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Abstract. This paper presents a novel technique for counterexample genera-
tion in probabilistic model checking of Markov Chains and Markov Decision
Processes. (Finite) paths in counterexamples are grouped together in witnesses
that are likely to provide similar debugging information to the user. We list
five properties that witnesses should satisfy in order to be useful as debugging
aid: similarity, accuracy, originality, significance, and finiteness. Our witnesses
contain paths that behave similar outside strongly connected components.
This papers shows how to compute these witnesses by reducing the problem of
generating counterexamples for general properties over Markov Decision Pro-
cesses, in several steps, to the easy problem of generating counterexamples for
reachability properties over acyclic Markov Chains.

1 Introduction

Model checking is an automated technique that, given a finite-state model of a system
and a property stated in an appropriate logical formalism, systematically checks the
validity of this property. Model checking is a general approach and is applied in areas
like hardware verification and software engineering.

Nowadays, the interaction geometry of distributed systems and network protocols
calls for probabilistic, or more generally, quantitative estimates of, e.g., performance
and cost measures. Randomized algorithms are increasingly utilized to achieve high
performance at the cost of obtaining correct answers only with high probability. For
all this, there is a wide range of models and applications in computer science requir-
ing quantitative analysis. Probabilistic model checking allow us to check whether or
not a probabilistic property is satisfied in a given model, e.g., “Is every message sent
successfully received with probability greater or equal than 0.99?”.

A major strength of model checking is the possibility of generating diagnostic infor-
mation in case the property is violated. This diagnostic information is provided through
a counterexample showing an execution of the model that invalidates the property under
verification. Apart from the immediate feedback in model checking, counterexamples
are also used in abstraction-refinement techniques [CGJ+00], and provide the founda-
tions for schedule derivation (see, e.g., [BLR05]).

Although counterexample generation was studied from the very beginning in most
model checking techniques, this has not been the case for probabilistic model checking.
Only recently attention was drawn to this subject [AHL05,AL06,HK07a,HK07b,AL07],
fifteen years after the first studies on probabilistic model checking. Contrarily to other
model checking techniques, counterexamples in this setting are not given by a single
execution path. Instead, they are sets of executions of the system satisfying a certain
undesired property whose probability mass is higher than a given bound. Since coun-
terexamples are used as a diagnostic tool, previous works on counterexamples have pre-
sented them as sets of finite paths of large enough probability. We refer to these sets as
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representative counterexamples. Elements of representative counterexamples with high
probability have been considered the most informative since they contribute mostly to
the property refutation.

A challenge in counterexample generation for probabilistic model checking is that
(1) representative counterexamples are very large (often infinite), (2) many of its el-
ements have very low probability, and (3) that elements can be extremely similar to
each other (consequently providing similar diagnostic information). Even worse, (4)
sometimes the finite paths with highest probability do not indicate the most likely
violation of the property under consideration.

For example, look at the Markov chain M in Figure 1. The property M |=
≤0.5

♦ψ
stating that execution reaches a state satisfying ψ (i.e., reaches s3 or s4) with proba-
bility lower or equal than 0.5 is violated (since the probability of reaching ψ is 1). The
left hand side of table in Figure 2 lists finite paths reaching ψ ranked according to their
probability. Note that finite paths with highest probability take the left branch in the
system, whereas the right branch in itself has higher probability, illustrating Problem 4.
To adjust the model so that it does satisfy the property (bug fixing), it is not sufficient
to modify the left hand side of the system alone; no matter how one changes the left
hand side, the probability of reaching ψ remains at least 0.6. Furthermore, the first
six finite paths provide similar diagnostic information: they just make extra loops in
s1. This is an example of Problem 3. Also, the probability of every single finite path
is far below the bound 0.5, making it unclear if a particular path is important; see
Problem 2 above. Finally, the (unique) counterexample for the property M |=

<1
♦ψ

consists of infinitely many finite paths (namely all finite paths of M); see Problem 1.
To overcome these problems, we partition a representative counterexample into sets of

s0

s1 s2

s3

ψ

s4

ψ

0,5 0,99

0,4 0,6

0,5 0,01

Fig. 1: Markov chain

Single paths Witnesses

Rank F. Path Prob Witness Mass

1 s0(s1)
1s3 0.2 [s0s2s4] 0.6

2 s0(s1)
2s3 0.1 [s0s1s3] 0.4

3 s0(s1)
3s3 0.05

4 s0(s1)
4s3 0.025

5 s0(s1)
5s3 0.0125

6 s0(s1)
6s3 0.00625

7 s0(s2)
1s4 0.006

8 s0(s2)
2s4 0.0059

9 s0(s2)
3s4 0.0058

...
...

...

Fig. 2: Comparison Table

finite paths that follow a similar pattern. We call these sets witnesses. To ensure that
witnesses provide valuable diagnostic information, we desire that the set of witnesses
that form a counterexample satisfies several properties: two different witnesses should
provide different diagnostic information (solving Problem 3) and elements of a single
witness should provide similar diagnostic information, as a consequence witnesses have
a high probability mass (solving Problems 2 and 4), and the number of witnesses of a
representative counterexample should be finite (solving Problem 1).

In our setting, witnesses consist of paths that behave the same outside strongly
connected components. In the example of Figure 1, there are two witnesses: the set of
all finite paths going right, represented by [s0s2s4] whose probability (mass) is 0.6, and
the set of all finite paths going left, represented by [s0s1s3] with probability (mass) 0.4.

