Computational Geometry and Topology Géométrie et topologie algorithmiques

Steve OUDOT

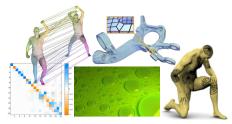
Pooran MEMARI

Acknowledgments of Involved Colleagues:

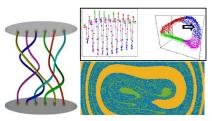
Jean Daniel Boissonnat, Frederic Chazal, Marc Glisse, As well as Olivier Devillers and Luca Castelli

GeomeriX Research Team

Geometry-driven Numerics



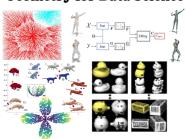
Geometry for Shape Processing



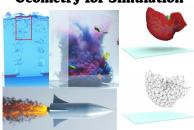
Geometry for Dynamical Systems

Geometry

Geometry for Data Science



Geometry for Simulation

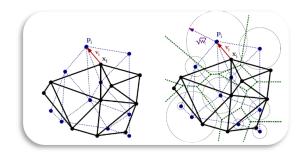


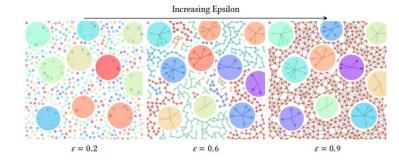
2025-2026: 8 lectures of 3h, Monday 8:45-11:45.

- •[22/9] Warm up: 2D convex geometry [PM]
- •[29/9] Comparing objects, polytopes [PM]
- •[6/10] Nearest neighbor search [SO]
- •[13/10] Voronoi, Delaunay [PM]
- •[20/10] Reconstruction in higher dimensions [PM]
- •[3/11] Clustering [SO]
- •[10/11] Homology and persistent homology [SO]
- •[17/11] Stability of persistent homology homology inference [SO]
- •[1/12] Written exam

Type: Theoretical aspect of geometry and algorithms

Pre-requisite: not allergic to theory, interested by applications





Questions:

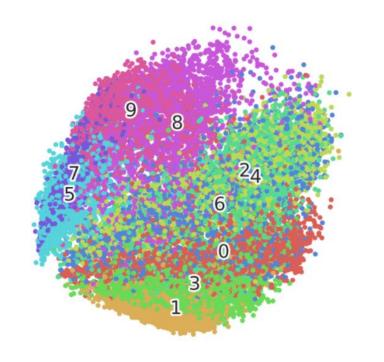
- Steve Oudot (steve.oudot@inria.fr)
- Pooran Memari (<u>memari@lix.polytechnique.fr</u>)

Outline

- Warm-up & Reminders
- Part I Convex Geometry (Introduction)
 - Convex hull algorithms
 - Duality
- Part II Applications (with break)
- Part III Fundamental Results in Convex Geometry
 - Radon's Theorem
 - Helly's Theorem
 - Centerpoint Theorem

Geometric RepresentationS

- Geometric Intuition
- Geometric Representation
- Geometric Algorithms



High dimensional Geometry Challenges

- Dimensionality severely restricts our intuition and ability to visualize data
- => need for automated and provably correct methods S
- Complexity of data structures and algorithms rapidly grow as the dimensionality increases
- => no subdivision of the ambient space is affordable
- => data structures and algorithms should be sensitive to the intrinsic dimension (usually unknown) of the data
- Inherent defects: sparsity, noise, outliers

A section of the Small Magellanic Cloud as seen by the VISTA telescope with distant galaxies circled in green (Image credit: ESO/VISTA Magellanic Clouds Survey)

Complexity Analysis: some reminders

Upper Bound

$$g(n) = O(f(n))$$

There exist C, N such that for all $n \geq N$:

$$g(n) \leq C \, f(n)$$

Lower Bound

$$g(n) = \Omega(f(n))$$

There exist C_0, N such that for all $n \geq N$:

$$g(n) \geq C_0 \, f(n)$$

Tight Bound

$$g(n) = \Theta(f(n))$$

There exist C, C_0, N such that for all $n \geq N$:

$$C_0 f(n) \leq g(n) \leq C f(n)$$

Example

Sorting n numbers by comparisons:

$$T(n) = \Theta(n \log n)$$

Computing the Convex Hull of n Points in the Plane

- Input: a set P of n points in \mathbb{R}^2
- Output: the ordered list (counterclockwise) of the vertices of $\mathrm{conv}(P)$
- Lower Bound:

 $\Omega(n \log n)$

Example reduction:

$$p_i = (x_i, x_i^2)$$

The convex hull of $\{p_i\} \Rightarrow$ sorting of $\{x_i\}$

• Naive Upper Bound:

$$O(n^3)$$

Part I

Convex geometry: short introduction

Barycentric coordinates

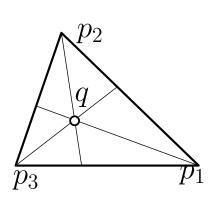
$$q = \sum_{i=1}^{n} \alpha_{i} p_{i}$$
 (where $\sum_{i=1}^{n} \alpha_{i} = 1$)

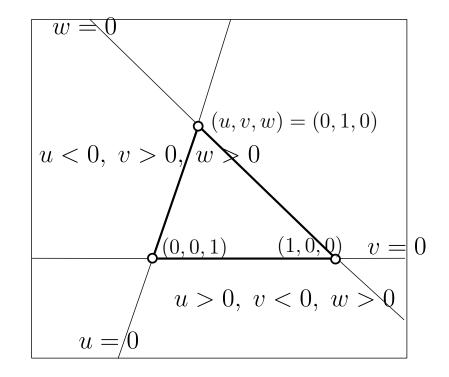
the coefficients $(\alpha_1, \dots, \alpha_n)$ are called *barycentric* coordinates of point q with respect to p_1, \dots, p_n

Barycentric coordinates

$$q = \sum_{i=1}^{n} \alpha_{i} p_{i}$$
 (where $\sum_{i=1}^{n} \alpha_{i} = 1$)

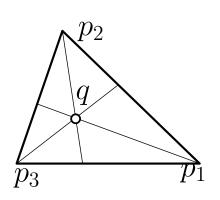
the coefficients $(\alpha_1, \ldots, \alpha_n)$ are called *barycentric* coordinates of point q with respect to p_1, \ldots, p_n

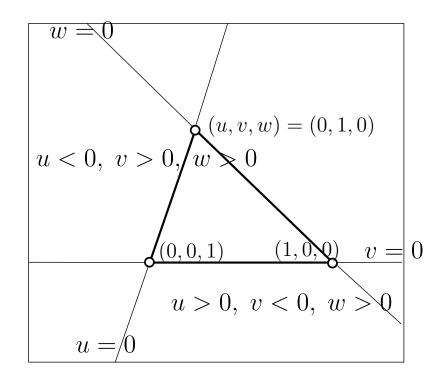




Barycentric coordinates

$$\mathbf{q} = u \, \mathbf{p_1} + v \, \mathbf{p_2} + w \, \mathbf{p_3} = \frac{A(q, p_2, p_3)}{A(p_1, p_2, p_3)} \mathbf{p_1} + \frac{A(p_1, q, p_3)}{A(p_1, p_2, p_3)} \mathbf{p_2} + \frac{A(p_1, p_2, q)}{A(p_1, p_2, p_3)} \mathbf{p_3}$$





affine combination Convex hulls

$$aff(\mathcal{S}) = \left\{ \sum_{i=1}^{n} \alpha_i p_i \mid \sum_{i} \alpha_i = 1 \right\}$$

$$\mathcal{S} := \{p_1, \dots, p_n\}$$

$$convex(S) = \{ \sum_{i=1}^{n} \alpha_i p_i \mid \alpha_i \ge 0, \sum_i \alpha_i = 1 \}$$

