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Definitions



looking for nearest neighbor



looking for nearest neighbor



pi

Vi

Vi := {q ∈ Rd | ∥q − pi∥ ≤ ∥q − pj∥ ∀j}

Voronoi diagram of {p1, · · · , pn} ⊂ Rd



Voronoi

faces of the Voronoi diagram



Voronoi
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Voronoi

faces of the Voronoi diagram



Voronoi

faces of the Voronoi diagram



Voronoi is everywhere



Voronoi

Empty sphere property



Voronoi

Delaunay

Nerve: {p0, · · · , pk} ∈ Del(P ) ⇔ V0 ∩ · · · ∩ Vk ̸= ∅



Voronoi

Delaunay

Voronoi ↔ geometry Delaunay ↔ connectivity (nerve)



Geometric simplicial complexes

vertex set: V = {v0, v1, . . . , vn−1} ⊂ Rd

k-simplex: σ = Conv{vi0 , vi1 , · · · , vik}

inclusion property (τ face of σ):

σ ∈ K and V (τ) ⊆ V (σ) =⇒ τ ∈ K

intersection property:

σ1, σ2 ∈ K and σ1 ∩ σ2 ̸= ∅ =⇒
σ1 ∩ σ2 ∈ K and is a face of both

0-simplex 1-simplex 2-simplex 3-simplex

(vertex) (edge) (triangle) (tetrahedron)

invalid simplicial complex

valid simplicial complex



Geometric simplicial complexes

vertex set: V = {v0, v1, . . . , vn−1} ⊂ Rd

k-simplex: σ = Conv{vi0 , vi1 , · · · , vik}

inclusion property (τ face of σ):

σ ∈ K and V (τ) ⊆ V (σ) =⇒ τ ∈ K

intersection property:

σ1, σ2 ∈ K and σ1 ∩ σ2 ̸= ∅ =⇒
σ1 ∩ σ2 ∈ K and is a face of both

triangulation of P :

simplicial complex T with vertex
set P such that

⋃
σ∈T σ = ConvP

invalid triangulation of P

P

valid triangulation of P

P



x⋆ = (x1, · · · , xd,
∑d

i=1 x
2
i )

P : xd+1 =
∑d

i=1 x
2
i

point / sphere lifting

Rd x = (x1, · · · , xd)



commencer par parler de l’hyperplan, puis de sa projection

Σ : x2 − 2x · (−α1

2 , · · · , −αd

2 ) + (−α1

2 , · · · , −αd

2 )2 = β + (−α1

2 , · · · , −αd

2 )2

Σ∗ :
∑d

i=1 αixi + xd+1 = β

point / sphere lifting

Rd



x ∈ Σ

x⋆ ∈ Σ∗

point / sphere lifting

Rd



x ∈ interior(Σ)

x⋆ below Σ∗

point / sphere lifting

Rd



x ∈ exterior(Σ)

x⋆ above Σ∗

point / sphere lifting

Rd



side-of-hyperplane predicate

side-of-sphere predicate

point / sphere lifting

Rd



point / sphere lifting

Rd

Lower CH

Delaunay

⇒ Delaunay is generically a triangulation (not an abstract complex)



Basic properties and applications



nearest neighbor graph

p

q
q nearest neighbor of p
⇒ pq Delaunay edge



nearest neighbor graph



k nearest neighbors

query point

k − 1 nearest neighbors

kth nearest neighbor



k nearest neighbors

query point

k − 1 nearest neighbors

kth nearest neighbor



Minimum Spanning Tree



p q

Minimum Spanning Tree



p q

x
y

∀[pq] ∈ A, ∥p− q∥ = min{∥x− y∥ | x ∈ Ap, y ∈ Aq}

Minimum Spanning Tree



p q

Minimum Spanning Tree



Largest empty circle (centered in the convex hull)



Largest empty circle (centered in the convex hull)



Applications

Databases, AI (NN-search )



Mesh generation

Applications

Databases, AI



Mesh generation

Reconstruction

Applications

Databases, AI



Mesh generation

Reconstruction

Path planning

Applications

Databases, AI



Mesh generation

Reconstruction

Path planning

and many more

Applications

(e.g. texture synthesis)

