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Voronoi diagram of {pi,--- ,p,} C R?

Vi={qeR||lqg—pill < |lg — pill Vj}




Voronoi

faces of the Voronoi diagram
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Voronoi

faces of the Voronoi diagram




Voronoi is everywhere
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Geometric simplicial complexes

vertex set: V = {vg,v1,...,0p_1} C RY

k-simplex: o = Conv{v;,,vi,, - ,v;, }

inclusion property (T face of o): invalid simplicial complex

ceKand V(1) C V(o) =T1€K

intersection property:

01,02 € K and 01 Nos # 0 —
o1 Noy € K and is a face of both

O-simplex l-simplex 2-simplex 3-simplex Va’hd SlmphCla‘l CompleX

(vertex) (edge) (triangle) (tetrahedron)




Geometric simplicial complexes

vertex set: V = {vg,v1,...,0p_1} C RY
k-simplex: o = Conv{v;,,vi,, - ,v;, }

inclusion property (T face of o):

ceKand V(1) C V(o) =T1€K

intersection property:

01,02 € K and o1 Noy # ) —
o1 Noy € K and is a face of both

triangulation of P:

simplicial complex T with vertex
set P such that | J, ., 0 = Conv P

valid triangulation of P

invalid triangulation of P




point / sphere lifting

: B 2
Prxa =) %;




point / sphere lifting




point / sphere lifting




point / sphere lifting

r € interior()




point / sphere lifting

L e

r € exterior(X)




point / sphere lifting

side-of-hyperplane predicate
: - '
A/

side-of-sphere predicate




point / sphere lifting

Lower CH

Delaunay

= Delaunay is generically a triangulation (not an abstract complex)




Basic properties and applications







nearest neighbor graph




k nearest neighbors

U S k™ nearest neighbor

query point
\

k — 1 nearest neighbors




k nearest neighbors

e k™ nearest neighbor
query pomt ‘
N

— 1 nearest neighbors




Minimum Spanning Tree




Minimum Spanning Tree




Minimum Spanning Tree

Vipg] € A, ||p —q|| = min{||z —y|| | x € A),y € Ay}







I_a rgeSt em pty Ci rC|e (centered in the convex hull)




Largest empty circle (cemeedin e conex hu




Applications
Databases, Al (NN-search )




Applications

Databases, Al
Mesh generation

forf Bwagy

]

[ subcortical structures 3
[ wihite matter

[ cortical gray matter
I cerebrospinal fluid
I fat tissue

[0 skull, bones

I 5<alp

radius-radius ratio




Applications
Databases, Al

Mesh generation
Reconstruction




Applications
Databases, Al Path planning

Mesh generation
Reconstruction




Applications
Databases, Al Path planning

Mesh generation and many more
Reconstruction (e.g. texture synthesis)




Properties specific

to 2D Delaunay




Delaunay maximizes the smallest angle




Delaunay maximizes the smallest angle




Delaunay maximizes the smallest angle




Delaunay maximizes the smallest angle

... but the converse is false







Delaunay maximizes the sequence of angles in lexicographic order




Local optimality vs global optimality

highlighted triangle is only locally Delaunay




Theorem

Locally Delaunay everywhere

<—~

Globally Delaunay




Proof:

Let ¢y be locally Delaunay, but not globally Delaunay
Let v € disk(t) (v ¢ t)
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Proof:
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Let v € disk(t) (v ¢ t)




Proof:

Let ¢y be locally Delaunay, but not globally Delaunay
Let v € disk(t) (v ¢ t)

Since d finitely many triangles, at some point v is a vertex of t;




Local optimality and smallest angle

Case of 4 points

Lemma:
For any 4 points in convex position,
Delaunay <= smallest angle maximized




Local optimality and smallest angle

Case of 4 points

Let 0 be the smallest angle




Local optimality and smallest angle
Case of 4 points
-

< ¢ iff
r ¢ disk(pgs)