Convex hulls

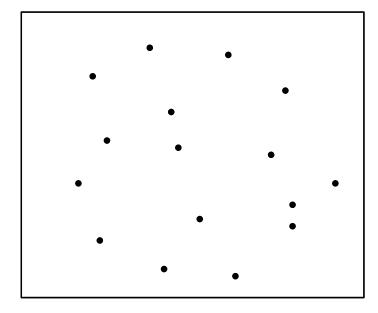
$$aff(\mathcal{S}) = \left\{ \sum_{i=1}^{n} \alpha_i p_i \mid \sum_{i=1}^{n} \alpha_i = 1 \right\}$$

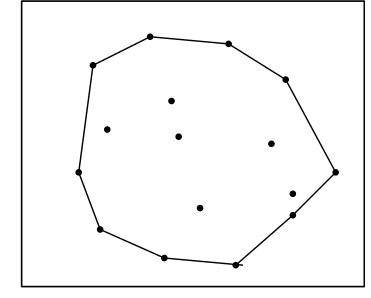
$$\mathcal{S} := \{p_1, \dots, p_n\}$$

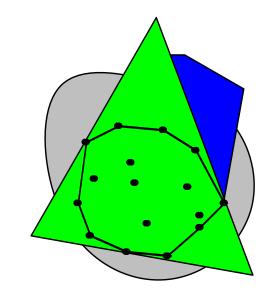
affine combination

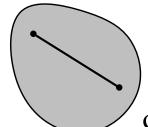
$$convex(\mathcal{S}) = \{ \sum_{i=1}^{n} \alpha_i p_i \mid \alpha_i \ge 0, \sum_i \alpha_i = 1 \}$$

convex combination





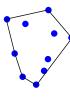




intersection of all convex sets containing ${\mathcal S}$

convex set

Polytopes



Def (*polytope*): the convex hull of a finite set of points in \mathbb{E}^d

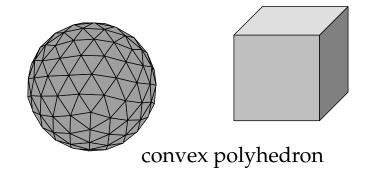
Upper bound theorem

A polytope with n vertices in \mathbb{R}^d has at most $O(n^{\lfloor d/2 \rfloor})$ faces in overall.

This bound is achived for the *cyclic polytopes*: convex hulls of n points on the moment curve $(t, t^2, t^3, \dots, t^d)$.

in 3D

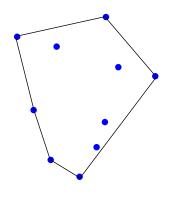
Every polytope with n vertices has at most O(n) faces and edges.



Convex hull computation: complexity

Lower bound

How much time do we need to compute the convex hull of n points?

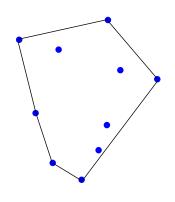


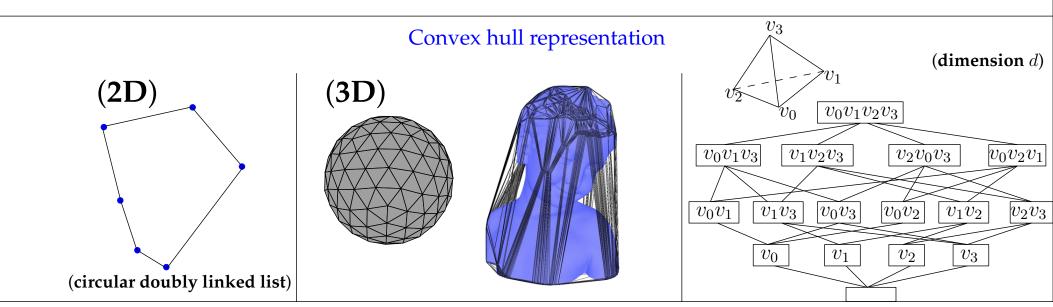
What kind of (memory) representation should we use?

Convex hull computation: complexity

Lower bound

How much time do we need to compute the convex hull of n points?

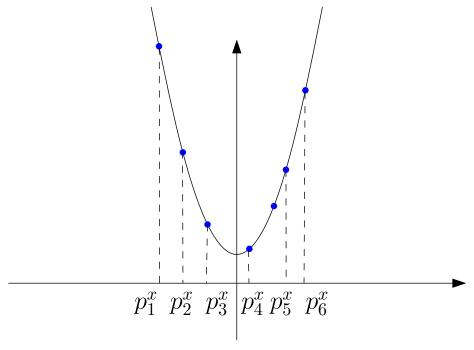




Convex hull computation: complexity

Lower bound (2D)

The computation of the 2D convex hull of n points requires $\Omega(n \log n)$ time



Lower bound (dimension d)

The computation of the dD convex hull of n points requires time

$$O(n\log n + n^{\lfloor d/2 \rfloor})$$

Computing the Convex Hull of n points

In 2D

- Complexity:
 - Worst case: $O(n \log n)$.
 - Optimal, because sorting is a lower bound (convex hull encodes sorted order).
 - If the points are already sorted (say, by x-coordinate), linear-time O(n) algorithms exist.
- Classic algorithms:
 - Graham scan $(O(n \log n))$
 - Jarvis march (Gift wrapping) (O(nh), where h is the number of hull vertices)
 - Chan's algorithm ($O(n \log h)$, output-sensitive)
 - QuickHull (average $O(n \log n)$, worst $O(n^2)$)

Computing the Convex Hull of n points

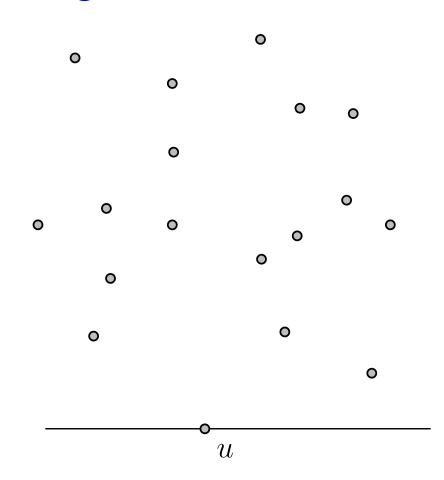
In higher dimensions ($d \ge 3$)

- Complexity:
 - Worst case: $O(n^{\lfloor d/2 \rfloor})$ (because the convex hull can have that many facets/vertices).
 - For fixed d, the convex hull can be computed in

$$O(n\log n + n^{\lfloor d/2 \rfloor})$$

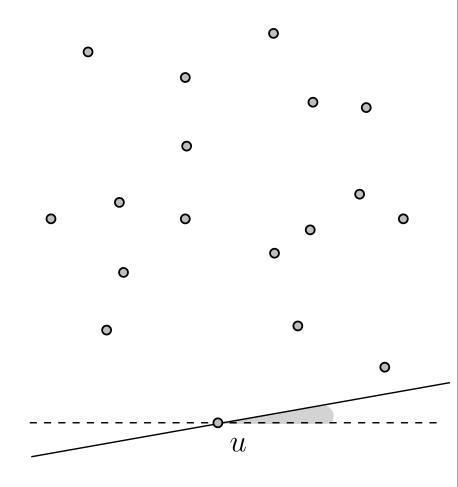
which is optimal.