In this paper, we show how to obtain such sets of witnesses for bounded probabilistic
LTL properties on Markov decision processes (MDP). In fact, we first show how to
reduce this problem to finding witnesses for upper bounded probabilistic reachability

2



properties on discrete time Markov chains (MCs). The major technical matters lie on
this last problem to which most of the paper is devoted.

In a nutshell, the process to find witnesses for the violation of M |=
≤p

♦ψ, with M
being a MC, is as follows. We first eliminate from the original MC all the “uninteresting”
parts. This proceeds as the first steps of the model checking process: make absorbing
all state satisfying ψ, and all states that cannot reach ψ, obtaining a new MC Mψ.
Next reduce this last MC to an acyclic MC Ac(Mψ) in which all strongly connected
components have been conveniently abstracted with a single probabilistic transition.
The original and the acyclic MCs are related by a mapping that, to each finite path in
Ac(Mψ) (that we call rail), assigns a set of finite paths behaving similarly in M (that
we call torrent). This map preserves the probability of reaching ψ and hence relates
counterexamples in Ac(Mψ) to counterexamples in M. Finally, counterexamples in
Ac(Mψ) are computed by reducing the problem to a k shortest path problem, as in
[HK07a]. Because Ac(Mψ) is acyclic, the complexity is lower than the corresponding
problem in [HK07a].

It is worth to mention that our technique can also be applied to simple pCTL
formulas without nested path quantifiers.

Organization of the paper. Section 2 presents the necessary background on Markov
chains (MC), Markov Decision Processes (MDP), and Linear Temporal Logic (LTL).
Section 3 presents the definition of counterexamples and discuss the reduction from
general LTL formulas to upper bounded probabilistic reachability properties, and the
extraction of the maximizing MC in a MDP. Section 4 discusses desire properties of
counterexamples. In Sections 5 and 6, we introduce the fundamentals on rails and tor-
rents, the reduction of the original MC to the acyclic one, and our notion of significant
diagnostic counterexamples. Section 7 then present the techniques to actually compute
counterexamples. In Section 8 we discuss related work and give final conclusions.

2 Preliminaries

2.1 Markov Decision Processes and Markov chains

Markov Decision Processes (MDPs) constitute a formalism that combines nondetermin-
istic and probabilistic choices. They are the dominant model in corporate finance, sup-
ply chain optimization, system verification and optimization. There are many slightly
different variants of this formalism such as action-labeled MDPs [Bel57,FV97], proba-
bilistic automata [SL95,SdV04]; we work with the state-labeled MDPs from [BdA95].

Definition 2.1. Let S be a set. A discrete probability distribution on S is a function
p : S → [0, 1] with countable or finite carrier and such that

∑

s∈S p(s) = 1. We denote
the set of all discrete probability distributions on S by Distr(S). Additionally, we define
the Dirac distribution on an element s ∈ S as 1s, i.e., 1s(s) = 1 and 1s(t) = 0 for all
t ∈ S \ {s}.

Definition 2.2. A Markov Decision Process (MDP) is a four-tuple D = (S, s0, L, τ),
where

• S is the finite state space of the system;
• s0 ∈ S is the initial state;
• L is a labeling function that associates to each state s ∈ S a set L(s) of propositional

variables that are valid in s;
• τ : S → ℘(Distr(S)) is a function that associates to each s ∈ S a non-empty and

finite subset of Distr(S) of probability distributions.

Definition 2.3. Let D = (S, s0, τ, L) be a MDP. We define a successor relation δ ⊆
S × S by δ , {(s, t)|∃π ∈ τ(s) . π(t) > 0} and for each state s ∈ S we define the sets

Paths(D, s) , {s0s1s2 . . . ∈ Sω|s0 = s ∧ ∀n ∈ N . δ(sn, sn+1)} and

Paths⋆(D, s) , {s0s1 . . . sn ∈ S⋆|s0 = s ∧ ∀ 0 ≤ i < n . δ(sn, sn+1)}
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of paths and finite paths respectively beginning at s. We usually omit D from the
notation; we also abbreviate Paths(D, s0) as Paths(D) and Paths⋆(D, s0) as Paths⋆(D).
For ω ∈ Paths(s), we write the (n+1)-st state of ω as ωn. As usual, we let Bs ⊆
℘(Paths(s)) be the Borel σ-algebra on the cones 〈s0 . . . sn〉 , {ω ∈ Paths(s)|ω0 =
s0 ∧ . . . ∧ ωn = sn}. Additionally, for a set of finite paths Λ ⊆ Paths⋆(s), we define
〈Λ〉 ,

⋃

σ∈Λ〈σ〉.

s0

{w} s1 s2 {w}

{w} s3 s4 {w} s5 s6

s7 s8

s9 s10 s11

s12

{v}

s13

{v, w}

s14

{v}

π1 π2

1 0,4 0,6

0,3

0,4

0,3

0,2

0,3

0,5

0,6..

0,4.

0,3

.0,5

0,2

1..

1

0,2

0,8

1 1

0, 4

0, 60, 6

0, 4

Fig. 3: Markov Decision Process

Figure 3 shows a MDP. Absorbing states (i.e., states s with τ(s) = {1s}) are
represented by double lines. This MDP features a single nondeterministic decision, to
be made in state s0, namely π1 and π2.

