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Metrics & Distances
The terms distance and metric are closely related, but not identical.



Distances

• For points

• For point sets

• For distributions

• For geometric elements

• For more complex shapes?

Only Comparison or 
Validation purposes



Distance between points

Euclidean distance

• In the plane:

• Higher dimension:



Distance between points

Manhattan distance

• In the plane: |x1 - x2| + |y1 - y2|

Example in a grid ->

• Easily generalized to higher dimensions. 



Distance between points

Lp distance

• In the plane: (|x1 - x2|p + |y1 - y2|p) 1/p

• Easily generalized to higher dimensions. 

• Euclidean distance is L2 distance. 

• Rectilinear or Manhattan distance is L1 distance. 

• L∞ distance is max(|x1 - x2|, |y1 - y2|), also called Chebychev distance. 



Point Set Comparison / Registration



Chamfer Distance



Earth Mover’s Distance



Earth Mover’s Distance



Comparison

Fig. from Fan et al. 2016



Curve Comparison / Validation Metrics



Fréchet distance between curves



Shape Comparison / Validation Metrics



Hausdorff distance



Geometric Algorithms

• Discrete Shape Representation



Distance along a path

Distance along a path



Geodesic Distance

It’s important to find the underlying structure…



Geometric Data Analysis

It’s important to find the underlying structure…
We will come back to it!



Distance Function



Bisectors and Voronoi daigram



Voronoi diagram for different distances



Questions?
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Topological spaces in geometric modeling



Basic definitions



Topology: homeomorphy and isotopy

• X and Y are homeomorphic if there exists a bijection h : X → Y s. t.
h and h−1 are continuous.

• X,Y ⊂ Rd are isotopic if there exists a continuous map F : X×[0, 1] →
Rd s. t. F (., 0) = IdX , F (X, 1) = Y and ∀t ∈ [0, 1], F (., t) is an
homeomorphism on its image.

• X,Y ⊂ Rd are ambient isotopic if there exists a continuous map F :
Rd × [0, 1] → Rd s. t. F (., 0) = IdRd , F (X, 1) = Y and ∀t ∈ [0, 1],
F (., t) is an homeomorphim of Rd.



Topology: homotopy type

• Two maps f0 : X → Y and f1 : X → Y are homotopic if there exists
a continuous map H : [0, 1]×X → Y s. t. ∀x ∈ X, H(0, x) = f0(x)
and H1(1, x) = f1(x).

• X and Y have the same homotopy type (or are homotopy equivalent)
if there exists continuous maps f : X → Y and g : Y → X s. t. g ◦ f
is homotopic to IdX and f ◦ g is homotopic to IdY .

f0(x) = x

ft(x) = (1−t)x

f1(x) = 0
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Topology: homotopy type
f0(x) = x

ft(x) = (1−t)x

f1(x) = 0

homotopy equiv.

homotopy equiv.

not homotopy equiv.

If Y ⊂ X and if there exists a continuous map H : [0, 1]×X → X s.t.:
i) ∀x ∈ X, H(0, x) = x,
ii) ∀x ∈ X, H(1, x) ∈ Y
iii) ∀y ∈ Y , ∀t ∈ [0, 1], H(t, y) ∈ Y ,
then X and Y are homotopy equivalent. If one replaces condition iii) by
∀y ∈ Y , ∀t ∈ [0, 1], H(t, y) = y then H is a deformation retract of X onto
Y .



Mathematical Framework

1

• geometric data set ≡ compact metric space

Euclidean distance

geodesic distance



Mathematical Framework

1

• geometric data set ≡ compact metric space

Euclidean distance

geodesic distance

diffusion distance

· · ·



Mathematical Framework

1

• geometric data set ≡ compact metric space

• distance between data sets ≡ Gromov-Hausdorff (GH) distance

X

Y

Z
γX

γY
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Mathematical Framework

1

• geometric data set ≡ compact metric space

• distance between data sets ≡ Gromov-Hausdorff (GH) distance



dGH = 0

Mathematical Framework

1

• geometric data set ≡ compact metric space

• distance between data sets ≡ Gromov-Hausdorff (GH) distance
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Geometric simplices

A k-simplex σ is the convex hull of k + 1 points of Rd that are affinely
independent