Let 0 be the smallest angle




Algorithm for making a triangulation Delaunay

while d pairs of adjacent triangles that are not locally Delaunay

pick an arbitrary pair and flip common edge




Algorithm for making a triangulation Delaunay

while d pairs of adjacent triangles that are not locally Delaunay

pick an arbitrary pair and flip common edge

Theorem: whatever the choice of order on pairs, the algorithm terminates

— proof: each flip increases smallest angle in quad = cannot be undone

— output is (globally) Delaunay




Algorithm for making a triangulation Delaunay

while d pairs of adjacent triangles that are not locally Delaunay

pick an arbitrary pair and flip common edge

Theorem: whatever the choice of order on pairs, the algorithm terminates

— proof: each flip increases smallest angle in quad = cannot be undone

— output is (globally) Delaunay

does not work in higher dimensions (several types of flips possible)




Local optimality and smallest angle

Theorem
Delaunay = maximum smallest angle




Local optimality and smallest angle

Theorem
Delaunay = maximum smallest angle

Proof:  Let T triangulation




Local optimality and smallest angle

Theorem
Delaunay = maximum smallest angle
Proof:  Let T triangulation
Apply flipping algorithm on T
— output is Delaunay




Local optimality and smallest angle

Theorem
Delaunay = maximum smallest angle

Proof:  Let T triangulation

Apply flipping algorithm on T
— output is Delaunay

Each flip increases angles within quadrangle

— output has larger smallest angle




Size




Euler formula

f: number of facets (except co)

'

e: number of edges

v: number of vertices

f—et+v=1




Euler formula

f: number of facets (except co)

p

e: number of edges

v: number of vertices

f—et+v=1




Euler formula

f: number of facets (except co)

e: number of edges

v: number of vertices

f—et+v=1




k: size of oo facet

—

number of oriented edges
in a triangulation: 2¢ = 3/ + &




Euler formula
f—e+v=1

Triangulation

2e =3f + k

f=2v—2—Fk=0(v)
e=3v—3—k=0()




Euler formula
f—e4+uv=1

Triangulation 2D Delaunay has linear size
2e =3f + k

f=2v—-2—k=0(v)
e=3v—3—k=0()




3D Delaunay can have quadratic size




point / sphere lifting

Lower CH

Delaunay




Size of Delaunay in R?

e By point/sphere lifting, |Del(P)| = |Conv(P*)| = O(\P\L%J) — O(UDU%W)




Size of Delaunay in R?

e By point/sphere lifting, |Del(P)| = |Conv(P*)| = O(\P\L%J) — O(UDU%W)

e When d is even, point set P on moments curve t — (¢,t2,¢3,--- %) yields
Del(P)| > [Conv(P)| = Q(|P|l2)) = Q(|P|2]).
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Size of Delaunay in R?

e By point/sphere lifting, |Del(P)| = |Conv(P*)| = O(\P\L%J) — O(UDU%W)

e When d is even, point set P on moments curve t — (¢,t2,¢3,--- %) yields
Del(P)| > [Conv(P)| = Q(|P|l2)) = Q(|P|2]).

e When d is odd, take point set P* on trigonometric curve t +

d_QH (cost,sint,cos 2t,sin 2¢, - - - , cos ¢, sin ©4¢) € ST C R yields

|Conv(P*)| = Q(|P*|L) = (IP*If D,
— map P* onto unit paraboloid via radial projection, then down to P C R




Size of Delaunay in R?

e By point/sphere lifting, |Del(P)| = |Conv(P*)| = O(\P\L%J) — O(\PU%W)

e When d is even, point set P on moments curve t — (¢,t2,¢3,--- %) yields
Del(P)| > [Conv(P)| = Q(|P|l2)) = Q(|P|2]).

e When d is odd, take point set P* on trigonometric curve t +

d_QH (cost,sint,cos 2t,sin 2¢, - - - , cos ¢, sin ©4¢) € ST C R yields

Conv(P)| = (1P 11')) = (| P11,
— map P* onto unit paraboloid via radial projection, then down to P C R¢.

