
Computational Geometry and Topology
Géométrie et topologie algorithmiques

Steve OUDOT Pooran MEMARI

Acknowledgments of Involved Colleagues:

Jean Daniel Boissonnat, Frederic Chazal, Marc Glisse,

As well as Olivier Devillers and Luca Castelli

eomeriX Research Team

4

Geometry for Simulation

Geometry for Shape Processing Geometry for Dynamical Systems

Geometry for Data Science

Geometry-driven Numerics

2025-2026: 8 lectures of 3h, Monday 8:45-11:45.

•[22/9] Warm up: 2D convex geometry [PM]
•[29/9] Comparing objects, polytopes [PM]
•[6/10] Nearest neighbor search [SO]
•[13/10] Voronoi, Delaunay [PM]
•[20/10] Reconstruction in higher dimensions [PM]
•[3/11] Clustering [SO]
•[10/11] Homology and persistent homology [SO]
•[17/11] Stability of persistent homology - homology inference [SO]
•[1/12] Written exam

Type: Theoretical aspect of geometry
and algorithms

Pre-requisite: not allergic to theory,
interested by applications

Questions:
- Steve Oudot (steve.oudot@inria.fr)
- Pooran Memari (memari@lix.polytechnique.fr)

Geometric RepresentationS

•Geometric Intuition

•Geometric Representation

•Geometric Algorithms

High dimensional Geometry Challenges

• Dimensionality severely restricts our intuition and ability to visualize data

=> need for automated and provably correct methods S

• Complexity of data structures and algorithms rapidly grow as the dimensionality increases

=> no subdivision of the ambient space is affordable

=> data structures and algorithms should be sensitive to the intrinsic dimension (usually
unknown) of the data

• Inherent defects : sparsity, noise, outliers

Complexity Analysis: some reminders

2

Part I

Convex geometry: short introduction

3

Barycentric coordinates

q =
∑n
i αipi (where

∑
iαi = 1)

the coefficients (α1, . . . , αn) are called barycentric
coordinates of point q with respect to p1, . . . , pn

4

p1

p2

p3

q
(u, v, w) = (0, 1, 0)

u > 0, v < 0, w > 0

u < 0, v > 0, w > 0

v = 0

u = 0

w = 0

(0, 0, 1) (1, 0, 0)

Barycentric coordinates

the coefficients (α1, . . . , αn) are called barycentric
coordinates of point q with respect to p1, . . . , pn

q =
∑n
i αipi (where

∑
iαi = 1)

5

p1

p2

p3

q
(u, v, w) = (0, 1, 0)

u > 0, v < 0, w > 0

u < 0, v > 0, w > 0

v = 0

u = 0

w = 0

(0, 0, 1) (1, 0, 0)

q = up1 + v p2 + w p3 = A(q,p2,p3)
A(p1,p2,p3)

p1 + A(p1,q,p3)
A(p1,p2,p3)

p2 + A(p1,p2,q)
A(p1,p2,p3)

p3

Barycentric coordinates

6

Convex hulls
aff (S) = {

∑n
i=1 αipi |

∑
i αi = 1 }

affine combination

convex(S) = {
∑n
i=1αipi | αi ≥ 0,

∑
iαi = 1 }

convex combination

S := {p1, . . . , pn}

7

aff (S) = {
∑n

i=1 αipi |
∑

i αi = 1 }

convex(S) = {
∑n
i=1αipi | αi ≥ 0,

∑
iαi = 1 }

convex set

intersection of all convex sets containing S

Convex hulls
affine combination

convex combination

S := {p1, . . . , pn}

8

Polytopes

A polytope with n vertices in Rd has at most O(nbd/2c) faces in overall.
Upper bound theorem

Every polytope with n vertices has at most O(n) faces and edges.

in 3D

convex polyhedron

Def (polytope): the convex hull of a finite set of points in Ed

This bound is achived for the cyclic polytopes: convex hulls of n points on the

moment curve (t, t2, t3 . . . , td).

9

Convex hull computation: complexity

How much time do we need to compute the convex hull of n points?
Lower bound

(image from CGAL user manual)

What kind of (memory) representation should we use?

