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Geometric Representations (warm-up)
Comparing geometric objects
Comparing topological spaces
Simplicial complexes
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* Geometric Representations (warm-up)

e Comparing geometric objects

e Comparing topological spaces
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Metrics & Distances

The terms distance and metric are closely related, but not identical.

A metricis a functiond : X X X — R on a set X that satisfies four axioms:
1. Non-negativity: d(x,y) > 0.
2. ldentity of indiscernibles: d(z,y) =0 < z =y.
3. Symmetry:d(z,y) = d(y, z).
4. Triangle inequality: d(z, z) < d(z,y) + d(y, 2).

When these hold, d is a metric, and (X, d) is called a metric space.

» In everyday or applied contexts, distance often just means some measure of
dissimilarity between objects.

» A distance may fail to satisfy one or more of the strict axioms of a metric.




Distances

* For points

* For point sets

* For distributions

* For geometric elements

* For more complex shapes?

Only Comparison or
Validation purposes
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Distance between points §§ Bec)

Euclidean distance " Ao

* In the plane: d(p,q) = 1/(p1 = q1)2 + (p2 — g2)2

* Higher dimension:

d(p,q) = d(q,p) = \/(ql —p1)° 4+ (@2 —p2)* + -+ (@0 — Pn)°

n
= . Z(% —Pz‘)2-
i=1




Distance between points

Manhattan distance

* In the plane: [x; - x,| + |y, - VY,]|

Example in a grid ->

* Easily generalized to higher dimensions.




Distance between points

L, distance
* In the plane: (|x; - X, [P+ |y, -y, |P) /P

* Easily generalized to higher dimensions.

* Euclidean distance is L, distance.

* Rectilinear or Manhattan distance is L, distance.

* L, distance is max([x, - x,[, |y;-Y,|), also called Chebychev distance.




Point Set Comparison / Registration
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Chamfer Distance

dep(S1,82) = ) min [lz —y|3 + 3 min o — y|l3
zes; 77 yeSy




Earth Mover’s Distance

dpap(Si, So) = mi
emp(S1,52) ,in
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where ¢ : §1 — S5 is a bijection.




Earth Mover’s Distance
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Comparison
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Curve Comparison / Validation Metrics
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Fréchet distance between curves




Shape Comparison / Validation Metrics




Hausdorff distance

du(X,Y) = max { sup inf d(z,y), sup inf d(z, y)
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al Medit - [in3.mesh] #1
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* Discrete Shape Representation

hdws Medit - [out3.mesh] #2777




Distance along a path

Distance along a path




Geodesic Distance
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It’s important to find the underlying structure...




Geometric Data Analysis
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It’s important to find the underlying structure...
We will come back to it!




Distance Function
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Bisectors and Voronoi daigram

P a finite set of points in RY

Voronoi cell V(pi)) = {x:|Ix—pill < Ix—pill. i}

Voronoi diagram Vor(P) = { cells V(p;) and their faces, p; € P }




Voronoi diagram for different distances




Questions?
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Basic definitions

Let X be a set. A topology on X is a collection 7 C P(X) of subsets of X (called open

sets) such that the following axioms hold:

1. Inclusion of trivial opens:
derTand X € 7.
2. Stability under arbitrary unions:

If {U,}icr C 7 is any family of sets indexed by an arbitrary set I, then

UU@E’T.
icl

3. Stability under finite intersections:

1fUy,...,U, € Twithn € N, then

hUjET.
j=1




Basic definitions

« (X, 7) is then called a topological space.

» The axioms ensure that open sets behave in a way compatible with our geometric/
analytic intuition of “regions without boundary points included":
» You can always take unions of open sets (like merging regions).
» You can always take finite intersections (like overlapping regions).

» You must always have the “empty region” and the whole space available.

.Trivial examples on any set X . Euclidean topology in higher dimensions

* Indiscrete (trivial) topology: On R™, open sets are unions of open balls

T=19,X}
12, X} Bi(z) = {y € R": |y — o < r}.
— Only the whole space and the empty set are open.

» Discrete topology: — Fundamental for geometry, calculus, and physics.