(VIS

Size of Delaunay of 7 points in R%: O(n!

b




Computing Delaunay




Computing the Delaunay triangulation

1. Lift P to R and compute lower convex hull there

d+1

— direct extension of Graham’s algorithm ([H.-P. Seidel]): O(n! =" 1 + nlogn)
— randomized incremental algorithm ([Clarkson, Shor]): exp. O(nl21 + nlogn)

— de-randomized incremental algorithm ([Chazelle]): O(n/21 + nlogn)




Computing the Delaunay triangulation

1. Lift P to R and compute lower convex hull there

2. Incremental algorithm (|Boissonnat et al.])

—> O(n(%1 + nlogn) with deterministic point insertion order

— exp. O(n[%1 + nlogn) with randomized point insertion order




Computing the Delaunay triangulation

1. Lift P to R and compute lower convex hull there
2. Incremental algorithm (|Boissonnat et al.])
3. Divide-and-conquer algorithm |[Guibas, Stolfi]

s only in the plane or in 3-space

— optimal O(nlogn) in the plane and O(n?) in R?




Computing the Delaunay triangulation

1. Lift P to R and compute lower convex hull there
2. Incremental algorithm (|Boissonnat et al.])
3. Divide-and-conquer algorithm |[Guibas, Stolfi]

4. Plane-sweep algorithm |[Fortune]
— in the plane only
— computes Voronoi diagram

— optimal O(nlogn) time




Computing the Delaunay triangulation

1. Lift P to R and compute lower convex hull there

2. Incremental algorithm (|Boissonnat et al.])
(today)
3. Divide-and-conquer algorithm |[Guibas, Stolfi]

4. Plane-sweep algorithm |[Fortune]




Computing Delaunay in the Plane

Lower bound




Lower bound for Delaunay

Delaunay can be used to sort numbers




Lower bound for Delaunay

Delaunay can be used to sort numbers

Take an instance of sort
Assume one can compute Delaunay in R*

Use Delaunay to solve this instance of sort




Lower bound for Delaunay

Let 1, 29,...,2, € R, to be sorted
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(z1,27),...,(Tn, %)  n points




Lower bound for Delaunay

Let 1, 29,...,2, € R, to be sorted

(z1,27),...,(Tn, %)  n points

Delaunay

— order in




Lower bound for Delaunay

Let 1, 29,...,2, € R, to be sorted

O(n)

(z1,27),...,(Tn, %)  n points

N

Delaunay

Vo

— order in

On)+ f(n) € Q(nlogn)




Lower bound for Delaunay

= f(n) € Q(nlogn)




Computing Delaunay

Incremental algorithm




Algorithm overview













A|gor|thm overview e Find triangles in conflict with p

e Delete triangles in conflict

N

N




A|gor|thm overview e Find triangles in conflict with p

e Delete triangles in conflict
e Re-triangulate hole w.r.t. p




Why it works

Property 1: the conflict zone is starred with respect to p (hence connected)

Vx € conflict zone, all triangles inter-
sected by |p, z] are in conflict with p

(same proof as for locally Del. = globally Del.)




Why it works

Property 1: the conflict zone is starred with respect to p (hence connected)

— can be computed by a traversal in the dual graph from some o > p

— can be re-triangulated by join products p * o for each o on its boundary




Why it works

Property 3: every new Delaunay simplex is incident to p

— re-triangulation by join products with p is Delaunay

Vor(p) eats out parts of the other Voronoi regions




Complexity analysis

n points = n insertions, each of which is composed of:
e locate: O(n) naive, O(n'/?) with random line walk, O(logn) with hierarchy.
e bfs in conflict zone: O(d;), where d; is the number of deleted cells at i-th iteration.

e star conflict zone: O(c;), where ¢; is the number of created cells at i-th iteration.

