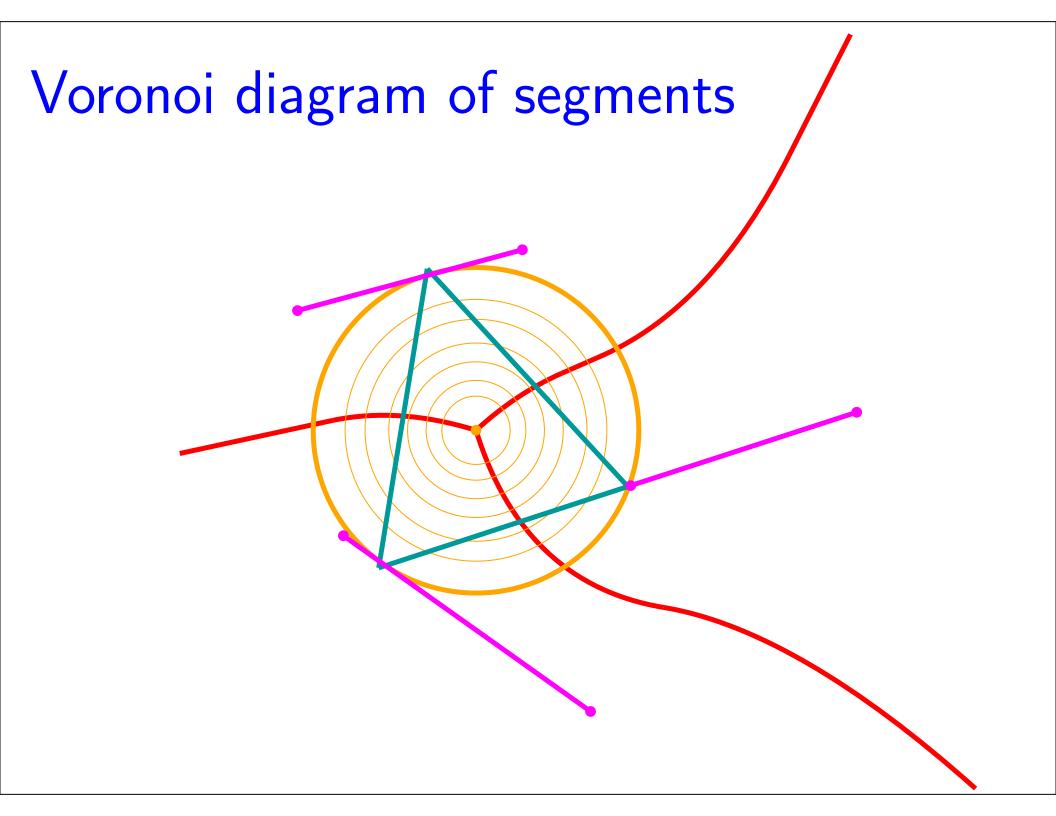


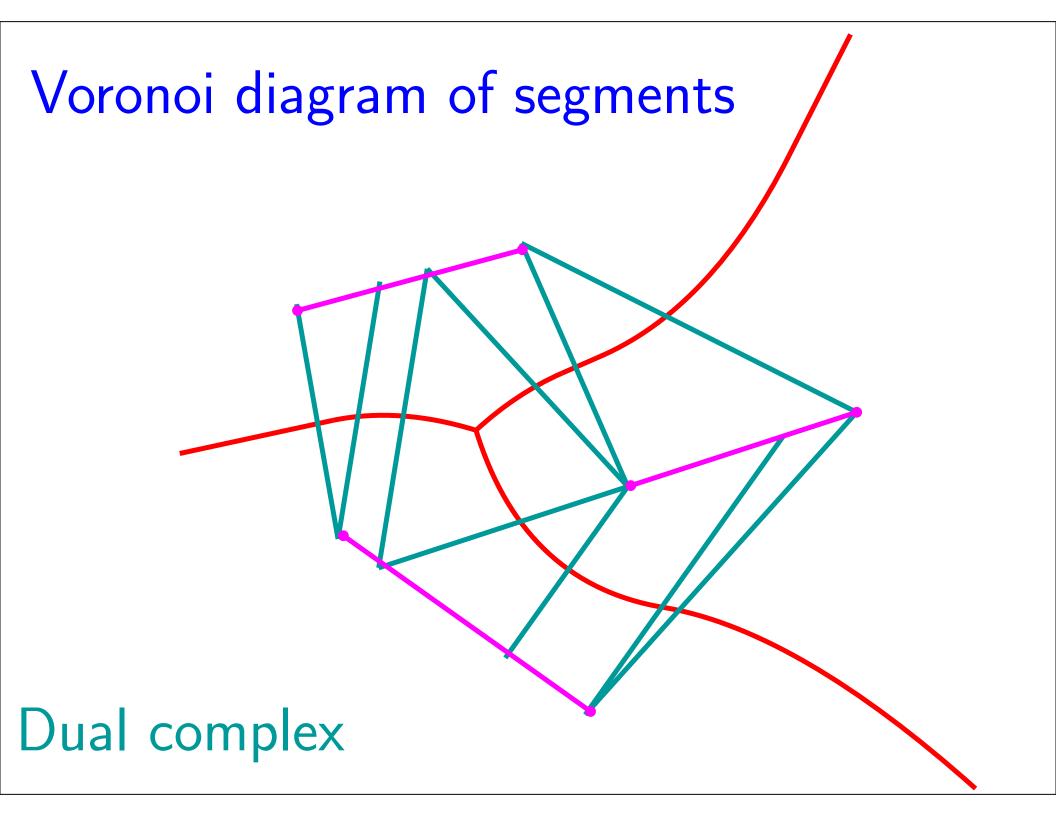












Laguerre geometry

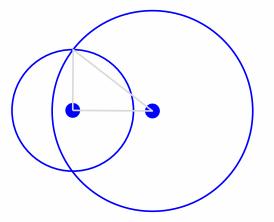
Power distance of two balls or of two weighted points.

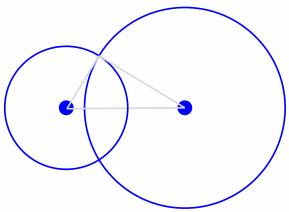
ball $b_1(p_1, r_1)$, center p_1 radius $r_1 \longleftrightarrow$ weighted point $(p_1, r_1^2) \in \mathbb{R}^d$ ball $b_2(p_2, r_2)$, center p_2 radius $r_2 \longleftrightarrow$ weighted point $(p_2, r_2^2) \in \mathbb{R}^d$

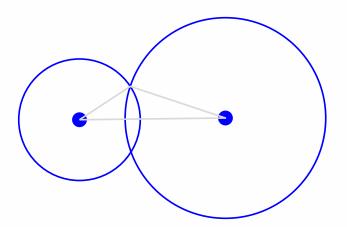
$$\pi(b_1, b_2) = (p_1 - p_2)^2 - r_1^2 - r_2^2$$

Orthogonal balls