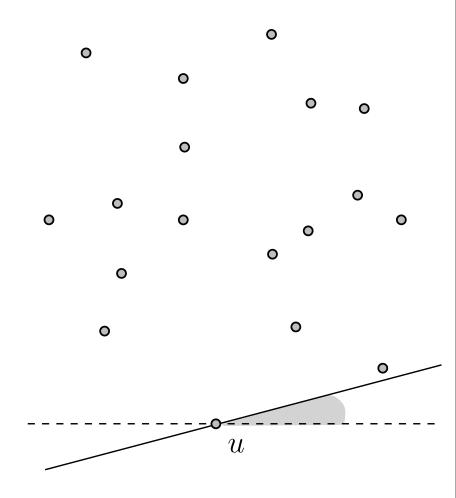
- Classic algorithms:
 - Incremental algorithms (Clarkson–Shor, Seidel, etc.)
 - Divide-and-conquer (Preparata–Hong)
 - QuickHull (generalized to higher d)
 - Beneath–Beyond algorithm (used in practice, e.g. in Qhull)

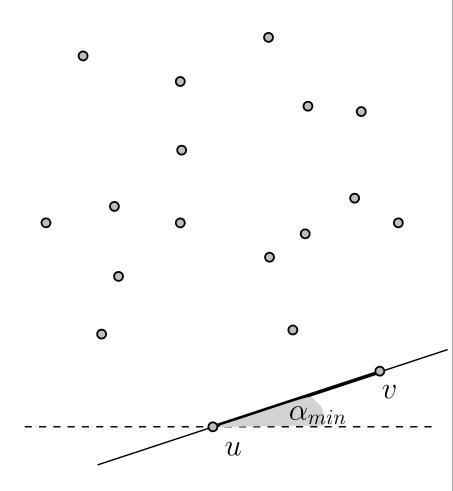


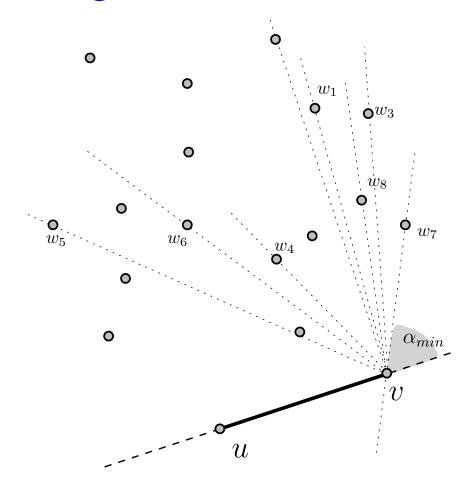
Remark

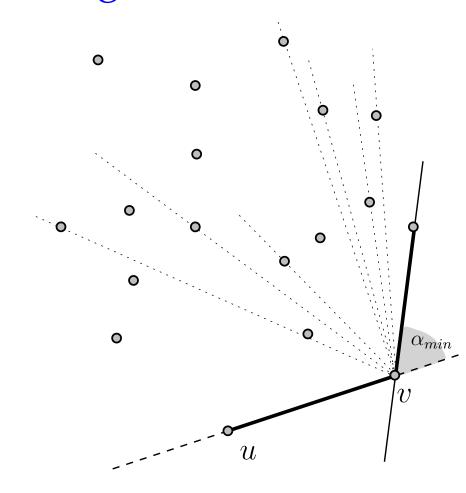
The lowest point (minimal *y*-coordinate) always belongs to the boundary of conv(S)



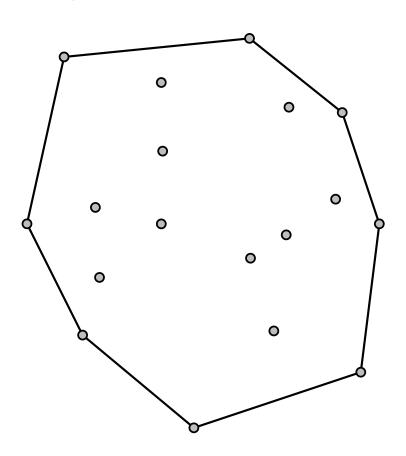






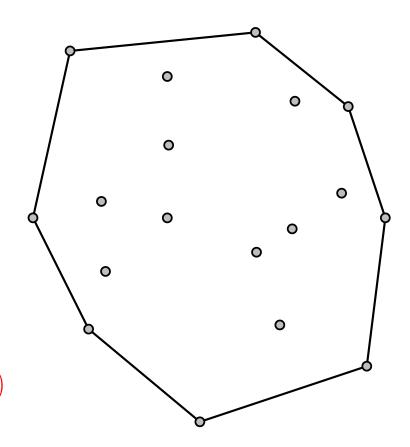


```
procedure : CH(\mathcal{S}) u = \text{lowest point of } \mathcal{S}; min = \infty for each w \in S \setminus \{u\} if angle(ux, uw) < min then min = angle(ux, uw); v = w; u.suivant = v; do S = S \setminus \{v\} for each w \in S min = \infty if angle(v.pred\ v, vw) < min then min = angle(v.pred\ v, vw); v.suivant = w; v = v.suivant; while v \neq u
```



Convex hull computation: complexity (Jarvis)