= total complexity = O(nlogn+ > " (¢; + d;)




Complexity analysis

n points = n insertions, each of which is composed of:
e locate: O(n) naive, O(n'/?) with random line walk, O(logn) with hierarchy.
e bfs in conflict zone: O(d;), where d; is the number of deleted cells at i-th iteration.

e star conflict zone: O(c;), where ¢; is the number of created cells at i-th iteration.

= total complexity = O(nlogn+ > " (¢; + d;)

boundary of conflicts zone is homeomorphic to a (d — 1)-sphere since the conflict zone is
starred w.r.t. p = ¢;,d; = O(i(%w) by a variant of Upper Bound Theorem [Stanley 75].

= total complexity = O(nlogn + M%W)

(sub-optimal in even dimensions only)

(can be improved to exp. O(nlogn + n/21) if random insertion order can be used)




The Guibas/Stolfi variant in 2D

e Locate point in triangulation
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e Locate point in triangulation
e Star triangle
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e Star triangle
e Apply flipping algorithm
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The Guibas/Stolfi variant in 2D
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e Star triangle
e Apply flipping algorithm




The Guibas/Stolfi variant in 2D

e Locate point in triangulation
e Star triangle
e Apply flipping algorithm




Computing Delaunay
triangulations in the plane

Division — Fusion

L. J. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions and
the computation of Voronoi diagrams. ACM Trans. on Graphics, 4(2):74-123, April 1985




Division-Fusion
Classical approach  example: sort

Problem of size n

— division into 2 pbs of size O (7/2)
— recursive call on sub-problems

— fusion




Division-Fusion
Classical approach  example: sort

Problem of size n
— division into 2 pbs of size O (7/2)
O(n)
— recursive call on sub-problems
2 f(8)

— fusion
O(n)




Division-Fusion

Classical approach  example: sort
f(n) = O(n)+2f (3)

Problem of size n _ O(nlogn)
— division into 2 pbs of size O (7/2)
O(n)
— recursive call on sub-problems
2 £ (5)
— fusion

O(n)
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Division




Division

sort In &




Division :
O : O O
¢ L e o
o o
° E ¢
(I ® : ® ¢
o : ® o
E o
e
. o I . .
P ° :
: o
; O
1 @
sort in x :
o . ® !
store all the medians in an array o !
Cm e : - - -




Division

O(nlogn) ’ °
sort In x

o
. . @
store all the medians in an array

-0-000—0-0- 00 0—00-0—_—0-0—00—0

queries in O(1)

—_—— = — P
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Complexity of Fusion

A red edge is deleted

At each step of the search for b,,..¢

A blue edge is deleted

After the choice between r,.,. and b,,..

A black edge is created




Complexity of Fusion

Complexity < 1 red edges
+1 blue edges

+f black edges




Complexity of Fusion

Complexity < 1 red edges
+1 blue edges

+f black edges
<35+ 35 +3n=0(n)

each colored triangulation has < 3k edges, where k is the size of the subset of vertices

the black edges are Delaunay =- there are at most 3n of them




Overall Complexity

Division = O(k) on sub-problem of size k
+ O(nlogn) preprocessing

Fusion = O(k) on sub-problem of size k

Division-Fusion = O(nlogn)




Generalizations




Voronoi diagram

Q

Nearest neighbor of ¢ among S




Voronoi diagram

Q| Nearest neighbor of ¢ among S

Change

ambient space (for q)

R? R IR




Voronoi diagram

Q| Nearest neighbor of ¢ among S

Change

metrics

Euclidean Lo
Lla LOO? Lp
hyperbolic

additive weights

multiplicative weights




Voronoi diagram

Q| Nearest neighbor of ¢ among S

Change

universal set O S

points of IR segments of IR?

spheres of R




Exotic metrics




Norm Loo: max(|x|, |y]|)