 $b_1,b_2 ext{ closer } \iff \pi(b_1,b_2) < 0 \iff (p_1-p_2)^2 \le r_1^2 + r_2^2$ $b_1,b_2 ext{ orthogonal } \iff \pi(b_1,b_2) = 0 \iff (p_1-p_2)^2 = r_1^2 + r_2^2$ $b_1,b_2 ext{ further } \iff \pi(b_1,b_2) > 0 \iff (p_1-p_2)^2 \le r_1^2 + r_2^2$







Laguerre geometry

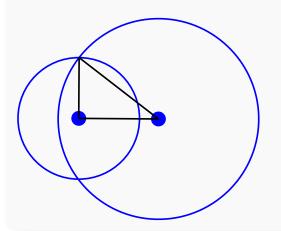
Power distance of two balls or of two weighted points.

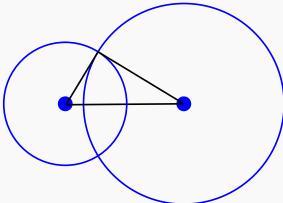
ball $b_1(p_1, r_1)$, center p_1 radius $r_1 \longleftrightarrow$ weighted point $(p_1, r_1^2) \in \mathbb{R}^d$ ball $b_2(p_2, r_2)$, center p_2 radius $r_2 \longleftrightarrow$ weighted point $(p_2, r_2^2) \in \mathbb{R}^d$

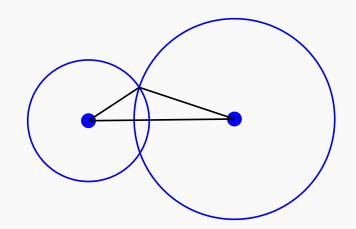
$$\pi(b_1, b_2) = (p_1 - p_2)^2 - r_1^2 - r_2^2$$