σ = conv(p0, ..., pk) = {x ∈ Rd, x =
k∑

i=0

λi pi, λi ∈ [0, 1],
k∑

i=0

λi = 1}

k = dim(aff(σ)) is called the dimension of σ

1-simplex = line segment
2-simplex = triangle
3-simplex = tetrahedron

Computational Geometry Learning Simplicial Complexes MPRI, Lecture 1 2 / 34



Faces of a simplex

V(σ) = set of vertices of a k-simplex σ

∀V ′ ⊆ V(σ), conv(V ′) is a face of σ

a k-simplex has
(

k + 1
i + 1

)
faces of dimension i

2k+1 − 1 faces in total

Computational Geometry Learning Simplicial Complexes MPRI, Lecture 1 3 / 34



Geometric simplicial complexes

A finite collection of simplices K called the faces of K such that

∀σ ∈ K, σ is a simplex
σ ∈ K, τ ⊂ σ ⇒ τ ∈ K

∀σ, τ ∈ K, either σ ∩ τ = ∅ or σ ∩ τ is a
common face of both

Computational Geometry Learning Simplicial Complexes MPRI, Lecture 1 4 / 34



Geometric simplicial complexes

The dimension of a simplicial complex K is the max dimension of its
simplices

A subset of K which is a complex is called a subcomplex of K

The underlying space |K| ⊂ Rd of K is the union of the simplices of K

Computational Geometry Learning Simplicial Complexes MPRI, Lecture 1 5 / 34



An important example : the boundary complex of the
convex hull of a finite set of points in general position

Polytope

conv(P) = {x ∈ Rd, x =
∑k

i=0 λi pi,

λi ∈ [0, 1],
∑k

i=0 λi = 1}

Supporting hyperplane H :
H ∩ P 6= ∅, P on one side of H

Faces : conv(P) ∩ H, H supp. hyp.

P is in general position iff no subset of k + 2 points lie in a k-flat

If P is in general position, all faces of conv(P) are simplices

Computational Geometry Learning Simplicial Complexes MPRI, Lecture 1 6 / 34



Abstract simplicial complexes

Given a finite set of elements P, an abstract simplicial complex K with
vertex set P is a set of subsets of P s.t.

1 ∀p ∈ P, p ∈ K
2 if σ ∈ K and τ ⊆ σ, then τ ∈ K

The elements of K are called the (abstract) simplices or faces of K

The dimension of a simplex σ is dim(σ) = ]vert(σ)− 1

Computational Geometry Learning Simplicial Complexes MPRI, Lecture 1 7 / 34



Realization of an abstract simplicial complex

A realization of an abstract simplicial complex K is a geometric
simplicial complex Kg whose corresponding abstract simplicial
complex is isomorphic to K, i.e.

∃ bijective f : vert(K)→ vert(Kg) s.t. σ ∈ K ⇒ f (σ) ∈ Kg

Any abstract simplicial complex K can be realized in Rn

Hint : vi → pi = (0, ..., 0, 1, 0, ...0) ∈ Rn (n = ]vert(K))
σ = conv(p1, ..., pn) (canonical simplex)
Kg ⊆ σ

Realizations are not unique but are all topologically equivalent
(homeomorphic)

Computational Geometry Learning Simplicial Complexes MPRI, Lecture 1 8 / 34



Nerve of a finite cover U = {U1, ...,Un} of X
Computational Topology (Jeff Erickson) Examples of Cell Complexes

Corollary 15.1. For any points set P and radius �, the Aleksandrov-Čech complex AČ�(P) is homotopy-
equivalent to the union of balls of radius � centered at points in P.

Aleksandrov-Čech complexes and unions of balls for two different radii. 2-simplices are yellow; 3-simplices are green.

15.1.2 Vietoris-Rips Complexes: Flags and Shadows

The proximity graph N�(P) is the geometric graph whose vertices are the points P and whose edges join
all pairs of points at distance at most 2�; in other words, N�(P) is the 1-skeleton of the Aleksandrov-Čech
complex. The Vietoris-Rips complex VR�(P) is the flag complex or clique complex of the proximity
graph N�(P). A set of k+ 1 points in P defines a k-simplex in VR�(P) if and only if every pair defines an
edge in N�(P), or equivalently, if the set has diameter at most 2�. Again, the Vietoris-Rips complex is an
abstract simplicial complex.

The Vietoris-Rips complex was used by Leopold Vietoris [57] in the early days of homology theory as
a means of creating finite simplicial models of metric spaces.2 The complex was rediscovered by Eliayu
Rips in the 1980s and popularized by Mikhail Gromov [35] as a means of building simplicial models for
group actions. ‘Rips complexes’ are now a standard tool in geometric and combinatorial group theory.

The triangle inequality immediately implies the nesting relationship AČ�(P) ⊆ VR�(P) ⊆ AČ2�(P)
for any �, where ⊆ indicates containment as abstract simplicial complexes. The upper radius 2� can be
reduced to

�
3�/2 if the underlying metric space is Euclidean [21], but for arbitrary metric spaces, these

bounds cannot be improved.
One big advantage of Vietoris-Rips complexes is that they determined entirely by their underlying

proximity graphs; thus, they can be applied in contexts like sensor-network modeling where the
underlying metric is unknown. In contrast, the Aleksandrov-Čech complex also depends on the metric of
the ambient space that contains P; even if we assume that the underlying space is Euclidean, we need
the lengths of the edges of the proximity complex to reconstruct the Aleksandrov-Čech complex.