Norm Loo: max(|x|, |y]|)

query
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Norm Loo: max(|x|, |y]|)

query




Norm Loo: max(|x|, |y]|)

query




Norm Loo: max(|x|, |y]|)

bisector




Norm Loo: max(|x|, |y]|)
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Norm Loo: max(|x|, |y]|)




Norm Loo: max(|x|, |y]|)




Norm Loo: max(|x|, |y]|)




Norm Loo: max(|x|, |y]|)




/ Voronoi diagram
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multiplicatively-weighted points




multiplicatively-weighted points

5 (2




multiplicatively-weighted points

p @




multiplicatively-weighted points

/1@




multiplicatively-weighted points




multiplicatively-weighted poir







multiplicatively-weigh

ed poir




multiplicatively-weighted points

circular bisector




multiplicatively-weighted points

)




multiplicatively-weighted points




multiplicatively-weighted points

disconnected cell




multiplicatively-weighted points




multiplicatively-weighted points




multiplicatively-weighted points

L ==

N

quadratic size




Voronoi diagram of segments
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Voronoi diagram of segments

_—
/

N

Q| nearest segment




Voronoi diagram of segments

—

parabolic bisector




Voronoi diagram of segments

/

angle bisector




Voronoi diagram of segments

/

points bisector




Voronoi diagram of segments

N

Voronoi diagram




Voronoi diagram of segments
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Voronoi diagram of segments







Laguerre geometry

Power distance of two balls or of two weighted points.

ball bi(p1,71), center p; radius 7y +— weigthed point (p;,r?) € R
ball by(pa,T2), center po radius o +— weigthed point (po,r3) € RY

m(by,b2) = (p1 — p2)® — 17 — 13

Computatlonal Geometry Learning Weighted Delaunay Complexes MPRI, Lecture 3 2 /37




Laguerre geometry

Power distance of two balls or of two weighted points.

ball bi(p1,71), center p; radius 7y +— weigthed point (p;,r?) € R
ball by(pa,T2), center po radius o +— weigthed point (po,r3) € RY

m(b1,b2) = (p1 — p2)* — 7] — 13

Orthogonal balls
bi,bs closer <= 7(by,by) <0 <= (p1 —p2)* < 1] +75

b1, bs orthogonal <= 77(61, b2) =0 < (p1 —p2)2 = r% +ra
b1, b further > () <~ < ri4rs

Computatlonal Geometry Learning Weighted Delaunay Complexes MPRI, Lecture 3

2 /37



Power distance of a point wrt a ball

If by is reduced to a point p : w(p,b2) = (p —p2)2 — 7“%

Normalized equation of bounding sphere :
D € (%2 <:>7T(p,b2) =0

p € inthy, <= w(p,b) <0 /ﬁr‘ n'

p€E€dby < mw(p,b)=0
pg€by <— w(p,b)>0

Tangents and secants through p
(p,b) = pt* = pm - pm’ = pn - pn/

Computational Geometry Learning Weighted Delaunay Complexes MPRI, Lecture 3 3 /37



Radical Hyperplane

The locus of point € R? with same power distance
to balls by (p1,71) and ba(ps,72) is a hyperplane of R?

w(x,b1) =7w(x,by) <= (v — p1)2 — T% = (zr — pQ)2 — 7“%
— —2pix —|—p% —r? = —2pox + p% — 7“%

= 2p2—p)r+@i—1i)—(3—1r3)=0

O (@)

Computational Geometry Learning Weighted Delaunay Complexes MPRI, Lecture 3
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Radical Hyperplane

The locus of point € R? with same power distance
to balls by (p1,71) and ba(ps,72) is a hyperplane of R?

w(x,b1) =7w(x,by) <= (v — p1)2 — T% = (zr — ]92)2 — 7“%
— —2pix —|—p% —r? = —2pox + p% — 7“%

= 2p2—p)r+@i—1i)—(3—1r3)=0

O (@)

A point in hqo is the center of a ball orthogonal to b; and b-

Computational Geometry Learning Weighted Delaunay Complexes MPRI, Lecture 3

4 /37



Power Diagrams

also named Laguerre diagrams or weighted Voronoi diagrams

Sites : n balls B = {b;(p;,7:),t =1,...n}

Power distance: w(x,b;) = (z — p;)? — r?