Orthogonal balls

 $b_1, b_2 \text{ closer} \iff \pi(b_1, b_2) < 0 \iff (p_1 - p_2)^2 \le r_1^2 + r_2^2$ $b_1, b_2 \text{ orthogonal} \iff \pi(b_1, b_2) = 0 \iff (p_1 - p_2)^2 = r_1^2 + r_2^2$ $b_1, b_2 \text{ further} \iff \pi(b_1, b_2) > 0 \iff (p_1 - p_2)^2 \le r_1^2 + r_2^2$







Power distance of a point wrt a ball

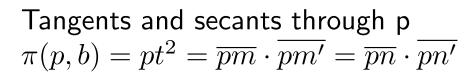
If b_1 is reduced to a point p : $\pi(p,b_2)=(p-p_2)^2-r_2^2$

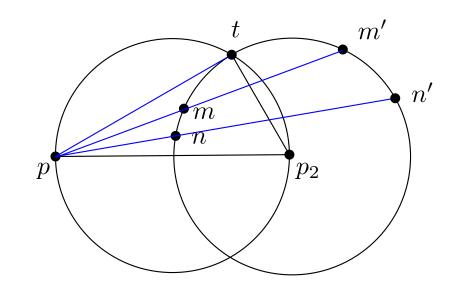
Normalized equation of bounding sphere :

$$p \in \partial b_2 \Longleftrightarrow \pi(p, b_2) = 0$$

$$p \in \mathrm{int}b_2 \iff \pi(p,b) < 0$$

 $p \in \partial b_2 \iff \pi(p,b) = 0$
 $p \notin b_2 \iff \pi(p,b) > 0$





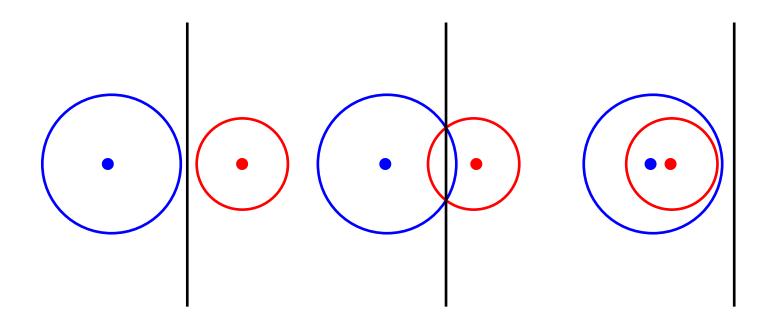
Radical Hyperplane

The locus of point $\in \mathbb{R}^d$ with same power distance to balls $b_1(p_1, r_1)$ and $b_2(p_2, r_2)$ is a hyperplane of \mathbb{R}^d

$$\pi(x, b_1) = \pi(x, b_2) \iff (x - p_1)^2 - r_1^2 = (x - p_2)^2 - r_2^2$$

$$\iff -2p_1x + p_1^2 - r_1^2 = -2p_2x + p_2^2 - r_2^2$$

$$\iff 2(p_2 - p_1)x + (p_1^2 - r_1^2) - (p_2^2 - r_2^2) = 0$$



A point in h_{12} is the center of a ball orthogonal to b_1 and b_2

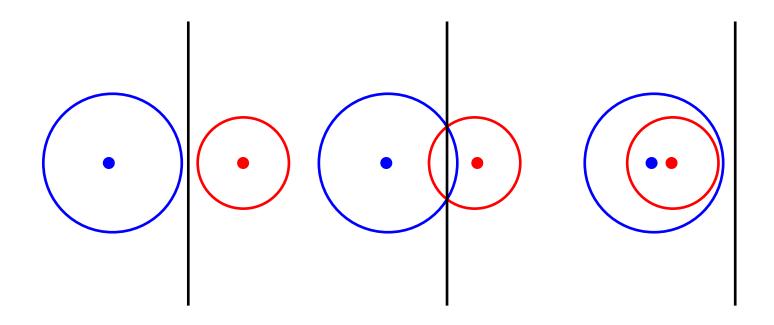
Radical Hyperplane

The locus of point $\in \mathbb{R}^d$ with same power distance to balls $b_1(p_1, r_1)$ and $b_2(p_2, r_2)$ is a hyperplane of \mathbb{R}^d