10

Convex hull computation: complexity

How much time do we need to compute the convex hull of n points?
Lower bound

(image from CGAL user manual)

Convex hull representation

(2D)
(dimension d)

(3D)

(circular doubly linked list)

v0

v1
v2

v3

v0v1v2v3

v0v1v3 v1v2v3 v2v0v3 v0v2v1

v0v1 v1v3 v0v3 v0v2 v1v2 v2v3

v0 v1 v2 v3

11

The computation of the 2D convex hull of n points requires Ω(n log n) time
(2D)

px1 px2 px3 px4 p
x
5 px6

Lower bound

O(n log n + nbd/2c)

Convex hull computation: complexity

Lower bound

(dimension d)

The computation of the dD convex hull of n points requires time

Computing the Convex Hull of n points

Computing the Convex Hull of n points

12

u

Convex hull computation: first algorithm (Jarvis)

Remark
The lowest point (minimal y-coordinate) always belongs to the boundary of conv(S)

13

Convex hull computation: first algorithm (Jarvis)

u

14

u

Convex hull computation: first algorithm (Jarvis)

15

u

v
αmin

Convex hull computation: first algorithm (Jarvis)

16

u

v

w3

αmin

w1

w4
w5 w6

w7

w8

Convex hull computation: first algorithm (Jarvis)

17

u

v

αmin

Convex hull computation: first algorithm (Jarvis)

18

procedure : CH(S)
u = lowest point of S;
min =∞
for each w ∈ S \ {u}

if angle(ux, uw) < min then min = angle(ux, uw); v = w;
u.suivant = v;
do

S = S \ {v}
for each w ∈ S

min =∞
if angle(v.pred v, vw) < min then

min = angle(v.pred v, vw); v.suivant = w;
v = v.suivant;

while v 6= u

Convex hull computation: first algorithm (Jarvis)

19

Convex hull computation: complexity (Jarvis)
procedure : CH(S)
u = lowest point of S;
min =∞
for each w ∈ S \ {u}

if angle(ux, uw) < min then min = angle(ux, uw); v = w;
u.suivant = v;
do
S = S \ {v}
for each w ∈ S

min =∞
if angle(v.pred v, vw) < min then

min = angle(v.pred v, vw); v.suivant = w;
v = v.suivant;

while v 6= u

O(n)

O(n)

O(n)

T (n) = O(n + n2)

20

Convex hull computation: complexity (Jarvis)
procedure : CH(S)
u = lowest point of S;
min =∞
for each w ∈ S \ {u}

if angle(ux, uw) < min then min = angle(ux, uw); v = w;
u.suivant = v;
do

S = S \ {v}
for each w ∈ S

min =∞
if angle(v.pred v, vw) < min then

min = angle(v.pred v, vw); v.suivant = w;
v = v.suivant;

while v 6= u

O(n)

O(n)

O(h)

T (n) = O(n + nh)

vh = u

v1

v2

vh−1

vh−2

21

C
p

Geometric properties: visibility

f

g

Hf (supporting hyperplane of face f)

Hg

f is not visible from p (p ∈ H+
f)

g is visible from p (p ∈ H−f)

H+
f = half-space containing C and bounded by Hf

H−
f = half-space not containing C and bounded by Hf

p

C

22

Geometric properties: common tangents

conv(B)

tu

tl

conv(A)

(upper tangent)

p

q

(lower tangent)
p′

q′

q

q′
p = p′

conv(B)

conv(A)

conv(A ∪ B)
Remarks

The set of red vertices is not empty
the set of red edges defines a (non-empty) chain

there are at most 4 tangent points

conv(A∪B) contains all blue edges, plus the two common
(upper and lower) tangents

the set of blue edges defines a (possibly empty) chain

23

Geometric properties: common tangents

conv(B)

tu

tl

conv(A)

(upper tangent)

p

q

(lower tangent)
p′

q′

q

q′
p = p′

conv(B)

conv(A)

How can we check whether a vertex (or an edge) is visible or not?

24

Geometric properties: common tangents

conv(B)

tu

tl

conv(A)

(upper tangent)

p

q

(lower tangent)
p′

q′

q

q′
p = p′

conv(B)

conv(A)

ai

C
p

ai−1

ai+1

ccw

ccw

ai

C
p

ai−1

ai+1

cw
cw

the segment pai does not intersect Int(C) the segment pai intersects Int(C)

ai

C
p

ai−1

ai+1

the segment pai defines the upper tangent

the triangles (p, ai+1, ai) and (p, ai, ai−1)
have opposite orientations

cw

ccw

(p, ai+1, ai) and (p, ai, ai−1) are ccw oriented

xi − xp

yi − yp

xi−1 − xp

yi−1 − yp()or(p, ai, ai−1) = sign [det]

25

Upper tangent computation

a

b conv(B)

conv(A)

26

Upper tangent computation

a

b
conv(B)

conv(A)

prev(b)

27

a

b

conv(B)

conv(A)

Upper tangent computation

next(a)

28

a

b

conv(B)

conv(A)

Upper tangent computation

next(a)

29

a

b

conv(B)

conv(A)

Upper tangent computation

tu

30

CH(B)CH(A)

splitx(S)

tu

tl

ai
bj+m

ai+k
bj

CH(A
⋃
B) = merge(lA, tl, lb, tu)

lA = split(conv(A), ai, ai+k)

lB = split(conv(B), bj, bj+m)