Definition 2.4. Let D = (S, s0, τ, L) be a MDP and A ⊆ S. We define the sets of
paths and finite paths reaching A as

Reach(D, s,A) , {ω ∈ Paths(D, s) | ∃i≥0.ωi ∈ A} and

Reach⋆(D, s,A) , {σ ∈ Paths⋆(D, s) | last(σ) ∈ A ∧ ∀i≤|σ|−1.σi 6∈ A}

respectively. Note that Reach⋆(D, s,A) consists of those finite paths σ reaching A
exactly once, at the end of the execution. It is easy to check that these sets are prefix
free, i.e. contain finite paths such that none of them is a prefix of another one.

2.2 Schedulers

Schedulers (also called strategies, adversaries, or policies) resolve the nondeterministic
choices in a MDP [PZ93,Var85,BdA95].

Definition 2.5. Let D = (S, s0, τ, L) be a MDP. A scheduler η on D is a function
from Paths⋆(D) to Distr(℘(Distr(S))) such that for all σ ∈ Paths⋆(D) we have η(σ) ∈
Distr(τ(last(σ))). We denote the set of all schedulers on D by Sch(D).

Note that our schedulers are randomized, i.e., in a finite path σ a scheduler chooses
an element of τ(last(σ)) probabilistically. Under a scheduler η, the probability that the
next state reached after the path σ is t, equals

∑

π∈τ(last(σ)) η(σ)(π) ·π(t). In this way,
a scheduler induces a probability measure on Bs as usual.

Definition 2.6. Let D be a MDP, s ∈ S, and η an s-scheduler on D. We define the
probability measure µs,η as the unique measure on Bs such that for all s0s1 . . . sn ∈
Paths⋆(s)

Prs,η(〈s0s1 . . . sn〉) =

n−1∏

i=0

∑

π∈τ(si)

η(s0s1 . . . si)(π) · π(si+1).
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We now recall the notions of deterministic and memoryless schedulers.

Definition 2.7. Let D be a MDP, s ∈ S, and η an scheduler of D. We say that η is
deterministic if η(σ)(πi) is either 0 or 1 for all πi ∈ τ(last(σ)) and all σ ∈ Paths⋆(D).
We say that a scheduler is memoryless if for all finite paths σ1, σ2 of D with last(σ1) =
last(σ2) we have η(σ1) = η(σ2)

Definition 2.8. Let D be a MDP, s ∈ S, and ∆ ∈ Bs. Then the maximal and minimal
probabilities of ∆, Pr+

s (∆),Pr−s (∆), are defined by

Pr+
s (∆) , sup

η∈Schs(D)

Prs,η(∆) and Pr−s (∆) , inf
η∈Schs(D)

Prs,η(∆).

A scheduler that attains Pr+
s (∆) or Pr−s (∆) is called a maximizing or minimizing

scheduler respectively.

A Markov chain (MC) is a MDP associating exactly one probability distribution to
each state. In this way nondeterministic choices are not longer allowed.

Definition 2.9 (Markov chain). Let D = (S, s0, τ, L) be a MDP. If |τ(s)| = 1 for all
s ∈ S, then we say that D is a Markov chain (MC).

2.3 Linear Temporal Logic

Linear temporal logic (LTL) [MP91] is a modal temporal logic with modalities referring
to time. In LTL is possible to encode formulas about the future of paths: a condition
will eventually be true, a condition will be true until another fact becomes true, etc.

Definition 2.10. LTL is built up from the set of propositional variables V , the logical
connectives ¬, ∧, and a temporal modal operator by the following grammar:

φ ::= V | ¬φ | φ ∧ φ | φUφ.

Using these operators we define ∨,→,♦, and � in the standard way.

Definition 2.11. Let D = (S, s0, τ, L) be a MDP. We define satisfiability for paths ω
in D and LTL formulas φ, ψ inductively by

ω |=
D
v ⇔ v ∈ L(ω0)

ω |=
D
¬φ ⇔ not(ω |=

D
φ)

ω |=
D
φ ∧ ψ ⇔ ω |=

D
φ and ω |=

D
ψ

ω |=
D
φUψ ⇔ ∃i≥0.ω↓i |=

D
ψ and ∀0≤j<i.ω↓j |=

D
φ

where ω↓i is the i-th suffix of ω. When confusion is unlikely, we omit the subscript D
on the satisfiability relation.

Definition 2.12. Let D be a MDP. We define the language Sat
D
(φ) associated to an

LTL formula φ as the set of paths satisfying φ, i.e. Sat
D
(φ) , {ω ∈ Paths(D) | ω |= φ}.

Here we also generally omit the subscript D.

We now define satisfiability of an LTL formula φ on a MDP D. We say that D
satisfies φ with probability at most p (D |=

≤p
φ) if the probability of getting an execution

satisfying φ is at most p.

Definition 2.13. Let D be a MDP, φ an LTL formula and p ∈ [0, 1]. We define |=
≤p

and |=
≥p

by

D |=
≤p

φ⇔ Pr+
D
(Sat(φ)) ≤ p,

D |=
≥p

φ⇔ Pr−
D

(Sat(φ)) ≥ p.

We define D |=
<p

φ and D |=
>p

φ in a similar way.

In case the MDP is fully probabilistic, i.e., a MC, the satisfiability problem is
reduced to D |=

⊲⊳p
φ⇔ Pr

D
(Sat(φ)) ⊲⊳ p, where ⊲⊳∈ {<,≤, >,≥}.
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3 Counterexamples

In this section, we define what counterexamples are and how the problem of finding
counterexamples for a general LTL property over Markov Decision Processes reduces
to finding counterexamples to reachability problems over Markov chains.