$$\pi(x, b_1) = \pi(x, b_2) \iff (x - p_1)^2 - r_1^2 = (x - p_2)^2 - r_2^2$$

$$\iff -2p_1x + p_1^2 - r_1^2 = -2p_2x + p_2^2 - r_2^2$$

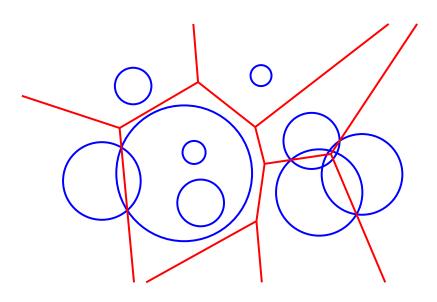
$$\iff 2(p_2 - p_1)x + (p_1^2 - r_1^2) - (p_2^2 - r_2^2) = 0$$



A point in h_{12} is the center of a ball orthogonal to b_1 and b_2

Power Diagrams

also named Laguerre diagrams or weighted Voronoi diagrams



Sites: n balls $B = \{b_i(p_i, r_i), i = 1, ... n\}$

Power distance: $\pi(x, b_i) = (x - p_i)^2 - r_i^2$

Power Diagram: Vor(B)

One cell $V(b_i)$ for each site

$$V(b_i) = \{x : \pi(x, b_i) \le \pi(x, b_j) . \forall j \ne i\}$$

- Each cell is a polytope
- ullet $V(b_i)$ may be empty
- ullet p_i may not belong to $V(b_i)$

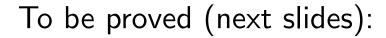
Weighted Delaunay triangulations

$$B = \{b_i(p_i, r_i)\}$$
 a set of balls

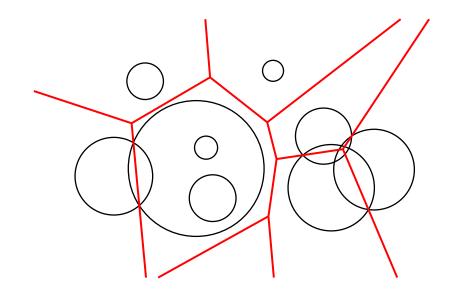
Del(B) = nerve of Vor(B):

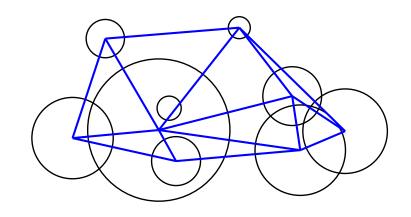
$$B_{\tau} = \{b_i(p_i, r_i), i = 0, \dots k\}\} \subset B$$

$$B_{\tau} \in \mathsf{Del}(B) \iff \bigcap_{b_i \in B_{\tau}} V(b_i) \neq \emptyset$$

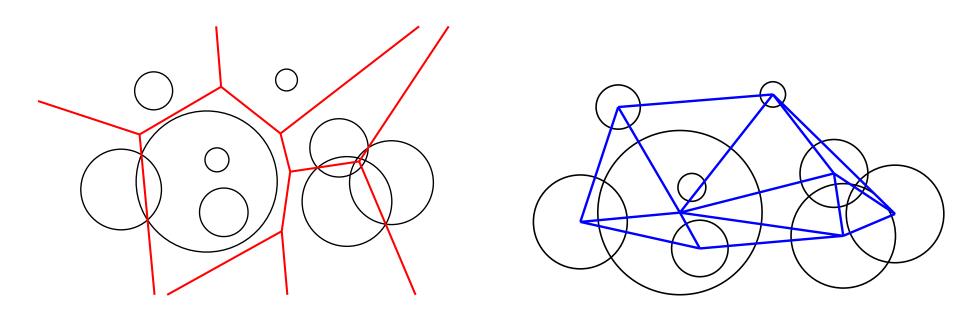


under a general position condition on B, $B_{\tau} \longrightarrow \tau = \text{conv}(\{p_i, i = 0 \dots k\})$ embeds Del(B) as a triangulation in \mathbb{R}^d , called the weighted Delaunay triangulation