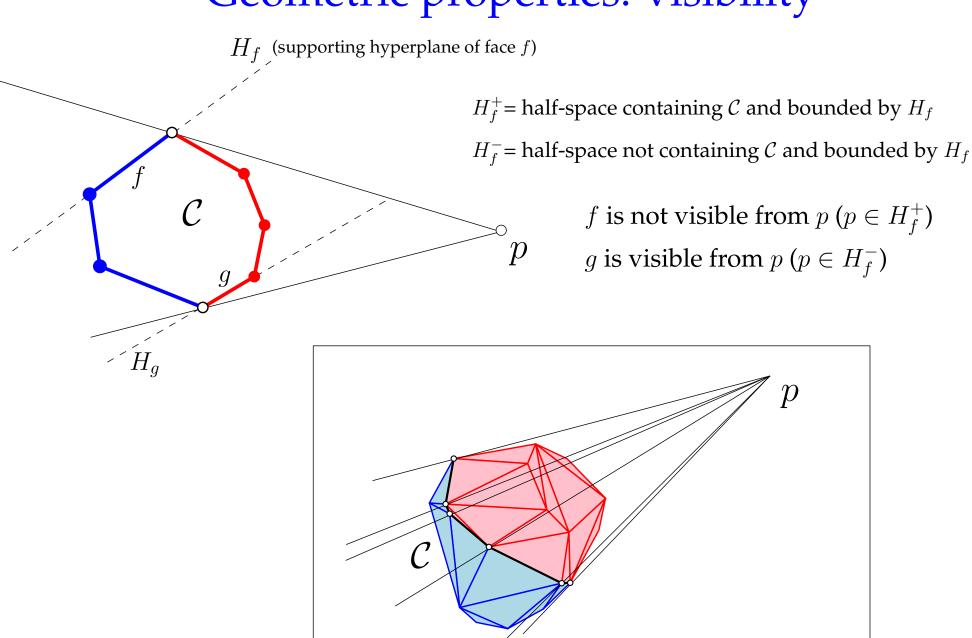
```
procedure : CH(S)
u = lowest point of S;
min = \infty
                             O(n)
for each w \in \mathcal{S} \setminus \{u\}
     if angle(ux, uw) < min then min = angle(ux, uw); v = w;
u.suivant = v;
ar{\mathsf{do}}\,O(n)
     \mathcal{S} = \mathcal{S} \setminus \{v\}
     for each w \in \mathcal{S} O(n)
           min = \infty
           if angle(v.pred\ v,vw) < min then
                          min = angle(v.pred\ v, vw); v.suivant = w;
     v = v.suivant:
while v \neq u
                                                 T(n) = O(n + n^2)
```



Convex hull computation: complexity (Jarvis)

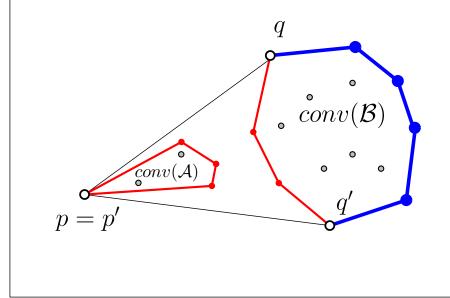
```
procedure : CH(S)
u = lowest point of S;
min = \infty
                                                                                        0
                          O(n)
for each w \in S \setminus \{u\}
     if angle(ux, uw) < min then min = angle(ux, uw); v = w;
u.suivant = v;
\bar{\ }do O(h)
     S = S \setminus \{v\}
    for each w \in S O(n)
         min = \infty
         if angle(v.pred\ v,vw) < min then
                       min = angle(v.pred\ v, vw); v.suivant = w;
    v = v.suivant:
while v \neq u
                                                                           v_{h-1}
                                           T(n) = O(n + nh)
                                                                                        v_h = u
```

Geometric properties: visibility



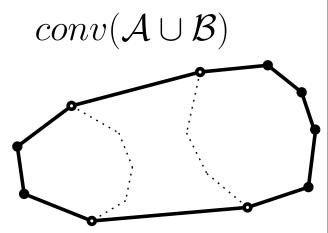
Geometric properties: common tangents



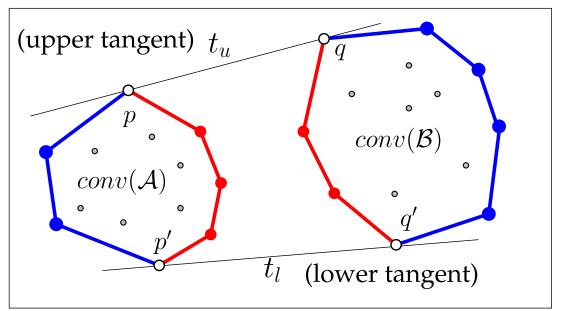


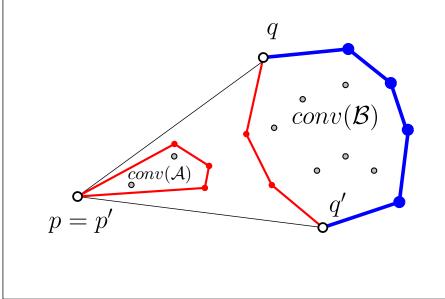
Remarks

The set of red vertices is not empty the set of red edges defines a (non-empty) chain the set of blue edges defines a (possibly empty) chain there are at most 4 tangent points $conv(\mathcal{A} \cup \mathcal{B})$ contains all blue edges, plus the two common (upper and lower) tangents



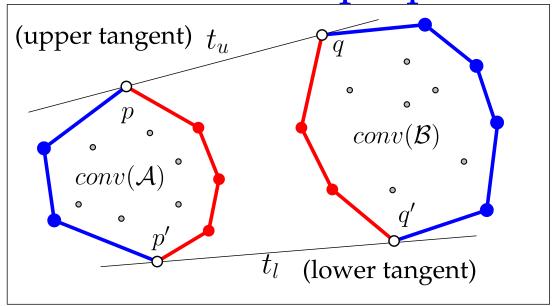
Geometric properties: common tangents

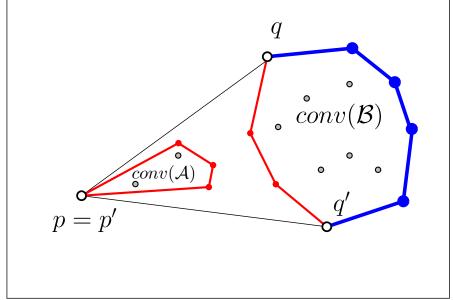


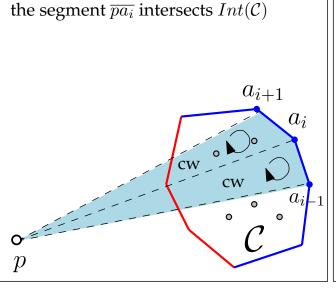


How can we check whether a vertex (or an edge) is visible or not?