Databases, AI



Properties specific

to 2D Delaunay



Delaunay maximizes the smallest angle



Delaunay maximizes the smallest angle



Delaunay maximizes the smallest angle



... but the converse is false

Delaunay maximizes the smallest angle





Delaunay maximizes the sequence of angles in lexicographic order



Local optimality vs global optimality

highlighted triangle is only locally Delaunay



Theorem

Locally Delaunay everywhere

Globally Delaunay

⇐⇒



Proof:

Let t0 be locally Delaunay, but not globally Delaunay

v

Let v ∈ disk(t) (v /∈ t)

t0
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Proof:

Let t0 be locally Delaunay, but not globally Delaunay

v

Let v ∈ disk(t) (v /∈ t)

t0
t1



Proof:

Let t0 be locally Delaunay, but not globally Delaunay

Since ∃ finitely many triangles, at some point v is a vertex of ti

v

Let v ∈ disk(t) (v /∈ t)

t0
t1

t2



Local optimality and smallest angle

Case of 4 points

Lemma:
For any 4 points in convex position,
Delaunay ⇐⇒ smallest angle maximized



Local optimality and smallest angle

Case of 4 points

δ

Let δ be the smallest angle



Local optimality and smallest angle

Case of 4 points

p
q

r
s

δ

Let δ be the smallest angle

≤ δ iff
r /∈ disk(pqs)



Algorithm for making a triangulation Delaunay

while ∃ pairs of adjacent triangles that are not locally Delaunay

pick an arbitrary pair and flip common edge



Algorithm for making a triangulation Delaunay

while ∃ pairs of adjacent triangles that are not locally Delaunay

pick an arbitrary pair and flip common edge

Theorem: whatever the choice of order on pairs, the algorithm terminates

→ output is (globally) Delaunay

→ proof: each flip increases smallest angle in quad ⇒ cannot be undone



Algorithm for making a triangulation Delaunay

while ∃ pairs of adjacent triangles that are not locally Delaunay

pick an arbitrary pair and flip common edge

Theorem: whatever the choice of order on pairs, the algorithm terminates

→ output is (globally) Delaunay

→ proof: each flip increases smallest angle in quad ⇒ cannot be undone

does not work in higher dimensions (several types of flips possible)



Theorem
Delaunay ⇒ maximum smallest angle

Local optimality and smallest angle



Theorem
Delaunay ⇒ maximum smallest angle

Let T triangulationProof:

Local optimality and smallest angle



Theorem
Delaunay ⇒ maximum smallest angle

Let T triangulation

Apply flipping algorithm on T

→ output is Delaunay

Proof:

Local optimality and smallest angle



Theorem
Delaunay ⇒ maximum smallest angle

Let T triangulation

Apply flipping algorithm on T

→ output is Delaunay

Each flip increases angles within quadrangle

Proof:

Local optimality and smallest angle

→ output has larger smallest angle



Size



Euler formula

f : number of facets (except ∞)

e: number of edges

v: number of vertices

f − e + v = 1



Euler formula

f : number of facets (except ∞)

e: number of edges

v: number of vertices

1− 3 + 3 = 1

f − e + v = 1



Euler formula

f : number of facets (except ∞)

e: number of edges

v: number of vertices

f − e + v = 1

+1− 2 + 1 = +0



number of oriented edges

in a triangulation: 2e = 3f + k

k: size of ∞ facet



Euler formula

f − e+ v = 1

Triangulation

2e = 3f + k

f = 2v − 2− k = O(v)

e = 3v − 3− k = O(v)



Euler formula

f − e+ v = 1

Triangulation

2e = 3f + k

f = 2v − 2− k = O(v)

e = 3v − 3− k = O(v)

2D Delaunay has linear size



3D Delaunay can have quadratic size



point / sphere lifting

Rd

Lower CH

Delaunay



Size of Delaunay in Rd

• By point/sphere lifting, |Del(P )| = |Conv(P ∗)| = O(|P |⌊ d+1
2

⌋) = O(|P |⌈ d
2
⌉)



Size of Delaunay in Rd

• By point/sphere lifting, |Del(P )| = |Conv(P ∗)| = O(|P |⌊ d+1
2

⌋) = O(|P |⌈ d
2
⌉)

• When d is even, point set P on moments curve t 7→ (t, t2, t3, · · · , td) yields
|Del(P )| ≥ |Conv(P )| = Ω(|P |⌊ d

2
⌋) = Ω(|P |⌈ d

2
⌉).