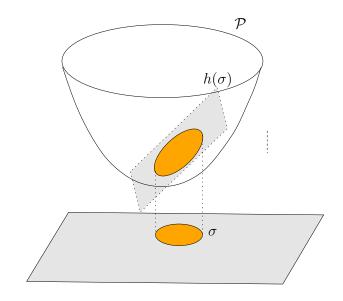


Characteristic property of weighted Delaunay complexes



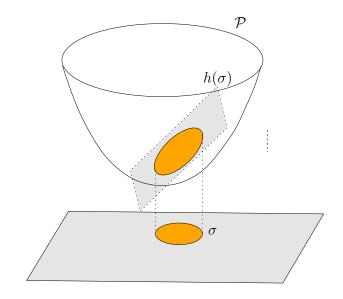
$$\tau \in \mathsf{Del}(B) \iff \bigcap_{b_i \in B_\tau} V(b_i) \neq \emptyset
\iff \exists x \in \mathbb{R}^d \text{ s.t. } \forall b_i, b_j \in B_\tau, \ b_l \in B \setminus B_\tau
\qquad \pi(x, b_i) = \pi(x, b_j) < \pi(x, b_l)
\iff \exists \text{ ball } b(x, \omega) \text{ s.t. } \forall b_i \in B_\tau, \ b_l \in B \setminus B_\tau
\qquad 0 = \pi(b, b_i) < \pi(b, b_l)$$

```
b(p,r) \text{ ball of } \mathbb{R}^d \to \text{point } \phi(b) \in \mathbb{R}^{d+1} \phi(b) = (p,s=p^2-r^2) \to \text{polar hyperplane } h_b = \phi(b)^* \in \mathbb{R}^{d+1} \mathcal{P} = \{\hat{x} \in \mathbb{R}^{d+1} : x_{d+1} = x^2\} h_b = \{\hat{x} \in \mathbb{R}^{d+1} : x_{d+1} = 2p \cdot x - s\}
```



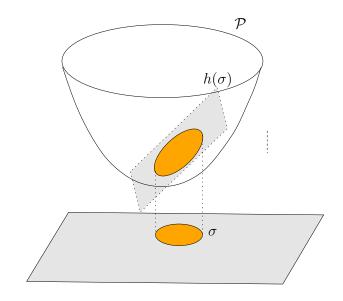
- Balls will null radius are mapped onto \mathcal{P} h_p is tangent to \mathcal{P} at $\phi(p)$.
- The vertical projection of $h_b \cap \mathcal{P}$ onto $x_{d+1} = 0$ is ∂b

```
b(p,r) \text{ ball of } \mathbb{R}^d
\to \text{point } \phi(b) \in \mathbb{R}^{d+1}
\phi(b) = (p,s = p^2 - r^2)
\to \text{polar hyperplane } h_b = \phi(b)^* \in \mathbb{R}^{d+1}
\mathcal{P} = \{\hat{x} \in \mathbb{R}^{d+1} : x_{d+1} = x^2\}
h_b = \{\hat{x} \in \mathbb{R}^{d+1} : x_{d+1} = 2p \cdot x - s\}
```



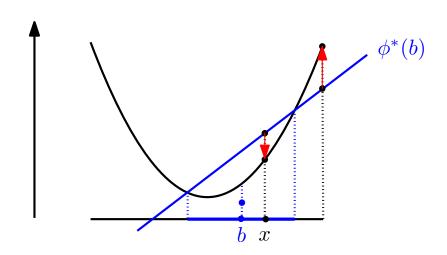
- Balls will null radius are mapped onto \mathcal{P} h_p is tangent to \mathcal{P} at $\phi(p)$.
- The vertical projection of $h_b \cap \mathcal{P}$ onto $x_{d+1} = 0$ is ∂b

```
b(p,r) \text{ ball of } \mathbb{R}^d \to \text{point } \phi(b) \in \mathbb{R}^{d+1} \phi(b) = (p,s=p^2-r^2) \to \text{polar hyperplane } h_b = \phi(b)^* \in \mathbb{R}^{d+1} \mathcal{P} = \{\hat{x} \in \mathbb{R}^{d+1} : x_{d+1} = x^2\} h_b = \{\hat{x} \in \mathbb{R}^{d+1} : x_{d+1} = 2p \cdot x - s\}
```