Definition 3.1 (Counterexamples). Let D be a MDP and φ an LTL formula. A coun-
terexample to D |=

≤p
φ is a measurable set C ⊆ Sat(φ) such that Pr+

D(C) > p. Coun-
terexamples to D |=

<p
φ are defined similarly.

Counterexamples to D |=
>p

φ and D |=
≥p

φ cannot be defined straightforwardly as
it is always possible to find a set C ⊆ Sat(φ) such that Pr−D(C) ≤ p or Pr−D(C) < p, note
that the empty set trivially satisfies it. Therefore, the best way to find counterexam-
ples to lower bounded probabilities is to find counterexamples to the dual properties
D |=

<1−p
¬φ and D |=

≤1−p
¬φ. That is, while for upper bounded probabilities, a counterex-

ample is a set of paths satisfying the property beyond the bound, for lower bounded
probabilities the counterexample is a set of paths that does not satisfy the property
with sufficient probability.

s0

s1 s2 s3

s4

{v}

s5

{v}

π1 π2

0,6 0,2

0,7

0,5 0,99

0,5 0,01

0,4 0,1

Fig. 4:

Example 1. Consider the MDP D of Figure 4
and the LTL formula ♦v. it is easy to check
that D 6|=

<1
♦v. The set C = Sat(♦v) =

{γ ∈ Paths(s0)|∃i≥0.γ = s0(s1)
i(s4)

ω} ∪ {γ ∈
Paths(s0)|∃i≥0.γ=s0(s3)

i(s5)
ω} is a counterexam-

ple. Note that Pr+
s0,η

(C)=1 where η is any deter-
ministic scheduler of M satisfying η(s0) = π1.

LTL formulas are actually checked by reduc-
ing the model checking problem to a reachability
problem [dAKM97]. For checking upper bounded
probabilities, the LTL formula is translated into
an equivalent deterministic Rabin automaton and
composed with the MDP under verification. On
the obtained MDP, the set of states forming accepting end components (maximal
components that traps accepting conditions with probability 1) are identified. The
maximum probability of the LTL property on the original MDP is the same as the
maximum probability of reaching a state of an accepting end component in the final
MDP. Hence, from now on we will focus on counterexamples to properties of the form
D |=

≤p
♦ψ or D |=

<p
♦ψ, where ψ is a propositional formula, i.e., a formula without

temporal operators.
In the following, it will be useful to identify the set of states in which a propositional

property is valid.

Definition 3.2. Let D be a MDP. We define the state language SatD(ψ) associated to
a propositional formula ψ as the set of states satisfying ψ, i.e., SatD(ψ) , {s ∈ S | s |=
ψ}, where |= has the obvious satisfaction meaning for states. As usual, we generally
omit the subscript D.

To find a counterexample to a property in a MDP with respect to a upper bound,
it suffices to find a counterexample for the maximizing scheduler. A scheduler defines
a Markov chain, and hence finding a counterexample on a MDP amounts to finding a
counterexample in the Markov chain induced by the maximizing scheduler. The maxi-
mizing scheduler turns out to be deterministic and memoryless [BdA95]; consequently
the induced Markov chain can be easily extracted from the MDP as follows.

Definition 3.3. Let D = (S, s0, τ, L) be a MDP and η a deterministic memoryless
scheduler. Then we define the MC η-associated to D as Dη = (S, s0,Pη, L) where
Pη(s, t) = (η(s))(t) for all s, t ∈ S.
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Now we state that finding counterexamples for upper bounded probabilistic reach-
ability LTL properties on MDPs can be reduced to finding counterexamples for upper
bounded probabilistic reachability LTL properties on MCs.

Theorem 3.4. Let D be a MDP, ψ a propositional formula and p ∈ [0, 1]. Then,
there is a maximizing (deterministic memoryless) scheduler η such that D |=

≤p
♦ψ ⇔

Dη |=
≤p

♦ψ. Moreover, C is a counterexample to Dη |=
≤p

♦ψ if and only if C is also a
counterexample to D |=

≤p
♦ψ.

4 Representative Counterexamples, Partitions and Witnesses

The notion of counterexample from Definition 3.1 is very broad: just an arbitrary (mea-
surable) set of paths with high enough probability. To be useful as a debugging tool (and
in fact to be able to present the counterexample to a user), we need counterexamples
with specific properties. We will partition counterexamples (or rather, representative
counterexamples) in witnesses and list five properties that witnesses should satisfy.

The first point to stress is that for reachability properties it is sufficient to consider
counterexamples that consist of finite paths.

Definition 4.1 (Representative counterexamples). Let D be a MDP, ψ a propositional
formula and p ∈ [0, 1]. A representative counterexample to D |=

≤p
♦ψ is a set C ⊆

Reach⋆(D, Sat(ψ)) such that Pr+
D(〈C〉) > p. We denote the set of all representative

counterexamples to M |=
≤p

♦ψ by R(M, p, ψ).

Theorem 4.2. Let D be a MDP, ψ a propositional formula and p ∈ [0, 1]. If C is a
representative counterexample to D |=

≤p
♦ψ, then 〈C〉 is a counterexample to D |=

≤p
♦ψ.