7 = P(X) (all subsets of X).

— Every subset is open. This is the “finest” possible topology.




Topological spaces in geometric modeling

1.

Euclidean space R™ — ambient space for curves, surfaces, and solids; open sets are

unions of open balls. Applications: general modeling, CAD, physics simulations.

. Subspaces of R" - subsets like curves or surfaces (e.g., S? C R?) with the induced

topology; open sets are intersections with Euclidean opens. Applications: surface

modeling, mesh design.

. Manifolds — spaces locally homeomorphic to R" (e.q., circle, sphere, torus); open sets

are those that look Euclidean under local charts. Applications: smooth shape
representation, differential geometry, NURBS.
Product spaces — Cartesian products like [0, 1]2; open sets are products of opens in

each factor. Applications: parametric surfaces, UV mapping, texture domains.

. Quotient spaces — formed by identifying boundaries (e.g., circle as [0, 1] with 0 ~ 1,

torus as a square with opposite edges glued); open sets are preimages of opens
under the quotient map. Applications: periodic surfaces, closed shapes, topology of

meshes.




Basic definitions

Let (X, 7x) and (Y, 7y) be topological spaces, i.e. X and Y are sets and 7x, 7y are

topologies on them (collections of subsets called open sets satisfying the usual axioms).

Notation. Amap f : X — Y is called a bijection if it is one-to-one and onto. For a map

f that is bijective we denote its inverse by f 1 : Y — X.

Continuity (topological). A function f : X — Y is continuous iff for every open set

V' € 1y the preimage f_l(V) € Tx. Equivalently, f is continuous iff for every x € X
and every neighbourhood V' of f(z) there exists a neighbourhood U of z with f(U) C
V.




Topology: homeomorphy and isotopy

e X and Y are homeomorphic if there exists a bijection h: X — Y s. t.
h and h~! are continuous.

e X,Y C RY areisotopic if there exists a continuous map F : X x[0,1] —
R?s. t. F(.,0) = Idx, F(X,1) =Y and Vt € [0,1], F(.,t) is an
homeomorphism on its image.

e X.Y C R? are ambient isotopic if there exists a continuous map F :
R? x [0,1] = R%s. t. F(.,0) = Idge, F(X,1) =Y and Vt € [0,1],
F(.,t) is an homeomorphim of R¢.



Topology: homotopy type

e Two maps fop: X — Y and f; : X — Y are homotopic if there exists
a continuous map H : [0,1] x X - Y s. t. Ve € X, H(0,x) = fo(x)
and Hy(1,z) = fi(x).

e X and Y have the same homotopy type (or are homotopy equivalent)
if there exists continuous maps f: X - Y andg:Y — X s. t. gof
is homotopic to Idx and f o g is homotopic to Idy .



Topology: homotopy type

‘ homotopy equiv.
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e Two maps fop: X — Y and f; : X — Y are homotopic if there exists
a continuous map H : [0,1] x X - Y s. t. Ve € X, H(0,x) = fo(x)
and Hy(1,z) = fi(x).

e X and Y have the same homotopy type (or are homotopy equivalent)
if there exists continuous maps f: X - Y andg:Y — X s. t. gof
is homotopic to Idx and f o g is homotopic to Idy .



Topology: homotopy type
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e Two maps fop: X — Y and f; : X — Y are homotopic if there exists
a continuous map H : [0,1] x X - Y s. t. Ve € X, H(0,x) = fo(x)
and Hy(1,z) = fi(x).

e X and Y have the same homotopy type (or are homotopy equivalent)
if there exists continuous maps f: X - Y andg:Y — X s. t. gof
is homotopic to Idx and f o g is homotopic to Idy .

X and Y homotopy equivalent = X and Y have isomorphic homotopy and
homology groups.



Topology: homotopy type
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If Y C X and if there exists a continuous map H : [0,1] x X — X s.t.:
)Vre X, HO,x) =z,

i)Vee X, H(l,x) € Y

i)Vy € Y, vVt e |0,1], H(t,y) € Y,

then X and Y are homotopy equivalent. If one replaces condition iii) by
VyeY, Vtel0,1], H(t,y) = y then H is a deformation retract of X onto

Y.