Geometric properties: common tangents

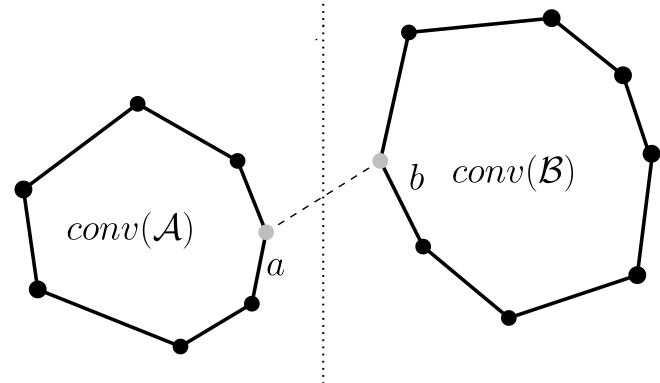






the segment $\overline{pa_i}$ defines the upper tangent the triangles (p,a_{i+1},a_i) and (p,a_i,a_{i-1}) have opposite orientations $a_i \qquad a_{i-1}$

```
procedure UPPERTANGENT(conv(\mathcal{A}), conv(\mathcal{B}))
a \leftarrow \text{righmost vertex of } conv(\mathcal{A})
b \leftarrow \text{leftmost vertex of } conv(\mathcal{B})
while (a \in H^+_{(\mathtt{prev}(b),b)} or b \in H^+_{(a,\mathtt{next}(a))}) — while (a,b) is not the upper tangent \begin{cases} \text{if } a \in H^+_{(\mathtt{prev}(b),b)} \\ \text{else } a \leftarrow \mathtt{next}(a) \end{cases} return (a,b)
```



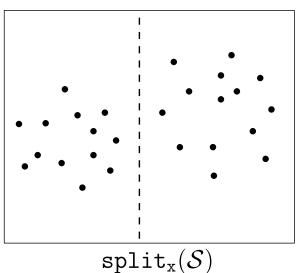
```
procedure UpperTangent(conv(A), conv(B))
 a \leftarrow \text{righmost vertex of } conv(A)
 b \leftarrow \text{leftmost vertex of } conv(\mathcal{B})
 while (a \in H^+_{(\mathtt{prev}(b),b)} or b \in H^+_{(a,\mathtt{next}(a))}) — while (a,b) is not the upper tangent \{if\ a \in H^+_{(\mathtt{prev}(b),b)}\ then\ b \leftarrow \mathtt{prev}(b)\}
   else a \leftarrow \texttt{next}(a)
 return (a, b)
                                                                  prev(b)
                                                                        conv(\mathcal{B})
```

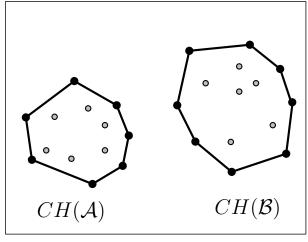
```
procedure UpperTangent(conv(A), conv(B))
a \leftarrow \text{righmost vertex of } conv(A)
b \leftarrow \text{leftmost vertex of } conv(\mathcal{B})
else a \leftarrow \texttt{next}(a)
return (a, b)
                                      conv(\mathcal{B})
          next(a)
```

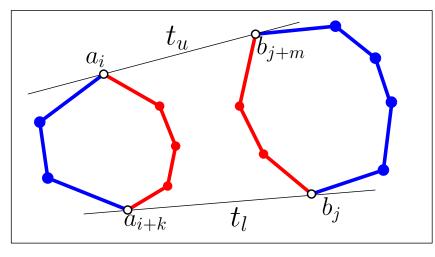
```
procedure UpperTangent(conv(A), conv(B))
 a \leftarrow \text{righmost vertex of } conv(A)
 b \leftarrow \text{leftmost vertex of } conv(\mathcal{B})
 while (a \in H^+_{(\mathtt{prev}(b),b)} or b \in H^+_{(a,\mathtt{next}(a))}) — while (a,b) is not the upper tangent \{if\ a \in H^+_{(\mathtt{prev}(b),b)}\ then\ b \leftarrow \mathtt{prev}(b)\}
   else a \leftarrow \texttt{next}(a)
 return (a, b)
    next(a)
                                                                        conv(\mathcal{B})
```

Upper tangent computation

```
procedure UpperTangent(conv(A), conv(B))
 a \leftarrow \text{righmost vertex of } conv(A)
 b \leftarrow \text{leftmost vertex of } conv(\mathcal{B})
 while (a \in H^+_{(\mathtt{prev}(b),b)} or b \in H^+_{(a,\mathtt{next}(a))}) — while (a,b) is not the upper tangent \{if\ a \in H^+_{(\mathtt{prev}(b),b)}\ then\ b \leftarrow \mathtt{prev}(b)\}
   else a \leftarrow \texttt{next}(a)
 return (a, b)
                                                                         conv(\mathcal{B})
```







procedure
$$CH(S)$$

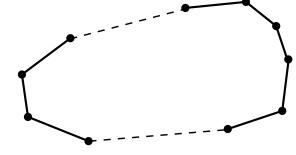
if $n \leq 3$ then return $conv\{p_1, \ldots, p_n\}$ — using brute force
else

$$\begin{cases} let (\mathcal{A}, \mathcal{B}) = verticalSplit(S) & -where |\mathcal{A}| = \lceil n/2 \rceil \text{ and } |\mathcal{B}| = \lfloor n/2 \rfloor \\ return \ merge(CH(\mathcal{A}), CH(\mathcal{B})) \end{cases}$$

$$l_A = \mathtt{split}(con (\mathcal{A}), a_i, a_{i+k})$$

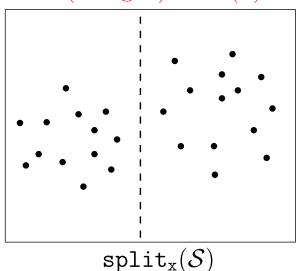
$$l_B = \mathtt{split}(conv(\mathcal{B}), b_j, b_{j+m})$$

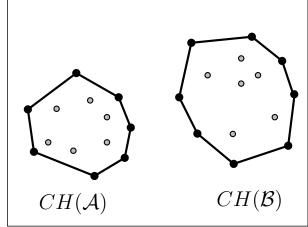
$$CH(\mathcal{A} \bigcup \mathcal{B}) = \mathtt{merge}(l_A, t_l, l_b, t_u)$$

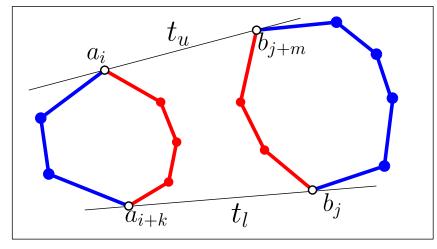


$$O(n\log n) + O(1)$$

$$T(n/2)$$
 $T(n/2)$







procedure
$$CH(S)$$

if
$$n \leq 3$$
 then return $conv\{p_1, \ldots, p_n\}$ — using brute force else

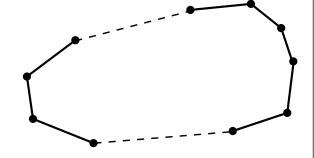
$$O(1)$$
 $l_A = \mathrm{split}(conv(A), a_i, a_{i+k})$

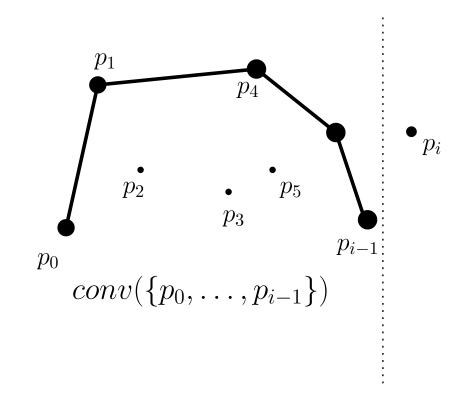
$$O(1)$$
 $l_B = \operatorname{split}(conv(\mathcal{B}), b_j, b_{j+m})$