1

Power Diagram: Vor(B)
One cell V' (b;) for each site
V(b)) ={x:7m(x,b;) <m(x,bj).Vj#i}

@ Each cell is a polytope

@ V(b;) may be empty
@ p; may not belong to V (b;)

Computational Geometry Learning Weighted Delaunay Complexes MPRI, Lecture 3 5/37



Weighted Delaunay triangulations

B = {b;(p;,r;)} a set of balls

Del(B) = nerve of Vor(B):

B, = {bz‘(pi,m‘),i =0,... k}} C B
B, € Del(B) <= (), cp. V(bi) #

To be proved (next slides):

under a general position condition on B,
B; — 7 =conv({p;,i =0...k})

embeds Del(B) as a triangulation in R,

called the weighted Delaunay triangulation

Computational Geometry Learning Weighted Delaunay Complexes MPRI, Lecture 3 6 /37



Characteristic property of weighted Delaunay complexes

b,eB,
— JxcRYst. Vb,bjc B, byc B\ B;
m(x,b;) = w(x,b;) < m(x,b)
<= dball b(x,w) s.t. Vb; € B, by € B\ B,

0= 7T(b, bi) < 7T(b, bl)
Weighted Delaunay Complexes MPRI, Lecture 3 7 /37




The space of spheres

b(p,r) ball of R?
— point ¢(b) € R4
¢(b) = (p,s = p* —17)
— polar hyperplane hy, = ¢(b)* € R4*1
P={zc R x4, =22}
hy ={t c R 251 =2p -2 — s}

Computational Geometry Learning Weighted Delaunay Complexes MPRI, Lecture 3 8 /37



The space of spheres

b(p,r) ball of R?
— point ¢(b) € R4
¢(b) = (p,s = p* —17)
— polar hyperplane hy, = ¢(b)* € R4*1
P={zc R x4, =22}
hy ={t c R 251 =2p -2 — s}

@ Balls will null radius are mapped onto P
h, is tangent to P at ¢(p).
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The space of spheres

b(p,r) ball of R?
— point ¢(b) € R4
¢(b) = (p,s = p* —17)
— polar hyperplane hy, = ¢(b)* € R4*1
P={zc R x4, =22}
hy ={t c R 251 =2p -2 — s}

@ Balls will null radius are mapped onto P
h, is tangent to P at ¢(p).

@ The vertical projection of hy NP onto x411 = 0 is Ob
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The space of spheres

b(p,r) ball of RY
— point ¢(b) € R4+1
¢(b) = (p,s =p* —17)
— polar hyperplane h; = ¢(b)* € R*1
hy = {2 € R i g1 =2p- 2 — s}

@ The vertical distance between 2 = (z,2%) and h; is equal to

x* —2p-x+ s =n(z,b)
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The space of spheres

b(p,r) ball of RY
— point ¢(b) € R4+1
¢(b) = (p,s =p* —17)
— polar hyperplane h; = ¢(b)* € R*1
hy = {2 € R i g1 =2p- 2 — s}

@ The vertical distance between 2 = (z,2%) and h; is equal to

x* —2p-x+ s =n(z,b)

@ The faces of the power diagram of B are the vertical projections onto
zq+1 = 0 of the faces of the polytope V(B) = (), h;r of Rd+1
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Weighted points in general position wrt spheres

B ={b1,by...b,} is said to be in general position wrt spheres if

A x € R? with equal power to d + 2 balls of B

P ={p1,...,pn}: set of centers of the balls of B
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Weighted points in general position wrt spheres