Mathematical Framework

e geometric data set = compact metric space

Euclidean distance

geodesic distance

N




Mathematical Framework

e geometric data set = compact metric space

Euclidean distance

geodesic distance

diffusion distance

g




Mathematical Framework

e geometric data set = compact metric space

e distance between data sets = Gromov-Hausdorff (GH) distance



Mathematical Framework

e geometric data set = compact metric space

e distance between data sets = Gromov-Hausdorff (GH) distance

Euclidean distance

deH =




Mathematical Framework

e geometric data set = compact metric space

e distance between data sets = Gromov-Hausdorff (GH) distance

Euclidean distance

dgy > 0




Mathematical Framework

e geometric data set = compact metric space

e distance between data sets = Gromov-Hausdorff (GH) distance

geodesic distance

deH =
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Geometric simplices

A k-simplex o is the convex hull of k 4 1 points of R that are affinely
independent

k

k
o = COIlV(p(), ...,pk) = {X - Rd, X = Z )\,’ Dis )\i - [O, 1], Z)\, = 1}
i=0 =0

k = dim(aff(o)) is called the dimension of ¢

1-simplex = line segment
2-simplex = triangle / /\
3-simplex = tetrahedron

Computational Geometry Learning

Simplicial Complexes MPRI, Lecture 1 2/34




Faces of a simplex

VAN

V(o) = set of vertices of a k-simplex o

vV C V(o), conv(V’) is a face of o

a k-simplex has ( I;Jr 11 ) faces of dimension i

2k+1 _ 1 faces in total

Computational Geometry Learning

Simplicial Complexes MPRI, Lecture 1 3/34




Geometric simplicial complexes

A finite collection of simplices K called the faces of K such that

@ Yo € K, o is a simplex
QocK, 7TCo=7€KkK

@ Vo,7 € K, eitherocnt=0oronNrisa
common face of both

Computational Geometry Learning Simplicial Complexes MPRI, Lecture 1 4/34



Geometric simplicial complexes

The dimension of a simplicial complex K is the max dimension of its
simplices

A subset of K which is a complex is called a subcomplex of K

The underlying space |K| C R of K is the union of the simplices of K

Computational Geometry Learning

Simplicial Complexes MPRI, Lecture 1 5/34




An important example : the boundary complex of the
convex hull of a finite set of points in general position

Polytope

conv(P) = {x € R?, x = ZLO Ai Diy
NeE 1], Yigh=1}

Supporting hyperplane H :
HNP+#(, Ponone sideof H

Faces : conv(P) N H, H supp. hyp.

@ P isin general position iff no subset of k + 2 points lie in a k-flat

@ If Pis in general position, all faces of conv(P) are simplices

Computational Geometry Learning

Simplicial Complexes MPRI, Lecture 1 6/34



Abstract simplicial complexes

Given a finite set of elements P, an abstract simplicial complex K with
vertex set P is a set of subsets of P s.t.

Q@ WweP, pek
Q ifceKandT Co,thenTt €K

The elements of K are called the (abstract) simplices or faces of K

The dimension of a simplex ¢ is dim(c) = gvert(c) — 1

Simplicial Complexes MPRI, Lecture 1 7/34

Computational Geometry Learning




Realization of an abstract simplicial complex

@ A realization of an abstract simplicial complex K is a geometric
simplicial complex K, whose corresponding abstract simplicial
complex is isomorphic to K, i.e.

J bijective f : vert(K) — vert(K,) st. c € K = f(0) €K,

@ Any abstract simplicial complex K can be realized in R”

Hint: v; = p;, = (0,...,0,1,0,...0) € R” (n = gvert(K))
o = conv(py, ..., Pn) (canonical simplex)
K, Co

@ Realizations are not unique but are all topologically equivalent
(homeomorphic)

Computational Geometry Learning

Simplicial Complexes MPRI, Lecture 1 8/34




Nerve of a finite cover i/ = {U,, ...,U,} of X

The nerve of U is the simplicial complex K(U) defined by
o= [Uy,...U) €EKU) & N U, #0

Simplicial Complexes MPRI, Lecture 1 16/ 34




Nerve of a cover

Nerve Theorem (Leray)

If any intersection of the U; is either empty or contractible, then X and
K(U) have the same homotopy type

4

Computational Geometry Learning

Simplicial Complexes MPRI, Lecture 1 17/ 34




Geometric data analysis

Images, text, speech, neural signals, GPS traces,...