- Balls will null radius are mapped onto \mathcal{P} h_p is tangent to \mathcal{P} at $\phi(p)$.
- ullet The vertical projection of $h_b \cap \mathcal{P}$ onto $x_{d+1} = 0$ is ∂b

$$\begin{array}{l} b(p,r) \text{ ball of } \mathbb{R}^d \\ \rightarrow \text{ point } \phi(b) \in \mathbb{R}^{d+1} \\ \phi(b) = (p,s=p^2-r^2) \\ \rightarrow \text{ polar hyperplane } h_b = \phi(b)^* \in \mathbb{R}^{d+1} \\ h_b = \{\hat{x} \in \mathbb{R}^{d+1} : x_{d+1} = 2p \cdot x - s\} \end{array}$$

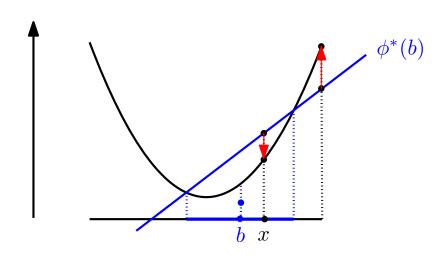


• The vertical distance between $\hat{x} = (x, x^2)$ and h_b is equal to

$$x^2 - 2p \cdot x + s = \pi(x, b)$$

• The faces of the power diagram of B are the vertical projections onto $x_{d+1} = 0$ of the faces of the polytope $\mathcal{V}(B) = \bigcap_i h_b^+$ of \mathbb{R}^{d+1}

$$\begin{array}{l} b(p,r) \text{ ball of } \mathbb{R}^d \\ \rightarrow \text{ point } \phi(b) \in \mathbb{R}^{d+1} \\ \phi(b) = (p,s=p^2-r^2) \\ \rightarrow \text{ polar hyperplane } h_b = \phi(b)^* \in \mathbb{R}^{d+1} \\ h_b = \{\hat{x} \in \mathbb{R}^{d+1} : x_{d+1} = 2p \cdot x - s\} \end{array}$$



• The vertical distance between $\hat{x} = (x, x^2)$ and h_b is equal to

$$x^2 - 2p \cdot x + s = \pi(x, b)$$

• The faces of the power diagram of B are the vertical projections onto $x_{d+1}=0$ of the faces of the polytope $\mathcal{V}(B)=\bigcap_i h_b^+$ of \mathbb{R}^{d+1}

Weighted points in general position wrt spheres

 $B = \{b_1, b_2 \dots b_n\}$ is said to be in general position wrt spheres if $\not\exists x \in \mathbb{R}^d$ with equal power to d+2 balls of B

 $P = \{p_1, ..., p_n\}$: set of centers of the balls of B

Theorem

If B is in general position wrt spheres, the natural mapping

$$f: \operatorname{vert}(\operatorname{Del}(B)) \to P$$

provides a realization of Del(B)

 $\mathrm{Del}(B)$ is a triangulation of $P'\subseteq P$ called the Delaunay triangulation of B

Weighted points in general position wrt spheres

 $B = \{b_1, b_2 \dots b_n\}$ is said to be in general position wrt spheres if $\not\exists x \in \mathbb{R}^d$ with equal power to d+2 balls of B

 $P = \{p_1, ..., p_n\}$: set of centers of the balls of B

Theorem

If B is in general position wrt spheres, the natural mapping

$$f: \operatorname{vert}(\operatorname{Del}(B)) \to P$$

provides a realization of Del(B)

 $\mathrm{Del}(B)$ is a triangulation of $P'\subseteq P$ called the Delaunay triangulation of B

Proof of the theorem

$$B_{\tau} \subset B, |B_{\tau}| = d+1, \ \tau = \text{conv}(\{p_i, b_i(p_i, r_i) \in B_{\tau}\}), \ \phi(\tau) = \text{conv}(\{\phi(b_i), b_i \in B_{\tau}\})$$

$$\exists \ b(p,r) \ \text{s.t.} \ h_b = \phi(b)^* = \mathsf{aff}(\{\phi(b_i), b_i \in B_\tau\})$$

$$\phi(\tau) \in \mathcal{D}(B) = \operatorname{conv}^{-}(\{\phi(b_{i})\})$$

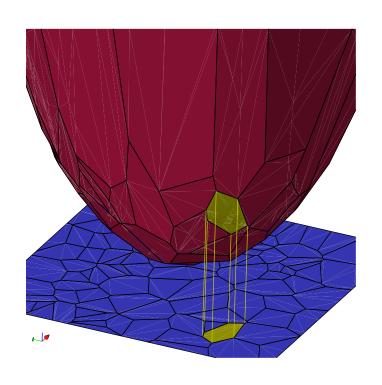
$$\iff \forall b_{i} \in B_{\tau}, \phi(b_{i}) \in h_{b} \quad \forall b_{j} \notin B_{\tau}, \phi(b_{j}) \in h_{b}^{*+}$$

$$\iff \forall b_{i} \in B_{\tau}, \pi(b, b_{i}) = 0 \quad \forall b_{j} \notin B_{\tau}, \pi(b, b_{j}) > 0$$