Furthermore, there exists a counterexample to D |=
≤p

♦ψ if and only if there exists a
representative counterexample to D |=

≤p
ψ.

Following [HK07a], we present the notions of minimum counterexample, strongest
evidence and most indicative counterexamples.

Definition 4.3 (Minimum counterexample). Let M be a MC, ψ a propositional for-
mula and p ∈ [0, 1]. We say that C ∈ R(M, p, ψ) is a minimum counterexample if
|C| ≤ |C′|, for all C′ ∈ R(M, p, ψ).

Definition 4.4 (Strongest evidence). Let M be a MC, ψ a propositional formula and
p ∈ [0, 1]. A strongest evidence to M 6|=

≤p
♦ψ is a finite path σ ∈ Reach⋆(M, Sat(ψ))

such that PrM(〈σ〉) ≥ PrM(〈ρ〉), for all ρ ∈ Reach⋆(M, Sat(ψ)).

Definition 4.5 (Most indicative counterexample). Let M be a MC, ψ a propositional
formula and p ∈ [0, 1]. We call C ∈ R(M, p, ψ) a most indicative counterexample if it is
minimum and Pr(〈C〉) ≥ Pr(〈C′〉), for all minimum counterexamples C′ ∈ R(M, p, ψ).

Unfortunately, very often most indicative counterexamples are very large (even
infinite), many of its elements have insignificant measure and elements can be extremely
similar to each other (consequently providing the same diagnostic information). Even
worse, sometimes the finite paths with highest probability do not exhibit the way in
which the system accumulates higher probability to reach the undesired property (and
consequently where an error occurs with higher probability). For these reasons, we
are of the opinion that representative counterexamples are still too general in order
to be useful as feedback information. We approach this problem by splitting out the
representative counterexample into sets of finite paths following a “similarity” criteria
(introduced in Section 5). These sets are called witnesses of the counterexample.

Recall that a set Y of nonempty sets is a partition of X if the elements of Y cover
X and the elements of Y are pairwise disjoint. We define counterexample partitions in
the following way.

7



Definition 4.6 (Counterexample partitions and witnesses). Let D be a MDP, ψ a
propositional formula, p ∈ [0, 1], and C a representative counterexample to D |=

≤p
♦ψ.

A counterexample partition WC is a partition of C. We call the elements ofWC witnesses.

Since not every partition generates useful witnesses (from the debugging perspec-
tive), we now state properties that witnesses must satisfy in order to be valuable as
diagnostic information. In Section 7 we show how to partition the detailed counterex-
ample in order to obtain useful witnesses.

Similarity: Elements of a witness should provide similar debugging information.

Accuracy: Witnesses with higher probability should show evolution of the system
with higher probability of containing errors.

Originality: Different witnesses should provide different debugging information.

Significance: The probability of a witnesses should be close to the probability bound
p.

Finiteness: The number of witnesses of a counterexamples partition should be finite.

5 Rails and Torrents

As argued before we consider that representative counterexamples are excessively gen-
eral to be useful as feedback information. Therefore, we group finite paths of a repre-
sentative counterexample in witnesses if they are “similar enough”. We will consider
finite paths that behave the same outside SCCs of the system as providing similar
feedback information.

In order to formalize this idea, we first reduce the original Markov chain to an
acyclic one that preserves reachability probabilities. We do so by removing all SCCs
K of M keeping just input states of K. In this way, we get a new acyclic MC denoted
by Ac(M). The probability matrix of the Markov chain relates input states of each
SCC with its output states with the reachability probability between these states in
M. Secondly, we establish a map between finite paths σ in Ac(M) (rails) and sets of
finite paths Wσ in M (torrents). Each torrent contains finite paths that are similar,
i.e., behave the same outside SCCs. Additionally we show that the probability of σ is
equal to the probability of Wσ.

Reduction to Acyclic Markov Chains

Consider a MC M = (S, s0,P , L). Recall that a subset K ⊆ S is called strongly
connected if for every s, t ∈ K there is a finite path from s to t. Additionally K is called
a strongly connected component (SCC) if it is a maximally (with respect to ⊆) strongly
connected subset of S.

Note that every state is a member of exactly one SCC of M (even those states that
are not involved in cycles, since the trivial finite path s connects s to itself). From now
on we let SCC⋆ be the set of non trivial strongly connected components of a MC, i.e.,
those composed of more than one state.

A Markov chain is called acyclic if it does not have non trivial SCCs. Note that an
acyclic Markov chain still has absorbing states.

Definition 5.1. Let M = (S, s0,P , L) be a MC. Then, for each SCC⋆ K of M, we
define the sets InpK ⊆ S of all states in K that have an incoming transition from a
state outside of K and OutK ⊆ S of all states outside of K that have an incoming
transition from a state of K in the following way

InpK , {u ∈ K | ∃ s ∈ S \ K .P(s, u) > 0},

OutK , {s ∈ S \ K | ∃u ∈ K .P(u, s) > 0}.
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We also define for each SCC⋆ K a MC related to K as MK , (K∪OutK, sK,PK, LK)
where sK is any state in InpK, LK(s) , L(s), and PK(s, t) is equal to P(s, t) if s ∈ K
and equal to 1s otherwise. Additionally, for every state s involved in non trivial SCCs
we define SCC+

s as MK, where K is the SCC⋆ of M such that s ∈ K.

Now we are able to define an acyclic MC Ac(M) related to M.