Size of Delaunay in Rd

• By point/sphere lifting, |Del(P )| = |Conv(P ∗)| = O(|P |⌊ d+1
2

⌋) = O(|P |⌈ d
2
⌉)

• When d is even, point set P on moments curve t 7→ (t, t2, t3, · · · , td) yields
|Del(P )| ≥ |Conv(P )| = Ω(|P |⌊ d

2
⌋) = Ω(|P |⌈ d

2
⌉).

• When d is odd, take point set P ∗ on trigonometric curve t 7→
2

d+1
(cos t, sin t, cos 2t, sin 2t, · · · , cos d+1

2
t, sin d+1

2
t) ∈ Sd ⊂ Rd+1 yields

|Conv(P ∗)| = Ω(|P ∗|⌊ d+1
2

⌋) = Ω(|P ∗|⌈ d
2
⌉).

→ map P ∗ onto unit paraboloid via radial projection, then down to P ⊂ Rd.



Size of Delaunay in Rd

• By point/sphere lifting, |Del(P )| = |Conv(P ∗)| = O(|P |⌊ d+1
2

⌋) = O(|P |⌈ d
2
⌉)

• When d is even, point set P on moments curve t 7→ (t, t2, t3, · · · , td) yields
|Del(P )| ≥ |Conv(P )| = Ω(|P |⌊ d

2
⌋) = Ω(|P |⌈ d

2
⌉).

• When d is odd, take point set P ∗ on trigonometric curve t 7→
2

d+1
(cos t, sin t, cos 2t, sin 2t, · · · , cos d+1

2
t, sin d+1

2
t) ∈ Sd ⊂ Rd+1 yields

|Conv(P ∗)| = Ω(|P ∗|⌊ d+1
2

⌋) = Ω(|P ∗|⌈ d
2
⌉).

→ map P ∗ onto unit paraboloid via radial projection, then down to P ⊂ Rd.

Size of Delaunay of n points in Rd: Θ(n⌈d2⌉)



Computing Delaunay



the message is: one can use standard, worst-case optimal algorithms for convex hull com-
putation to compute the Delaunay triangulation optimally

Computing the Delaunay triangulation

1. Lift P to Rd+1 and compute lower convex hull there

→ direct extension of Graham’s algorithm ([H.-P. Seidel]): O(n⌈ d+1
2 ⌉ + n log n)

→ randomized incremental algorithm ([Clarkson, Shor]): exp. O(n⌈ d
2 ⌉ + n log n)

→ de-randomized incremental algorithm ([Chazelle]): O(n⌈ d
2 ⌉ + n log n)



in fact this algorithm simulates the incremental convex hull algorithm in Rd+1 directly in
Rd

the message is: one can use standard, worst-case optimal algorithms for convex hull com-
putation to compute the Delaunay triangulation optimally

Computing the Delaunay triangulation

1. Lift P to Rd+1 and compute lower convex hull there

2. Incremental algorithm ([Boissonnat et al.])

→ O(n⌈ d+1
2 ⌉ + n log n) with deterministic point insertion order

→ exp. O(n⌈ d
2 ⌉ + n log n) with randomized point insertion order



the message is: one can use standard, worst-case optimal algorithms for convex hull com-
putation to compute the Delaunay triangulation optimally

Computing the Delaunay triangulation

1. Lift P to Rd+1 and compute lower convex hull there

2. Incremental algorithm ([Boissonnat et al.])

3. Divide-and-conquer algorithm [Guibas, Stolfi]

→ optimal O(n log n) in the plane and O(n2) in R3

→ only in the plane or in 3-space



the message is: one can use standard, worst-case optimal algorithms for convex hull com-
putation to compute the Delaunay triangulation optimally

Computing the Delaunay triangulation

1. Lift P to Rd+1 and compute lower convex hull there

2. Incremental algorithm ([Boissonnat et al.])

3. Divide-and-conquer algorithm [Guibas, Stolfi]

4. Plane-sweep algorithm [Fortune]

→ in the plane only

→ computes Voronoi diagram

→ optimal O(n log n) time



the message is: one can use standard, worst-case optimal algorithms for convex hull com-
putation to compute the Delaunay triangulation optimally

Computing the Delaunay triangulation

1. Lift P to Rd+1 and compute lower convex hull there

2. Incremental algorithm ([Boissonnat et al.])

3. Divide-and-conquer algorithm [Guibas, Stolfi]

4. Plane-sweep algorithm [Fortune]

(today)