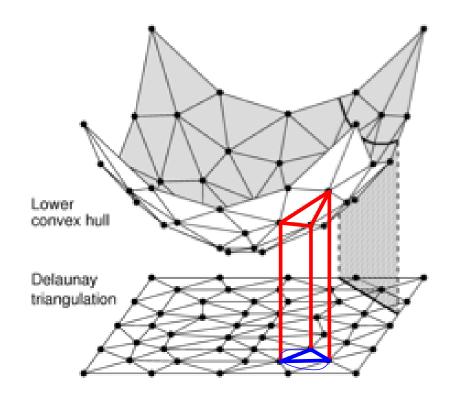
$$\iff p \in \bigcap_{b_{i} \in B_{\tau}} V(b_{i})$$

$$\iff \tau \in \operatorname{Del}(B)$$

Duality



$$\mathcal{V}(B) = \bigcap_i \phi(b_i)^{*+}$$



$$\mathcal{D}(B) = \mathsf{conv}^-(\hat{P})$$

Weighted Voronoi diagrams and Delaunay triangulations, and polytopes

If B is a set of balls in general position wrt spheres :

$$\mathcal{V}(B) = h_{b_1}^+ \cap \ldots \cap h_{b_n}^+ \xrightarrow{\text{duality}} \mathcal{D}(B) = \text{conv}^-(\{\phi(b_1), \ldots, \phi(b_n)\})$$
 \uparrow

Voronoi Diagram of B

Delaunay Complex of B

Complexity and algorithm for weighted VD and DT

Number of faces
$$=\Theta\left(n^{\lfloor \frac{d+1}{2} \rfloor}\right)$$
 (Upper Bound Th.)

Construction can be done in time
$$\Theta\left(n\log n + n^{\lfloor \frac{d+1}{2} \rfloor}\right)$$
 (Convex hull)

Main predicate

power_test
$$(b_0, \dots, b_{d+1}) = \text{sign} \begin{vmatrix} 1 & \dots & 1 \\ p_0 & \dots & p_{d+1} \\ p_0^2 - r_0^2 & \dots & p_{d+1}^2 - r_{d+1}^2 \end{vmatrix}$$

Complexity and algorithm for weighted VD and DT

Number of faces
$$=\Theta\left(n^{\lfloor \frac{d+1}{2} \rfloor}\right)$$
 (Upper Bound Th.)

Construction can be done in time
$$\Theta\left(n\log n + n^{\lfloor \frac{d+1}{2} \rfloor}\right)$$
 (Convex hull)

Main predicate

power_test
$$(b_0, \dots, b_{d+1}) = \text{sign} \begin{vmatrix} 1 & \dots & 1 \\ p_0 & \dots & p_{d+1} \\ p_0^2 - r_0^2 & \dots & p_{d+1}^2 - r_{d+1}^2 \end{vmatrix}$$

Complexity and algorithm for weighted VD and DT

Number of faces
$$=\Theta\left(n^{\lfloor \frac{d+1}{2} \rfloor}\right)$$
 (Upper Bound Th.)

Construction can be done in time
$$\Theta\left(n\log n + n^{\lfloor \frac{d+1}{2} \rfloor}\right)$$
 (Convex hull)

Main predicate

power_test
$$(b_0, \dots, b_{d+1}) = \text{sign} \begin{vmatrix} 1 & \dots & 1 \\ p_0 & \dots & p_{d+1} \\ p_0^2 - r_0^2 & \dots & p_{d+1}^2 - r_{d+1}^2 \end{vmatrix}$$