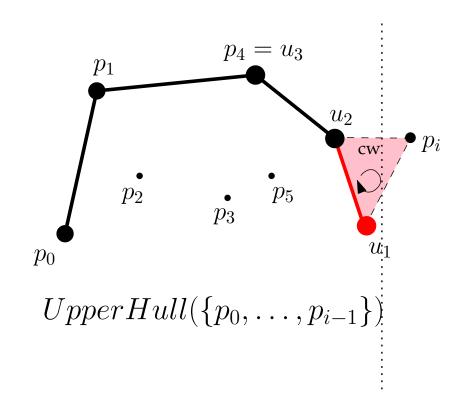
$$\begin{cases} \text{let } (\mathcal{A}, \mathcal{B}) = verticalSplit(S) & -\text{where } |\mathcal{A}| = \lceil n/2 \rceil \text{ and } |\mathcal{B}| = \lfloor n/2 \rfloor \\ \textbf{return } merge(CH(\mathcal{A}), CH(\mathcal{B})) \end{cases}$$

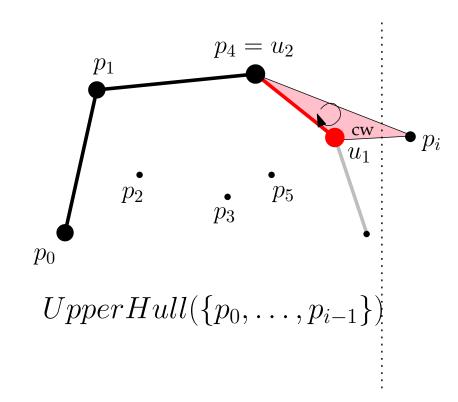
$$O(1)$$
 $CH(A \bigcup B) = merge(l_A, t_l, l_b, t_u)$

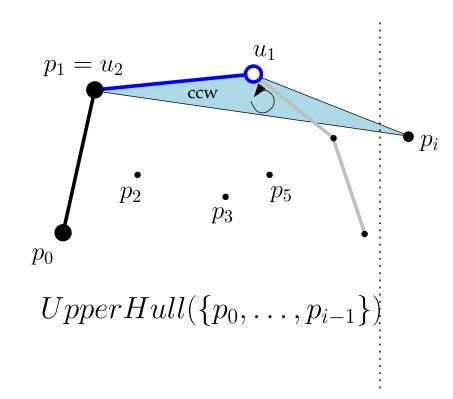
$$T(n) = \begin{cases} O(1) & n \le 3 \\ O(n) + 2T(\frac{n}{2}) & n > 3 \end{cases} \qquad T(n) = O(n \log n)$$

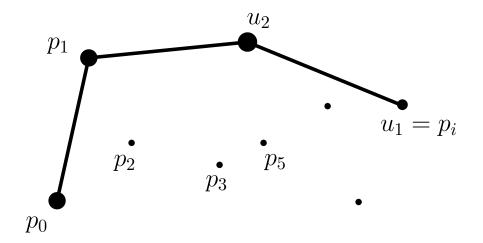




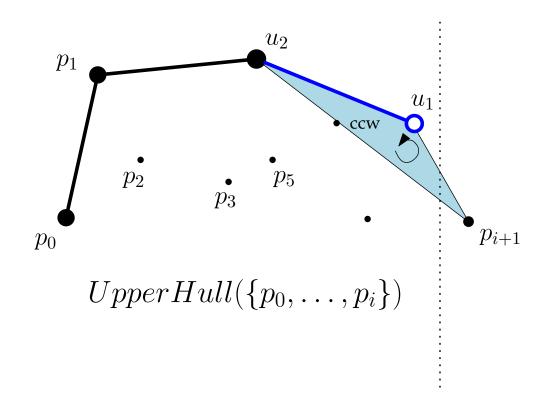


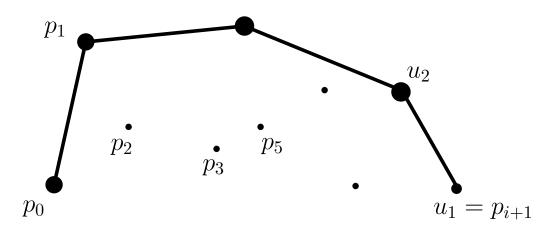






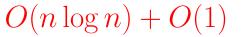
 $UpperHull(\{p_0,\ldots,p_i\})$

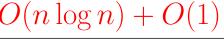




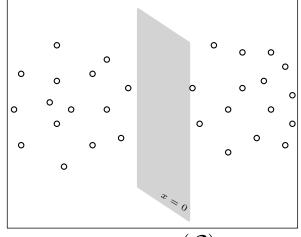
 $UpperHull(\{p_0,\ldots,p_{i+1}\})$

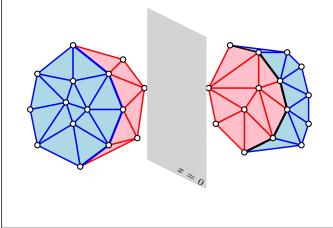
```
Entrée : \mathcal S un ensemble de n points. 
trier les points de S selon les coordonnées x croissantes; 
initialiser U=[p_1,p_2]; // pile représentant l'enveloppe convexe 
pour tout point p\in\{p_3,\ldots,p_n\} faire O(n) 
soient u_1 et u_2 les deux premiers sommets de U; 
tant que (p,u_1,u_2) est orienté cw O(n)? 
dépiler u_{first} de U 
empiler p dans U 
retourner U
```

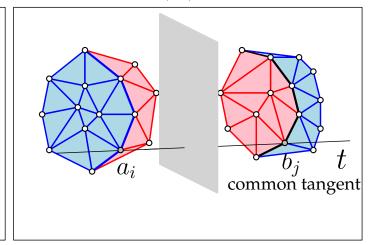




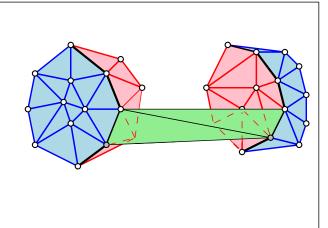
O(n)

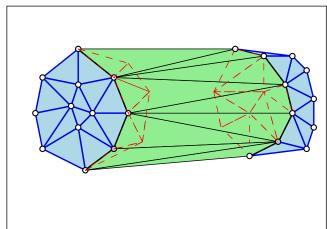






 $\mathtt{split}_\mathtt{x}(\mathcal{S})$

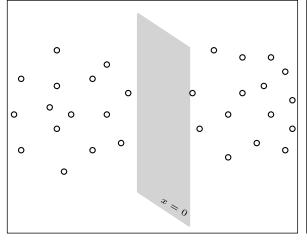


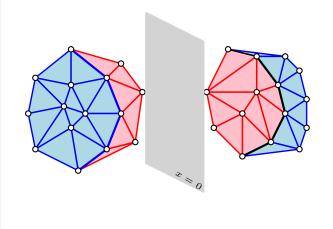


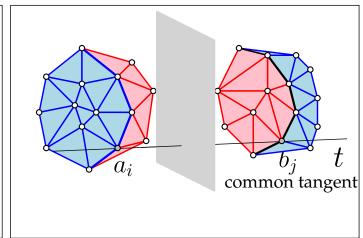
O(n)