Computing Delaunay in the Plane

Lower bound



Lower bound for Delaunay

Delaunay can be used to sort numbers



Lower bound for Delaunay

Delaunay can be used to sort numbers

Take an instance of sort

Assume one can compute Delaunay in R2

Use Delaunay to solve this instance of sort



Let x1, x2, . . . , xn ∈ R, to be sorted

x1

Lower bound for Delaunay



Let x1, x2, . . . , xn ∈ R, to be sorted

x1

(x1, x
2
1)

(x1, x
2
1), . . . , (xn, x

2
n) n points

Lower bound for Delaunay



Let x1, x2, . . . , xn ∈ R, to be sorted

x1

(x1, x
2
1), . . . , (xn, x

2
n) n points

Delaunay

→ order in x

Lower bound for Delaunay



Let x1, x2, . . . , xn ∈ R, to be sorted

x1

(x1, x
2
1), . . . , (xn, x

2
n) n points

Delaunay

→ order in x

O(n)

O(n)

f(n)

O(n) + f(n) ∈ Ω(n log n)

Lower bound for Delaunay



⇒ f (n) ∈ Ω(n log n)

Lower bound for Delaunay



Computing Delaunay

Incremental algorithm



Algorithm overview



Algorithm overview

p



• Find triangles in conflict with pAlgorithm overview

p



• Find triangles in conflict with pAlgorithm overview

p



• Find triangles in conflict with pAlgorithm overview
• Delete triangles in conflict

p



• Find triangles in conflict with pAlgorithm overview
• Delete triangles in conflict

• Re-triangulate hole w.r.t. p

p



Why it works

Property 1: the conflict zone is starred with respect to p (hence connected)

p

x
∀x ∈ conflict zone, all triangles inter-
sected by [p, x] are in conflict with p

(same proof as for locally Del. ⇒ globally Del.)



Why it works

→ can be computed by a traversal in the dual graph from some σ ∋ p

Property 1: the conflict zone is starred with respect to p (hence connected)

→ can be re-triangulated by join products p ∗ σ for each σ on its boundary



Why it works

Vor(p) eats out parts of the other Voronoi regions

Property 3: every new Delaunay simplex is incident to p

→ re-triangulation by join products with p is Delaunay



Complexity analysis

n points ⇒ n insertions, each of which is composed of:

• locate: O(n) naive, O(n1/d) with random line walk, O(log n) with hierarchy.

• bfs in conflict zone: O(di), where di is the number of deleted cells at i-th iteration.

• star conflict zone: O(ci), where ci is the number of created cells at i-th iteration.

⇒ total complexity = O(n log n+
∑n

i=1(ci + di)



depending on the application (e.g. mesh generation), it may not always be possible to insert
the points in a random order

Complexity analysis

n points ⇒ n insertions, each of which is composed of:

• locate: O(n) naive, O(n1/d) with random line walk, O(log n) with hierarchy.

• bfs in conflict zone: O(di), where di is the number of deleted cells at i-th iteration.

• star conflict zone: O(ci), where ci is the number of created cells at i-th iteration.

⇒ total complexity = O(n log n+ n⌈d+1
2 ⌉)

(sub-optimal in even dimensions only)

boundary of conflicts zone is homeomorphic to a (d− 1)-sphere since the conflict zone is

starred w.r.t. p ⇒ ci, di = O(i⌈
d−1
2 ⌉) by a variant of Upper Bound Theorem [Stanley 75].

(can be improved to exp. O(n log n+ n⌈ d
2 ⌉) if random insertion order can be used)

⇒ total complexity = O(n log n+
∑n

i=1(ci + di)



The Guibas/Stolfi variant in 2D
• Locate point in triangulation



The Guibas/Stolfi variant in 2D
• Locate point in triangulation

• Star triangle



The Guibas/Stolfi variant in 2D
• Locate point in triangulation

• Star triangle

• Apply flipping algorithm
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The Guibas/Stolfi variant in 2D
• Locate point in triangulation

• Star triangle

• Apply flipping algorithm



Computing Delaunay
triangulations in the plane

Division – Fusion

L. J. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions and
the computation of Voronoi diagrams. ACM Trans. on Graphics, 4(2):74–123, April 1985



Division-Fusion

Classical approach example: sort

Problem of size n

→ fusion

→ division into 2 pbs of size O (n/2)

→ recursive call on sub-problems



Division-Fusion

Classical approach example: sort

Problem of size n

→ fusion

→ division into 2 pbs of size O (n/2)

→ recursive call on sub-problems

O(n)