Power diagrams are maximization diagrams

Cell of b_i in the power diagram Vor(B)

$$V(b_i) = \{x \in \mathbb{R}^d : \pi(x, b_i) \le \pi(x, b_j) : \forall j \ne i\}$$
$$= \{x \in \mathbb{R}^d : 2p_i x - s_i = \max_{j \in [1, \dots, n]} \{2p_j x - s_j\}\}$$

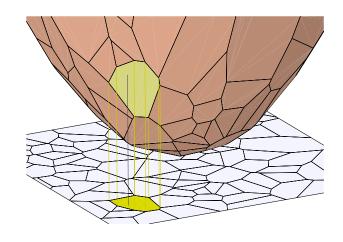
Vor(B) is the maximization diagram of the set of affine functions

$$\{f_i(x) = 2p_i x - s_i, i = 1, \dots, n\}$$

Affine diagrams (regular subdivisions)

Affine diagrams are defined as the maximization diagrams of a finite set of affine functions

They are equivalently defined as the vertical projections of polyhedra intersection of a finite number of upper half-spaces of \mathbb{R}^{d+1}

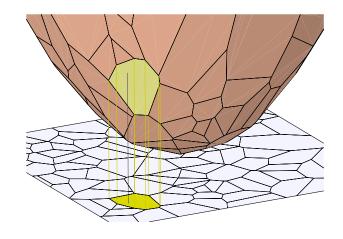


- Voronoi diagrams and power diagrams are affine diagrams.
- Any affine diagram of \mathbb{R}^d is the power diagram of a set of balls.
- Delaunay and weighted Delaunay triangulations are regular triangulations
- Any regular triangulation is a weighted Delaunay triangulation

Affine diagrams (regular subdivisions)

Affine diagrams are defined as the maximization diagrams of a finite set of affine functions

They are equivalently defined as the vertical projections of polyhedra intersection of a finite number of upper half-spaces of \mathbb{R}^{d+1}

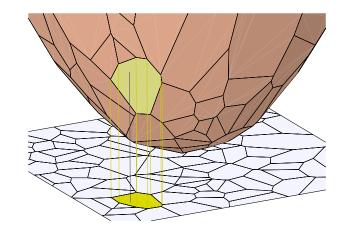


- Voronoi diagrams and power diagrams are affine diagrams.
- Any affine diagram of \mathbb{R}^d is the power diagram of a set of balls.
- Delaunay and weighted Delaunay triangulations are regular triangulations
- Any regular triangulation is a weighted Delaunay triangulation

Affine diagrams (regular subdivisions)

Affine diagrams are defined as the maximization diagrams of a finite set of affine functions

They are equivalently defined as the vertical projections of polyhedra intersection of a finite number of upper half-spaces of \mathbb{R}^{d+1}



- Voronoi diagrams and power diagrams are affine diagrams.
- Any affine diagram of \mathbb{R}^d is the power diagram of a set of balls.
- Delaunay and weighted Delaunay triangulations are regular triangulations
- Any regular triangulation is a weighted Delaunay triangulation

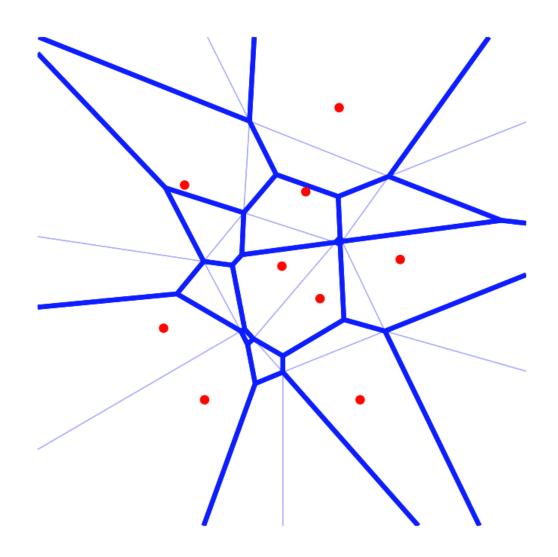
Examples of affine diagrams

- The intersection of a power diagram with an affine subspace (Exercise)
- A Voronoi diagram defined with a quadratic distance function

$$||x - a||_Q = (x - a)^t Q(x - a)$$
 $Q = Q^t$

k order Voronoi diagrams

k-order Voronoi Diagrams



Let P be a set of sites.

Each cell in the k-order Voronoi diagram $Vor_k(P)$ is the locus of points in \mathbb{R}^d that have the same subset of P as k-nearest neighbors.