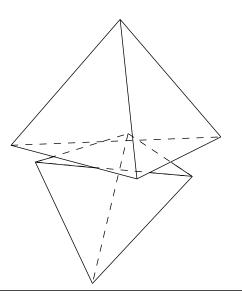
O(n)

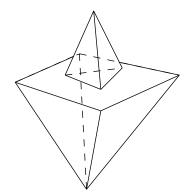


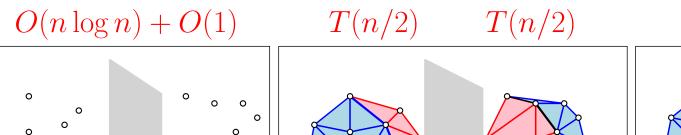


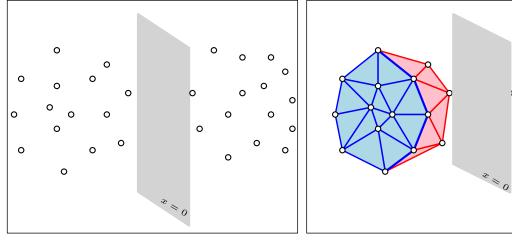


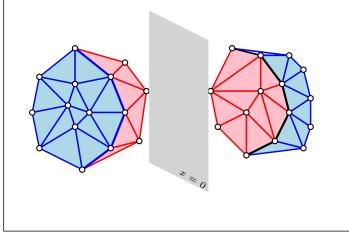
things are more complicated in the 3D world