B ={b1,by...b,} is said to be in general position wrt spheres if

A x € R? with equal power to d + 2 balls of B

P ={p1,...,pn}: set of centers of the balls of B

Theorem

If B is in general position wrt spheres, the natural mapping
f : vert(Del(B)) — P

provides a realization of Del(B)

Del(B) is a triangulation of P’ C P called the Delaunay triangulation of B
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Proof of the theorem

BT C B; ‘BT‘ =d+1, 7= conv({pi, bi(p’iar’i) S BT})'
b(r) = conv({(b;).b; € B, })

3 b(p,r) s.t. hy = ¢(b)* = aff({¢(b;),b; € B;})

o(r) € D(B) = conv ({¢(bi)})
< Vb € B;,0(b;) € hy Vbj & Br,é(b;) € hyT
e Vb € B, 7(b, b)_O b, & By, m(b,b;) > 0
— pc ﬂ V(b
b;€B,
<= 71 € Del(B)
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Duality

Computational Geometry Learning
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Weighted Voronoi diagrams and Delaunay triangulations,
and polytopes

If B is a set of balls in general position wrt spheres :

duality

V(B)=h/n...nhf ~— D(B)=conv({p(b1),...,6(bn)})

1 !

nerve

Voronoi Diagram of B Delaunay Complex of B
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Complexity and algorithm for weighted VD and DT

Number of faces = © (nLTJ> (Upper Bound Th.)
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Complexity and algorithm for weighted VD and DT

Number of faces = © (nL%J) (Upper Bound Th.)
Construction can be done in time © (n logn + nL%J) (Convex hull)
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Complexity and algorithm for weighted VD and DT

Number of faces = © (nL%J) (Upper Bound Th.)
Construction can be done in time © (n logn + nL%J) (Convex hull)
Main predicate
1 . 1
power _test(bg,...,bqr1) = sign Do . Pdr1
Po—76 -+ Pay1~Tdn
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Power diagrams are maximization diagrams

Cell of b; in the power diagram Vor(B)

V(bz) = {ZC < Rd . W(:U,bi) < W(Qf,bj)\VI] 7é ’L}

= {x c R? 2p;x — §; = mane[l,...n]{ijx o Sj}}

Vor(B) is the maximization diagram of the set of affine functions

{fi(x) =2pjx —s;,i=1,...,n}
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Affine diagrams (regular subdivisions)

Affine diagrams are defined as the
maximization diagrams of a finite set of
affine functions

They are equivalently defined as the vertical
projections of polyhedra intersection of a
finite number of upper half-spaces of R*!
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Affine diagrams (regular subdivisions)

Affine diagrams are defined as the
maximization diagrams of a finite set of
affine functions

They are equivalently defined as the vertical
projections of polyhedra intersection of a
finite number of upper half-spaces of R*!

@ Voronoi diagrams and power diagrams are affine diagrams.

@ Any affine diagram of R? is the power diagram of a set of balls.
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Affine diagrams (regular subdivisions)

Affine diagrams are defined as the
maximization diagrams of a finite set of
affine functions

They are equivalently defined as the vertical
projections of polyhedra intersection of a
finite number of upper half-spaces of R*!

@ Voronoi diagrams and power diagrams are affine diagrams.

@ Any affine diagram of R? is the power diagram of a set of balls.

@ Delaunay and weighted Delaunay triangulations are regular triangulations

@ Any regular triangulation is a weighted Delaunay triangulation
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Examples of affine diagrams

© The intersection of a power diagram with an affine subspace (Exercise)

@ A Voronoi diagram defined with a quadratic distance function
|z —allqg = (v — a)'Q(x — a) Q=Q"

© £k order Voronoi diagrams
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k-order Voronoi Diagrams

.
J

>

Let P be a set of sites.
Each cell in the k-order Voronoi diagram Vory (P) is the locus of points in R¢
that have the same subset of P as k-nearest neighbors.
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