Definition 5.2. Let M = (S, s0,P , L) be a MC. We define Ac(M) , (S′, s0,P ′, L′)
where

• S′ ,

Scom
︷ ︸︸ ︷

S \
⋃

K∈SCC⋆

K
⋃

Sinp

︷ ︸︸ ︷
⋃

K∈SCC⋆

InpK

• L′ , L|S′ ,

• P ′(s, t) ,







P(s, t) if s ∈ Scom,

Pr
M,s

(Reach(SCC+
s , s, {t})) if s ∈ Sinp ∧ t ∈ OutSCC+

s
,

1s if s ∈ Sinp ∧ OutSCC+
s

= ∅,
0 otherwise.

Note that Ac(M) is indeed acyclic.

Example 2. Consider the MC M of Figure 5(a). The strongly connected components
of M are K1 , {s1, s3, s4, s7}, K2 , {s5, s6, s8} and the singletons {s0}, {s2}, {s9},
{s10}, {s11}, {s12}, {s13}, and {s14}. The input states of K1 are InpK1

= {s1} and its
output states are OutK1

= {s9, s10}. For K2, InpK2
= {s5, s6} and OutK2

= {s11, s14}.
The reduced acyclic MC of M is shown in Figure 5(b).

s0

s1 s2

s3 s4 s5 s6

s7 s8

s9 s10 s11

s12 s13 s14

0,4 0,6

1 0,4 0,6

0,3

0,4

0,3

0,2

0,3

0,5

0,6..

0,4.

0,3

.0,5

0,2

1..

1

0,2

0,8

1 1

(a) Original MC

s0

s1 s2

s5 s6

s9 s10 s11

s12 s13 s14

s3 s4

s7 s8

0,4 0,6

0,4 0,6

0,2

0,8

1 1

2
3

1
3

35
41

6
41

35
41

6
41

(b) Derived Acyclic MC
Fig. 5:

Rails and Torrents

We now relate (finite) paths in Ac(M) (rails) to sets of (finite) paths in M (torrents).

Definition 5.3 (Rails). Let M be a MC. A finite path σ ∈ Paths⋆(Ac(M)) will be
called a rail of M.

Consider a rail σ, i.e., a finite path of Ac(M). We will use σ to represent those
paths ω of M that behave “similar to” σ outside SCCs of M. Naively, this means that
σ is a subsequence of ω. There are two technical subtleties to deal with: every input
state in σ must be the first state in its SCC in ω (freshness) and every SCC visited by ω
must be also visited by σ (inertia) (see Definition 5.5). We need these extra conditions
to make sure that no path ω behaves “similar to” two distinct rails (see Lemma 5.7).

Recall that given a finite sequence σ and a (possible infinite) sequence ω, we say that
σ is a subsequence of ω, denoted by σ ⊑ ω, if and only if there exists a strictly increasing
function f : {0, 1, . . . , |σ|−1} → {0, 1, . . . , |ω|−1} such that ∀0≤i<|σ|.σi = ωf(i). If ω is
an infinite sequence, we interpret the codomain of f as N. In case f is such a function
we write σ ⊑f ω. Note that finite paths and paths are sequences.
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Definition 5.4. Let M = (S, s0,P , L) be a MC. On S we consider the equivalence
relation ∼

M
satisfying s ∼

M
t if and only if s and t are in the same strongly connected

component. Again, we usually omit the subscript M from the notation.

The following definition refines the notion of subsequence, taking care of the two
technical subtleties noted above.

Definition 5.5. Let M = (S, s0,P , L) be a MC, ω a (finite) path of M, and σ ∈
Paths⋆(Ac(M)) a finite path of Ac(M). Then we write σ � ω if there exists f :
{0, 1, . . . , |σ| − 1} → N such that σ ⊑f ω and for all 0 ≤ i < |σ| we have

∀0≤j<f(i) : ωf(i) 6∼ ωj ; for all i = 0, 1, . . . |σ| − 1, [Freshness property ]

∀f(i)<j<f(i+1) : ωf(i) ∼ ωj ; for all i = 0, 1, . . . |σ| − 2. [Inertia property ]

In case f is such a function we write σ �f ω.

Example 3. Let M = (S, s0,P , L) be the MC of Figure 5(a) and take σ = s0s2s6s14.
Then for all i ∈ N we have σ �fi ωi where ωi = s0s2s6(s5s8s6)

is14 and fi(0) , 0,

fi(1) , 1, fi(2) , 2, and fi(3) , 3 + 3i. Additionally, σ 6� s0s2s5s8s6s14 since for
all f satisfying σ ⊑f s0s2s5s8s6s14 we must have f(2) = 5; this implies that f does
not satisfy the freshness property. Finally, note that σ 6� s0s2s6s11s14 since for all f
satisfying σ ⊑f s0s2s6s11s14 we must have f(2) = 2; this implies that f does not satisfy
the inertia property.

We now give the formal definition of torrents.

Definition 5.6 (Torrents). Let M = (S, s0,P , L) be a MC and σ a sequence of states
in S. We define the function Torr by

Torr(M, σ) , {ω ∈ Paths(M) | σ � ω}.

We call Torr(M, σ) the torrent associated to σ.

We now show that torrents are disjoint (Lemma 5.7) and that the probability of a
rail is equal to the probability of its associated torrent (Theorem 5.10). For this last
result, we first show that torrents can be represented as the disjoint union of cones of
finite paths. We call these finite paths generators of the torrent (Definition 5.8).