2 f
(
n
2

)
O(n)



Division-Fusion

Classical approach example: sort

Problem of size n

→ fusion

→ division into 2 pbs of size O (n/2)

→ recursive call on sub-problems

f (n) = O(n)+2f
(
n
2

)
= O(n log n)

O(n)

2 f
(
n
2

)
O(n)



Division



Division



Division



Division



Fusion
Division



Fusion
Division



Fusion
Division
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Division
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Fusion
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Fusion



Division
Fusion



Division
Fusion



Division



Division

sort in x



Division

store all the medians in an array

sort in x



Division

store all the medians in an array

sort in x

O(n log n)

queries in O(1)



Fusion



Monochromatic triangles to be deleted

Fusion



Bi-chromatic triangles to be construced

Fusion





Constructing bi-chromatic edges from top to bottom

next edge?
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rising bubble: set of circumscribed circles
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Constructing bi-chromatic edges from top to bottom

next edge?

rising bubble: set of circumscribed circles



Constructing bi-chromatic edges from top to bottom

next edge?

rising bubble: set of circumscribed circles



Constructing bi-chromatic edges from top to bottom

next edge?



r

b



rnext

first red vertex crossed by pencil of circles



bnext

first blue vertex crossed by pencil of circles



Only the first circle found in the pencil is Delaunay



r

b

first red vertex crossed by set of circles

r1

r2

r2 ∈ circle(b, r, r1)

Always look at first neighbor of r ccw



r

b

first red vertex crossed by set of circles

r1

r2

r3

r3 ∈ circle(b, r, r2)

Always look at first neighbor of r ccw



r
r4

b

first red vertex crossed by set of circles

r1

r2

r3

r4 ∈ circle(b, r, r3)

Always look at first neighbor of r ccw



r
r4

b

first red vertex crossed by set of circles

r1

r2

r3

r5

r5 ̸∈ circle(b, r, r4)

Always look at first neighbor of r ccw



r
r4

b

first red vertex crossed by set of circles

r1

r2

r3

r5
= rnext

r5 ̸∈ circle(b, r, r4)

∀red, red ̸∈ circle(b, r, r4) (black disks are Delaunay for red set)



r

b

first blue vertex crossed by set of circles

b2

b2 ∈ circle(b, r, b1)

rnext

b1
Always look at first neighbor of b cw



r

b

first blue vertex crossed by set of circles

b2

b3

b3 ̸∈ circle(b, r, b2)

rnext

b1



r

b

first blue vertex crossed by set of circles

b2

b3

bnext =

b3 ̸∈ circle(b, r, b2)
∀blue, blue ̸∈ circle(b, r, b2)

rnext

b1



r

b

bnext

rnextno point
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bnext

rnextno red
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b

bnext

rnextno blue



r

b

bnext

rnextno redno blueno point
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rnext
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r
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bnext



r

b



rnext

r

b



r

b



r

b

bnext



r
b



r

b









Complexity of Fusion

At each step of the search for rnext

A red edge is deleted

At each step of the search for bnext

A blue edge is deleted

After the choice between rnext and bnext

A black edge is created



Complexity of Fusion

Complexity ≤
+♯ blue edges
+♯ black edges

♯ red edges



Complexity of Fusion

Complexity ≤
+♯ blue edges
+♯ black edges

♯ red edges

≤ 3n2 + 3n2 + 3n = O(n)

each colored triangulation has ≤ 3k edges, where k is the size of the subset of vertices

the black edges are Delaunay ⇒ there are at most 3n of them



Overall Complexity

Fusion = O(k) on sub-problem of size k

Division-Fusion =⇒ O(n log n)

Division = O(k) on sub-problem of size k

+ O(n log n) preprocessing



Generalizations



Voronoi diagram

Q Nearest neighbor of q among S



Voronoi diagram

Q Nearest neighbor of q among S

Change

ambient space (for q)

IR2 IR3 IRd



Voronoi diagram

Q Nearest neighbor of q among S

Change

metrics

Euclidean L2

L1, L∞, Lp

hyperbolic

additive weights

multiplicative weights



Voronoi diagram

Q Nearest neighbor of q among S

Change

universal set ⊃ S

points of IRd segments of IRd

spheres of IRd



Exotic metrics



Norm L∞: max(|x|, |y|)
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query

Norm L∞: max(|x|, |y|)
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bisector

Norm L∞: max(|x|, |y|)
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Norm L∞: max(|x|, |y|)