On the other hand, there is no result like the Nerve Lemma for flag complexes. Indeed, it is easy to
construct Vietoris-Rips complexes for points in the Euclidean plane that contain topological features of
arbitrarily high dimension.

2Vietoris actually defined a slightly different complex. Let U = {U1, U2, . . .} be a set of open sets that cover some topological
space X . The Vietoris complex of U is the abstract simplicial complex whose vertices are points in X , and whose simplices
are finite subsets of X that lie in some common set Ui . Thus, the Vietoris complex of an open cover is the dual of its
Aleskandrov-Čech nerve. Dowker [25] proved that these two simplicial complexes have isomorphic homology groups.

2

The nerve of U is the simplicial complex K(U) defined by

σ = [Ui0 , ...,Uik ] ∈ K(U) ⇔ ∩k
i=1Uij 6= ∅

Computational Geometry Learning Simplicial Complexes MPRI, Lecture 1 16 / 34
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underlying metric is unknown. In contrast, the Aleksandrov-Čech complex also depends on the metric of
the ambient space that contains P; even if we assume that the underlying space is Euclidean, we need
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On the other hand, there is no result like the Nerve Lemma for flag complexes. Indeed, it is easy to
construct Vietoris-Rips complexes for points in the Euclidean plane that contain topological features of
arbitrarily high dimension.
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2

Nerve Theorem (Leray)
If any intersection of the Ui is either empty or contractible, then X and
K(U) have the same homotopy type

Computational Geometry Learning Simplicial Complexes MPRI, Lecture 1 17 / 34



Geometric data analysis
Images, text, speech, neural signals, GPS traces,...

Geometrisation : Data = points + distances between points

Hypothesis : Data lie close to a structure of
“small” intrinsic dimension

Problem : Infer the structure from the data
Algorithmic Geometry Submanifold reconstruction J-D. Boissonnat 2 / 36



Submanifolds of Rd

A compact subset M ⊂ Rd is a submanifold without boundary of
(intrinsic) dimension k < d, if any p ∈M has an open (topological)
k-ball as a neighborhood in M

W

U
Rm

φ

RN

M

Intuitively, a submanifold of dimension k is a subset of Rd that looks
locally like an open set of an affine space of dimension k

A curve a 1-dimensional submanifold
A surface is a 2-dimensional submanifold

More generally, manifolds are defined in an intrinsic way,
independently of any embedding in Rd

Algorithmic Geometry Submanifold reconstruction J-D. Boissonnat 3 / 36



Triangulation of a submanifold

We call triangulation of a submanifold M ⊂ Rd a simplicial complex M̂
such that

M̂ is embedded in Rd

its vertices are on M
it is homeomorphic to M

Submanifold reconstruction

The problem is to construct a triangulation M̂ of some unknown
submanifold M given a finite set of points P ⊂M

Algorithmic Geometry Submanifold reconstruction J-D. Boissonnat 4 / 36
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Issues in high-dimensional geometry

Dimensionality severely restricts our intuition and ability to
visualize data
⇒ need for automated and provably correct methods methods

Complexity of data structures and algorithms rapidly grow as the
dimensionality increases

⇒ no subdivision of the ambient space is affordable

⇒ data structures and algorithms should be sensitive to the
intrinsic dimension (usually unknown) of the data

Inherent defects : sparsity, noise, outliers
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Looking for small and faithful simplicial complexes

Need to compromise

Size of the complex

I can we have dim M̂ = dimM ?

Efficiency of the construction algorithms and of the
representations

I can we avoid the exponential dependence on d ?
I can we minimize the number of simplices ?

Quality of the approximation

I Homotopy type & homology (Cech and α complexes, persistence)
I Homeomorphism (Delaunay-type complexes)

Algorithmic Geometry Submanifold reconstruction J-D. Boissonnat 6 / 36



Sampling and distance functions [Niyogi et al.], [Chazal et al.]

Distance to a compact K : dK : x→ infp∈K ‖x− p‖

Geometric inference from noisy data
Pb: infering topological and geometric properties from point cloud data sets sampled
“around” unknown low-dimensional shapes.

Sc. challenges:
- dealing with noise
- well founded math. models
- algorithmic complexity issues
(curse of dimensionality)

The distance function framework:
When the data C are close (Hausdorff dist.) to the geometric structure K to infer...

• distance function dK : x → infp∈K �x − p�
• Replace K and C by dK and dC

• Stability results for the topology/geometry of the offsets
Kr = d−1

K ([0, r]) and Cr = d−1
C ([0, r])

Stability
If the data points C are close (Hausdorff) to the geometric structure K,
the topology and the geometry of the offsets Kr = d−1([0, r]) and
Cr = d−1([0, r]) are close

Algorithmic Geometry Submanifold reconstruction J-D. Boissonnat 7 / 36



Questions?

• memari@lix.polytechnique.fr