+

2D Convex hull: optimal divide and conquer algorithm

31

CH(B)CH(A)

splitx(S)

tu

tl

ai
bj+m

ai+k
bj

CH(A
⋃
B) = merge(lA, tl, lb, tu)

lA = split(conv(A), ai, ai+k)

lB = split(conv(B), bj, bj+m)

+

T (n) = { O(1) n ≤ 3

O(n) + 2T (n
2
) n > 3

T (n) = O(n log n)

2D Convex hull: optimal divide and conquer algorithm
T (n/2) T (n/2) O(n)O(n log n) + O(1)

O(1)

O(1)

O(1)

32

conv({p0, . . . , pi−1})

pi

2D Convex hull: Graham-Andrew scan

p0

p1

p2
p3

p4

p5

pi−1

33

UpperHull({p0, . . . , pi−1})

pi

2D Convex hull: Graham-Andrew scan

p0

p1

p2
p3

p4 = u3

p5

cw

u1

u2

34

UpperHull({p0, . . . , pi−1})

pi

2D Convex hull: Graham-Andrew scan

p0

p1

p2
p3

p4 = u2

p5

cw
u1

35

UpperHull({p0, . . . , pi−1})

pi

2D Convex hull: Graham-Andrew scan

p0

p2
p3

p1 = u2

p5

ccw

u1

36

UpperHull({p0, . . . , pi})

u1 = pi

2D Convex hull: Graham-Andrew scan

p0

p2
p3

p1

p5

u2

37

UpperHull({p0, . . . , pi})

u2

2D Convex hull: Graham-Andrew scan

p0

p2
p3

p1

p5

u1

pi+1

ccw

38

UpperHull({p0, . . . , pi+1})

u2

2D Convex hull: Graham-Andrew scan

p0

p2
p3

p1

p5

u1 = pi+1

O(n)

O(n)?

39

splitx(S)

tai bj

3D Convex hull: optimal divide and conquer algorithm
T (n/2) T (n/2) O(n)O(n log n) + O(1)

x
=

0

x
=

0 common tangentx
=

0

ai bjx
=

0

O(n)

40

tai bj

3D Convex hull: optimal divide and conquer algorithm
T (n/2) T (n/2) O(n)O(n log n) + O(1)

x
=

0

x
=

0 common tangentx
=

0

things are more complicated in the 3D world

41

tai bj

3D Convex hull: optimal divide and conquer algorithm
T (n/2) T (n/2) O(n)O(n log n) + O(1)

x
=

0

x
=

0 common tangentx
=

0

things are more complicated in the 3D world
black edges do not always define two simple cycles

42

Duality in 2d: lines and points
l : y = cx + d

p = (a, b)

p∗ : y = ax− b

l∗ = (c,−d)

43

Duality in 2d: lines and points
l : y = cx + d

p = (a, b)

p∗ : y = ax− b

l∗ = (c,−d)

(p∗)∗ = p (p∗)∗ := (a,−(−b)) = p

p is below l if and only if l∗ is below p∗

44 - 1

Duality in 2d: lines and points

l : y = cx + d

p = (a, b)

p∗ : y = ax− b

l∗ = (c,−d)

the vertical distance between p and l is equal to the vertical distance
between l∗ and p∗

h : y = cx + e

h∗ = (c,−e)

the vertical distance between l and h is equal to length of (l∗h∗)

44 - 2

Duality in 2d: lines and points

l : y = cx + d

p = (a, b)

p∗ : y = ax− b

l∗ = (c,−d)

the vertical distance between p and l is equal to the vertical distance
between l∗ and p∗

h : y = cx + e

h∗ = (c,−e)

the vertical distance between l and h is equal to length of (l∗h∗)

45

Duality in 2d: lower and upper envelopes

L = {l1, l2, . . .}

l1

l2

l3

l4

l5

l6

46

Duality in 2d: lower and upper envelopes

p and q are above all lines p and q are below all points

47

Divide and conquer: lower and upper
envelopes

l3

l4

l5

l1

l2

l6

CA

CB

a1 a2 b1 c1 c2 c3

d1
d2 d3

48

2D Convex hull: output sensitive algorithm

compute each conv(Si)

S1

S2
S3

S4

How can we compute common tangents?

|Si| ≤ m

49

2D Convex hull: output sensitive algorithm

compute each conv(Si)

S1

S2
S3

S4

compute common tangents (via Jarvis march)

q1

q4

q2

q3

pkpk−1

PartialHull(S,m)

for k = 1 to m do
for i = 1 to r do

compute qi ∈ Si maximizing the angle (pk−1pkqi) // tangent computation

let q ∈ {q1, . . . , qr}the point maximizing angle (pk−1pkqi)

pk+1 := q

if pk+1 = p1 return (p1, . . . , pk)

return null

p0 := (−∞, 0), p1 := lowest point of S

Let us assume we know the value of m

|Si| ≤ m

Questions?