Norm L∞: max(|x|, |y|)



Voronoi diagram

Norm L∞: max(|x|, |y|)



Voronoi diagram

Norm L∞: max(|x|, |y|)

Delaunay



multiplicatively-weighted points

1

2



multiplicatively-weighted points
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multiplicatively-weighted points
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multiplicatively-weighted points

1

2

circular bisector



multiplicatively-weighted points

1

2

circular bisector



1 2

multiplicatively-weighted points



1 2

multiplicatively-weighted points



1 2

disconnected cell
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Laguerre geometry

Power distance of two balls or of two weighted points.

ball b1(p1, r1), center p1 radius r1 ←→ weigthed point (p1, r
2
1) ∈ Rd

ball b2(p2, r2), center p2 radius r2 ←→ weigthed point (p2, r
2
2) ∈ Rd

π(b1, b2) = (p1 − p2)2 − r21 − r22

Orthogonal balls
b1, b2 closer ⇐⇒ π(b1, b2) < 0⇐⇒ (p1 − p2)2 ≤ r21 + r22

b1, b2 orthogonal ⇐⇒ π(b1, b2) = 0⇐⇒ (p1 − p2)2 = r21 + r22

b1, b2 further ⇐⇒ π(b1, b2) > 0⇐⇒ (p1 − p2)2 ≤ r21 + r22
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Power distance of a point wrt a ball

If b1 is reduced to a point p : π(p, b2) = (p− p2)2 − r22
Normalized equation of bounding sphere :
p ∈ ∂b2 ⇐⇒ π(p, b2) = 0

p ∈ intb2 ⇐⇒ π(p, b) < 0

p ∈ ∂b2 ⇐⇒ π(p, b) = 0

p 6∈ b2 ⇐⇒ π(p, b) > 0

Tangents and secants through p
π(p, b) = pt2 = pm · pm′ = pn · pn′

p

m

m′t

p2

n

n′
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Radical Hyperplane

The locus of point ∈ Rd with same power distance
to balls b1(p1, r1) and b2(p2, r2) is a hyperplane of Rd

π(x, b1) = π(x, b2) ⇐⇒ (x− p1)2 − r21 = (x− p2)2 − r22
⇐⇒ −2p1x+ p21 − r21 = −2p2x+ p22 − r22
⇐⇒ 2(p2 − p1)x+ (p21 − r21)− (p22 − r22) = 0

A point in h12 is the center of a ball orthogonal to b1 and b2
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Power Diagrams
also named Laguerre diagrams or weighted Voronoi diagrams

Sites : n balls B = {bi(pi, ri), i = 1, . . . n}
Power distance: π(x, bi) = (x− pi)2 − r2i
Power Diagram: Vor(B)
One cell V (bi) for each site
V (bi) = {x : π(x, bi) ≤ π(x, bj).∀j 6= i}

Each cell is a polytope

V (bi) may be empty

pi may not belong to V (bi)
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Weighted Delaunay triangulations

B = {bi(pi, ri)} a set of balls

Del(B) = nerve of Vor(B):

Bτ = {bi(pi, ri), i = 0, . . . k}} ⊂ B
Bτ ∈ Del(B)⇐⇒ ⋂

bi∈Bτ V (bi) 6= ∅

To be proved (next slides):

under a general position condition on B,
Bτ −→ τ = conv({pi, i = 0 . . . k})

embeds Del(B) as a triangulation in Rd,
called the weighted Delaunay triangulation
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Characteristic property of weighted Delaunay complexes

τ ∈ Del(B) ⇐⇒
⋂

bi∈Bτ
V (bi) 6= ∅

⇐⇒ ∃ x ∈ Rd s.t. ∀bi, bj ∈ Bτ , bl ∈ B \Bτ
π(x, bi) = π(x, bj) < π(x, bl)

⇐⇒ ∃ ball b(x, ω) s.t. ∀bi ∈ Bτ , bl ∈ B \Bτ
0 = π(b, bi) < π(b, bl)
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The space of spheres

b(p, r) ball of Rd
→ point φ(b) ∈ Rd+1

φ(b) = (p, s = p2 − r2)
→ polar hyperplane hb = φ(b)∗ ∈ Rd+1

P = {x̂ ∈ Rd+1 : xd+1 = x2}
hb = {x̂ ∈ Rd+1 : xd+1 = 2p · x− s} σ

h(σ)

P

Balls will null radius are mapped onto P
hp is tangent to P at φ(p).