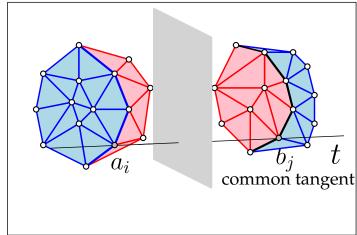




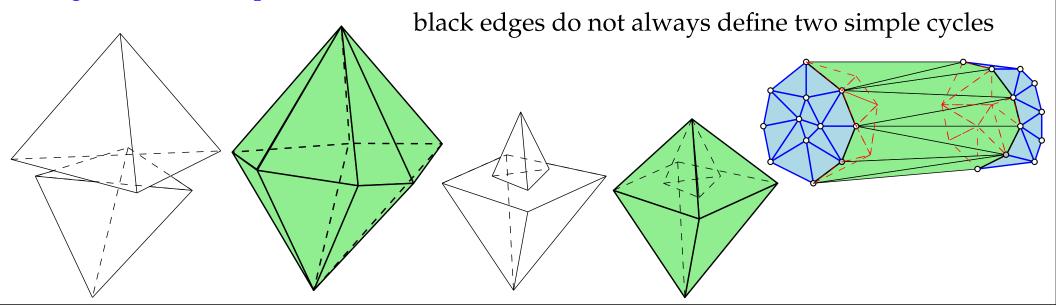


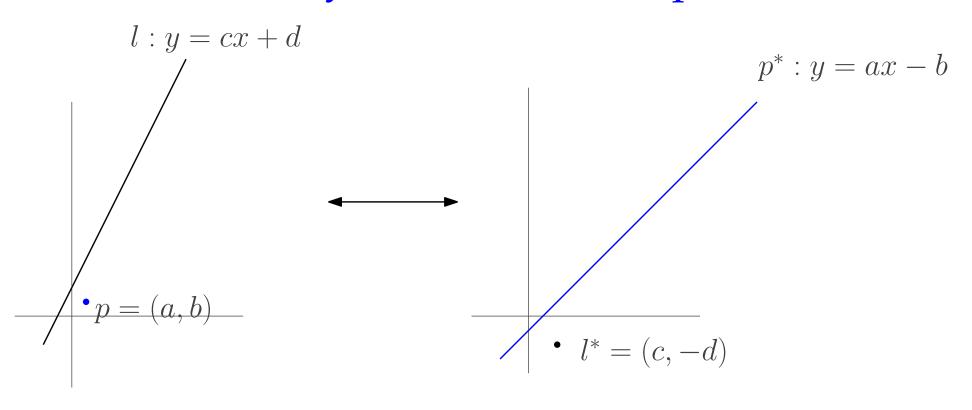


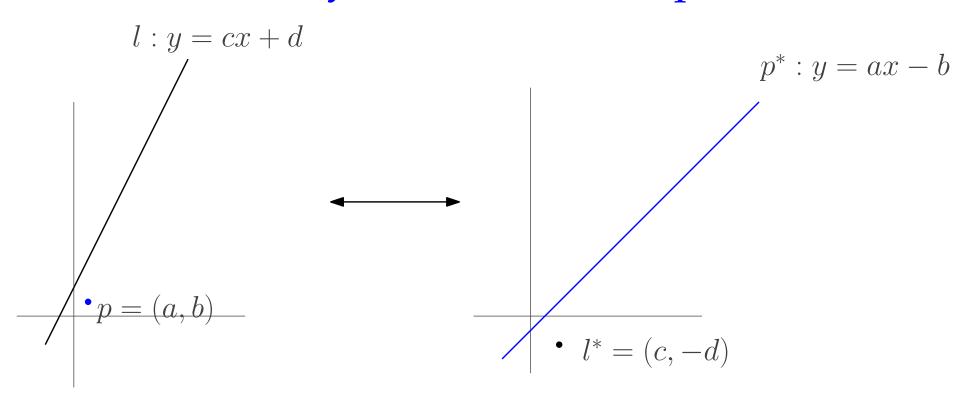




things are more complicated in the 3D world

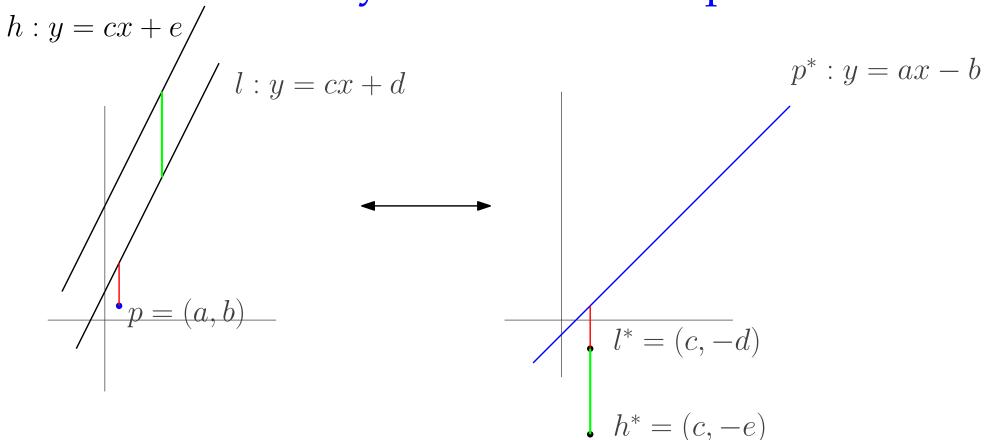




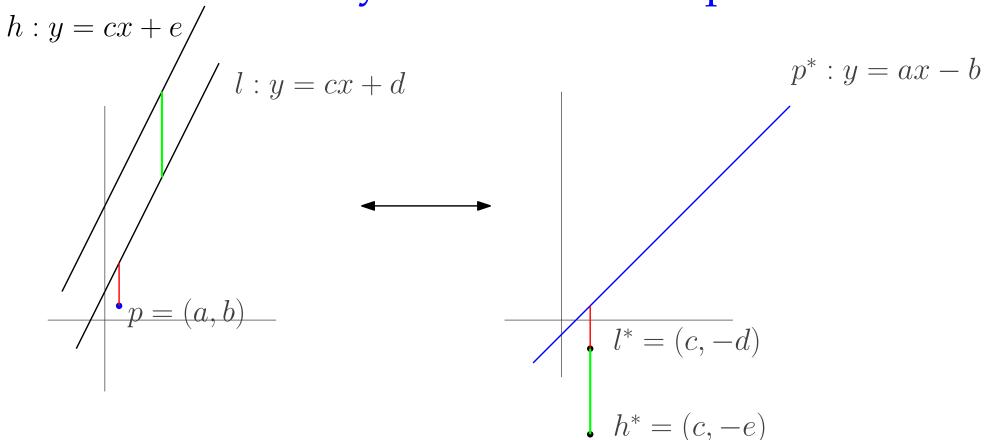


•
$$(p^*)^* = p$$
 $(p^*)^* := (a, -(-b)) = p$

• p is below l if and only if l^* is below p^*

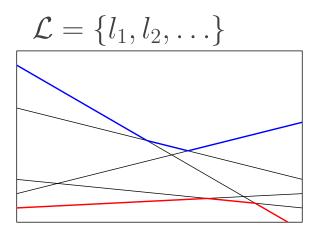


- the vertical distance between p and l is equal to the vertical distance between l^* and p^*
- the vertical distance between l and h is equal to length of (l^*h^*)



- the vertical distance between p and l is equal to the vertical distance between l^* and p^*
- the vertical distance between l and h is equal to length of (l^*h^*)

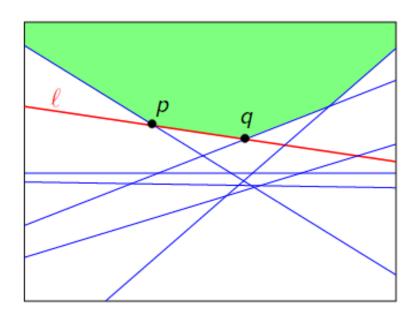
Duality in 2d: lower and upper envelopes



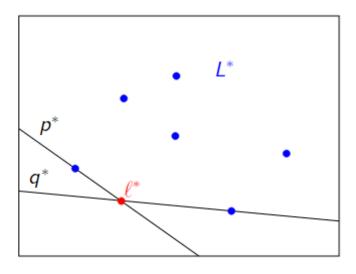


Duality in 2d: lower and upper envelopes

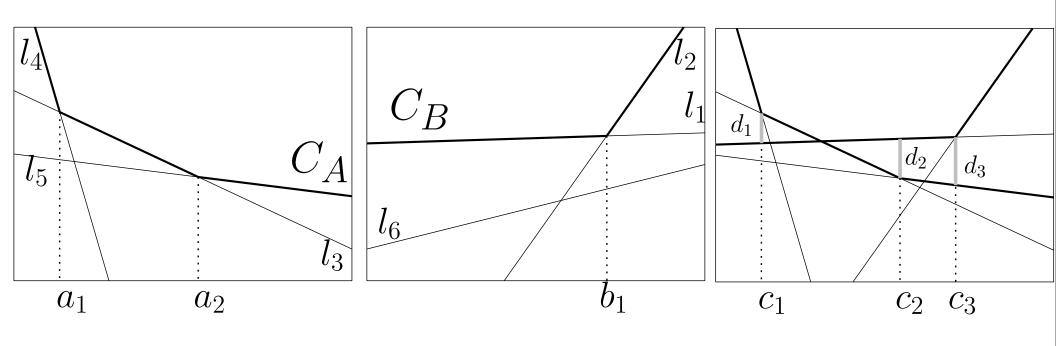
p and q are above all lines



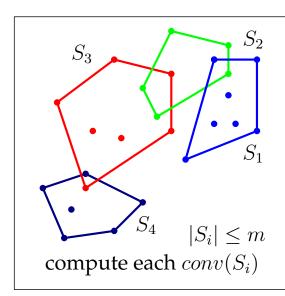
p and q are below all points

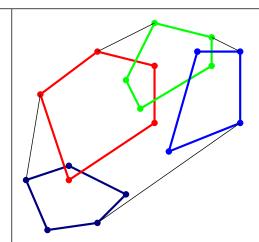


Divide and conquer: lower and upper envelopes



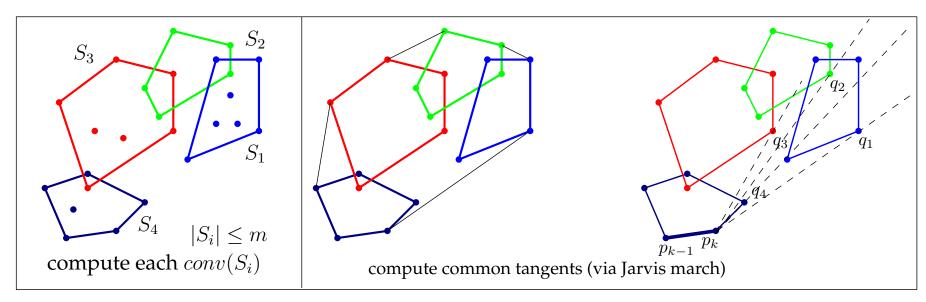
2D Convex hull: output sensitive algorithm





How can we compute common tangents?

2D Convex hull: output sensitive algorithm



Let us assume we know the value of m

```
\begin{aligned} & p_0 := (-\infty, 0), p_1 := \text{lowest point of } \mathcal{S} \\ & \text{for } k = 1 \text{ to } m \text{ do} \\ & \text{ for } i = 1 \text{ to } r \text{ do} \\ & \text{ compute } q_i \in S_i \text{ maximizing the angle } (p_{k-1}p_kq_i) \text{ // tangent computation} \\ & \text{ let } q \in \{q_1, \dots, q_r\} \text{the point maximizing angle } (p_{k-1}p_kq_i) \\ & p_{k+1} := q \\ & \text{ if } p_{k+1} = p_1 \text{ return } (p_1, \dots, p_k) \\ & \text{ return null} \end{aligned}
```


Questions?