Lemma 5.7. Let M be a MC. For every σ, ρ ∈ Paths⋆(Ac(M)) we have

σ 6= ρ⇒ Torr(M, σ) ∩ Torr(M, ρ) = ∅

Definition 5.8 (Torrent Generators). Let M be a MC. Then we define for every rail
σ ∈ Paths⋆(Ac(M)) the set

GenTorr(M, σ) , {ρ ∈ Paths⋆(M) | ∃f : σ �f ρ ∧ f(|σ| − 1) = |ρ| − 1}.

In the example from the Introduction (see Figure 1), s0s1s3 and s0s2s4 are rails.
The associated torrents are, respectively, {s0s

n
1 s
ω
3 | n ∈ N

∗} and {s0s
n
2 s
ω
4 | n ∈ N

∗}
(note that s3 and s4 are absorbing states), i.e. the paths going left and the paths going
right. The generators of the first torrent are {s0sn1 s3 | n ∈ N

∗} and similarly for the
second torrent.

Lemma 5.9. Let M be a MC and σ ∈ Paths⋆(Ac(M)) a rail of M. Then we have

Torr(M, σ) =
⊎

ρ∈GenTorr(M,σ)

〈ρ〉.

Theorem 5.10. Let M be a MC. Then for every rail σ ∈ Paths⋆(Ac(M)) we have

Pr
Ac(M)

(〈σ〉) = Pr
M

(Torr(M, σ)).
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6 Significant Diagnostic Counterexamples

So far we have formalized the notion of paths behaving similarly (i.e., behaving the same
outside SCCs) in a MC M by removing all SCC of M, obtaining Ac(M). A representa-
tive counterexample to Ac(M) |=

≤p
♦ψ will give rise to a representative counterexample

to M |=
≤p

♦ψ. For every finite path σ in the counterexample to Ac(M) |=
≤p

♦ψ, the
set GenTorr(M, σ) will be a witness. The union of these is the representative coun-
terexample to M |=

≤p
♦ψ.

Before giving a formal definition, there is still one technical issue to resolve: we need
to be sure that by removing SCCs we are not discarding useful information. Because
torrents are built from rails, we need to make sure that when we discard SCCs, we do
not discard rails that reach ψ.

We achieve this by first making states satisfying ψ absorbing. Additionally, we make
absorbing states from which it is not possible to reach ψ. Note that this does not affect
counterexamples.

Definition 6.1. Let M = (S, s0,P , L) be a MC and ψ a propositional formula. We
define the MC Mψ , (S, s0,Pψ, L), with

Pψ(s, t) ,







1 if s 6∈ Sat
♦
(ψ) ∧ s = t,

1 if s ∈ Sat(ψ) ∧ s = t,

P(s, t) if s ∈ Sat
♦
(ψ) − Sat(ψ),

0 otherwise,

where Sat
♦
(ψ) , {s ∈ S | Prs(Reach(M, s, Sat(ψ))) > 0} is the set of states reaching

ψ in M.

The following theorem shows the relation between paths, finite paths, and prob-
abilities of M, Mψ, and Ac(Mψ). Most importantly, the probability of a rail σ (in
Ac(Mψ)) is equal to the probability of its associated torrent (in M) (item 5 below)
and the probability of ♦ψ is not affected by reducing M to Ac(Mψ) (item 6 below).

Note that a rail σ is always a finite path in Ac(Mψ), but that we can talk about its
associated torrent Torr(Mψ, σ) in Mψ and about its associated torrent Torr(M, σ) in
M. The former exists for technical convenience; it is the latter that we are ultimately
interested in. The following theorem also shows that for our purposes, viz. the definition
of the generators of the torrent and the probability of the torrent, there is no difference
(items 3 and 4 below).

Theorem 6.2. Let M = (S, s0,P , L) be a MC and ψ a propositional formula. Then
for every σ ∈ Paths⋆(Mψ)

1. Reach⋆(Mψ, s0, Sat(ψ)) = Reach⋆(M, s0, Sat(ψ)),
2. Pr

Mψ
(〈σ〉) = Pr

M
(〈σ〉),

3. GenTorr(Mψ, σ) = GenTorr(M, σ),
4. Pr

Mψ
(Torr(Mψ, σ)) = Pr

M
(Torr(M, σ)),

5. Pr
Ac(Mψ)

(〈σ〉) = Pr
M

(Torr(M, σ)),

6. Ac(Mψ) |=
≤p

♦ψ if and only if M |=
≤p

♦ψ, for any p ∈ [0, 1].

Definition 6.3 (Torrent-Counterexamples). Let M = (S, s0,P , L) be a MC, ψ a
propositional formula, and p ∈ [0, 1] such that M 6|=

≤p
♦ψ. Let C be a representative

counterexample to Ac(Mψ) |=
≤p

♦ψ. We define the set

TorRepCount(C) , {GenTorr(M, σ) | σ ∈ C}.

We call the set TorRepCount(C) a torrent-counterexample of C. Note that this set is a
partition of a counterexample to M |=

≤p
♦ψ. Additionally, we denote by Rt(M, p, ψ)

to the set of all torrent-counterexamples to M |=
≤p

♦ψ, i.e., {TorRepCount(C) | C ∈
R(M, p, ψ)}.
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Theorem 6.4. Let M = (S, s0,P , L) be a MC, ψ a propositional formula, and p ∈
[0, 1] such that M 6|=

≤p
♦ψ. Take C a representative counterexample to Ac(Mψ) |=

≤p
♦ψ.