Geometrisation : Data = points + distances between points

Hypothesis : Data lie close to a structure of
“small” intrinsic dimension

Problem : Infer the structure from the data

Algorithmic Geometry

Submanifold reconstruction J-D. Boissonnat 2/36




Submanifolds of R¢

A compact subset M C R¢ is a submanifold without boundary of
(intrinsic) dimension k < d, if any p € M has an open (topological)
k-ball as a neighborhood in M

RN

mo O

¢
Intuitively, a submanifold of dimension k& is a subset of R? that looks
locally like an open set of an affine space of dimension &

A curve a 1-dimensional submanifold
A surface is a 2-dimensional submanifold

Algorithmic Geometry

Subma-nif(‘)_ld recdn-struction_ _ - J-D. Boissonnat 3/36




Triangulation of a submanifold

We call triangulation of a submanifold M c R¢ a simplicial complex M
such that

@ M is embedded in R?
@ its vertices are on M
@ it is homeomorphic to M

Submanifold reconstruction J-D. Boissonnat 4 /36

Algorithmic Geometry




Triangulation of a submanifold

We call triangulation of a submanifold M c R¢ a simplicial complex M
such that

@ M is embedded in R?
@ its vertices are on M
@ it is homeomorphic to M

Submanifold reconstruction

The problem is to construct a triangulation M of some unknown
submanifold M given a finite set of points P C M

Algorithmic Geometry

Submanifold reconstruction J-D. Boissonnat 4/ 36




Issues in high-dimensional geometry

@ Dimensionality severely restricts our intuition and ability to
visualize data
= need for automated and provably correct methods methods

Submanifold reconstruction J-D. Boissonnat 5/36

Algorithmic Geometry




Issues in high-dimensional geometry

@ Dimensionality severely restricts our intuition and ability to
visualize data
= need for automated and provably correct methods methods

@ Complexity of data structures and algorithms rapidly grow as the
dimensionality increases
= no subdivision of the ambient space is affordable

= data structures and algorithms should be sensitive to the
intrinsic dimension (usually unknown) of the data

Submanifold reconstruction J-D. Boissonnat 5/36

Algorithmic Geometry




Issues in high-dimensional geometry

@ Dimensionality severely restricts our intuition and ability to
visualize data

= need for automated and provably correct methods methods

@ Complexity of data structures and algorithms rapidly grow as the
dimensionality increases

= no subdivision of the ambient space is affordable

= data structures and algorithms should be sensitive to the
intrinsic dimension (usually unknown) of the data

@ Inherent defects : sparsity, noise, outliers

Algorithmic Geometry

Submanifold reconstruction J-D. Boissonnat 5/36



Looking for small and faithful simplicial complexes

Need to compromise

@ Size of the complex

» can we have dimM = dim M ?

@ Efficiency of the construction algorithms and of the
representations

» can we avoid the exponential dependence ond ?
» can we minimize the number of simplices ?

@ Quality of the approximation

» Homotopy type & homology (Cech and a complexes, persistence)
» Homeomorphism (Delaunay-type complexes)

Submanifold reconstruction J-D. Boissonnat 6/36

Algorithmic Geometry




Sampling and distance functions [Niyogi et al.], [Chazal et al.]

Distance to a compact K : dx 1 x — infeg ||x — |

Stability

If the data points C are close (Hausdorff) to the geometric structure K,
the topology and the geometry of the offsets K, = d—!([0, r]) and
C, =d ([0, r]) are close

Algorithmic Geometry

Submanifold reconstruction J-D. Boissonnat 7 /36




Questions?

e memari@lix.polytechnique.fr