The vertical projection of hb ∩ P onto xd+1 = 0 is ∂b
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The space of spheres

b(p, r) ball of Rd
→ point φ(b) ∈ Rd+1

φ(b) = (p, s = p2 − r2)
→ polar hyperplane hb = φ(b)∗ ∈ Rd+1

hb = {x̂ ∈ Rd+1 : xd+1 = 2p · x− s}
b x

φ∗(b)

The vertical distance between x̂ = (x, x2) and hb is equal to

x2 − 2p · x+ s = π(x, b)

The faces of the power diagram of B are the vertical projections onto
xd+1 = 0 of the faces of the polytope V(B) =

⋂
i h

+
b of Rd+1
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Weighted points in general position wrt spheres

B = {b1, b2 . . . bn} is said to be in general position wrt spheres if

6 ∃ x ∈ Rd with equal power to d+ 2 balls of B

P = {p1, ..., pn}: set of centers of the balls of B

Theorem

If B is in general position wrt spheres, the natural mapping

f : vert(Del(B))→ P

provides a realization of Del(B)

Del(B) is a triangulation of P ′ ⊆ P called the Delaunay triangulation of B
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Proof of the theorem

Bτ ⊂ B, |Bτ | = d+ 1, τ = conv({pi, bi(pi, ri) ∈ Bτ}),
φ(τ) = conv({φ(bi), bi ∈ Bτ})

∃ b(p, r) s.t. hb = φ(b)∗ = aff({φ(bi), bi ∈ Bτ})

φ(τ) ∈ D(B) = conv−({φ(bi)})
⇐⇒ ∀bi ∈ Bτ , φ(bi) ∈ hb ∀bj 6∈ Bτ , φ(bj) ∈ h∗+b
⇐⇒ ∀bi ∈ Bτ , π(b, bi) = 0 ∀bj 6∈ Bτ , π(b, bj) > 0

⇐⇒ p ∈
⋂

bi∈Bτ
V (bi)

⇐⇒ τ ∈ Del(B)
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Duality

V(B) = ∩i φ(bi)
∗+ D(B) = conv−(P̂ )
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Weighted Voronoi diagrams and Delaunay triangulations,
and polytopes

If B is a set of balls in general position wrt spheres :

V(B) = h+b1 ∩ . . . ∩ h
+
bn

duality−→ D(B) = conv−({φ(b1), . . . , φ(bn)})

↑ ↓

Voronoi Diagram of B
nerve−→ Delaunay Complex of B
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Complexity and algorithm for weighted VD and DT

Number of faces = Θ
(
nb

d+1
2 c
)

(Upper Bound Th.)

Construction can be done in time Θ
(
n log n+ nb

d+1
2 c
)

(Convex hull)

Main predicate

power test(b0, . . . , bd+1) = sign

∣∣∣∣∣∣

1 . . . 1
p0 . . . pd+1

p20 − r20 . . . p2d+1 − r2d+1

∣∣∣∣∣∣
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Power diagrams are maximization diagrams

Cell of bi in the power diagram Vor(B)

V (bi) = {x ∈ Rd : π(x, bi) ≤ π(x, bj).∀j 6= i}

= {x ∈ Rd : 2pix− si = maxj∈[1,...n]{2pjx− sj}}

Vor(B) is the maximization diagram of the set of affine functions

{fi(x) = 2pix− si, i = 1, . . . , n}
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Affine diagrams (regular subdivisions)

Affine diagrams are defined as the
maximization diagrams of a finite set of
affine functions

They are equivalently defined as the vertical
projections of polyhedra intersection of a
finite number of upper half-spaces of Rd+1

Voronoi diagrams and power diagrams are affine diagrams.

Any affine diagram of Rd is the power diagram of a set of balls.

Delaunay and weighted Delaunay triangulations are regular triangulations

Any regular triangulation is a weighted Delaunay triangulation
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Examples of affine diagrams

1 The intersection of a power diagram with an affine subspace (Exercise)

2 A Voronoi diagram defined with a quadratic distance function

‖x− a‖Q = (x− a)tQ(x− a) Q = Qt

3 k order Voronoi diagrams
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k-order Voronoi Diagrams

Let P be a set of sites.
Each cell in the k-order Voronoi diagram Vork(P ) is the locus of points in Rd
that have the same subset of P as k-nearest neighbors.
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