Then the set of finite paths
⊎

W∈TorRepCount(C)W is a representative counterexample to
M |=

≤p
♦ψ.

Note that for each σ ∈ C we get a witness GenTorr(M, σ). Also note that the
number of rails is finite, so there are also only finitely many witnesses.

Following [HK07a], we extend the notions of minimum counterexamples, strongest
evidence and smallest counterexample to torrents.

Definition 6.5 (Minimum torrent-counterexample). Let M be a MC, ψ a proposi-
tional formula and p ∈ [0, 1]. We say that Ct ∈ Rt(M, p, ψ) is a minimum torrent-
counterexample if |Ct| ≤ |C′

t|, for all C′
t ∈ Rt(M, p, ψ).

Definition 6.6 (Strongest torrent-evidence). Let M be a MC, ψ a propositional for-
mula and p ∈ [0, 1]. A strongest torrent-evidence to M 6|=

≤p
♦ψ is a torrent Wσ ∈

Torr(M, Sat(ψ)) such that PrM(Wσ) ≥ PrM(Wρ) for all Wρ ∈ Torr(M, Sat(ψ)).

Now we define our notion of significant diagnostic counterexamples. It is the gen-
eralization of most indicative counterexample from [HK07a] to our setting.

Definition 6.7 (Most indicative torrent-counterexample). Let M be a MC, ψ a propo-
sitional formula and p ∈ [0, 1]. We call Ct ∈ Rt(M, p, ψ) a most indicative torrent-
counterexample if it is a minimum torrent-counterexample and Pr(

⋃

W∈Ct
〈W 〉) ≥

Pr(
⋃

W∈C′
t
〈W 〉) for all minimum torrent counterexamples C′

t ∈ Rt(M, p, ψ).

By Theorem 6.4 it is possible to obtain strongest torrent-evidence and most indica-
tive torrent-counterexamples of a MC M by obtaining strongest evidence and most
indicative counterexamples of Ac(Mψ) respectively.

7 Computing Counterexamples

In this section we show how to compute most indicative torrent-counterexamples. We
also discuss what information to present to the user: how to present witnesses and how
to deal with overly large strongly connected components.

7.1 Maximizing Schedulers

The calculation of a maximal probability on a reachability problem can be performed
by solving a linear minimization problem [BdA95,dA97]. This minimization problem
is defined on a system of inequalities that has a variable xi for each different state si
and an inequality

∑

j π(sj) · xj ≤ xi for each distribution π ∈ τ(si). The maximizing
(deterministic memoryless) scheduler η can be easily extracted out of such system
of inequalities after obtaining the solution. If p0, . . . , pn are the values that minimize
∑

i xi in the previous system, then η is such that, for all si, η(si) = π whenever
∑

j π(sj) · pj = pi. In the following we denote Psi
[♦ψ] , xi.

7.2 Computing most indicative torrent-counterexamples

We divide the computation of most indicative torrent-counterexamples to D |=
≤p

♦ψ
in three stages: pre-processing, SCC analysis, and searching.

Pre-processing stage. We first modify the original MC M by making all states in
Sat(ψ)∪S \Sat

♦
(ψ) absorbing. In this way we obtain the MC Mψ from Definition 6.1.

Note that we do not have to spend additional computational resources to compute
this set, since Sat

♦
(ψ) = {s ∈ S | Ps[ψ] > 0} and hence all required data is already

available from the LTL model checking phase.
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SCC analysis stage. We remove all SCCs K of Mψ keeping just input states of K,
getting the acyclic MC Ac(Mψ) according to Definition 5.2.

To compute this, we first need to find the SCCs of Mψ. There exists well known
algorithms to achieve this: Kosaraju’s, Tarjan’s, Gabow’s algorithms (among others).
We also have to compute the reachability probability from input states to output states
of every SCC. This can be done by using steady state analysis techniques [Cas93].

Searching stage. To find most indicative torrent-counterexamples in M, we find
most indicative counterexamples in Ac(Mψ). For this we use the same approach as
[HK07a], turning the MC into a weighted digraph to exchange the problem of finding
the finite path with highest probability by a shortest path problem. The nodes of the
digraph are the states of the MC and there is an edge between s and t if P(s, t) > 0.
The weight of such an edge is − logP(s, t).

Finding the most indicative counterexample in Ac(Mψ) is now reduced to finding
k shortest paths. As explained in [HK07a], our algorithm has to compute k on the
fly. Eppstein’s algorithm [Epp98] produces the k shortest paths in general in O(m +
n logn+ k), where m is the number of nodes and n the number of edges. In our case,
since Ac(Mψ) is acyclic, the complexity decreases to O(m + k).

7.3 Debugging issues

Representative finite paths. What we have computed so far is a most indicative
counterexample to Ac(Mψ) |=

≤p
♦ψ. This is a finite set of rails, i.e., a finite set of paths

in Ac(Mψ). Each of these paths σ represents a witness GenTorr(M, σ). Note that this
witness itself has usually infinitely many elements.

In practice, one somehow has to display a witness to the user. The obvious way
would be to show the user the rail σ. This, however, may be confusing to the user as σ
is not a finite path of the original Markov Decision Process. Instead of presenting the
user with σ, we therefore show the user the element of GenTorr(M, σ) with highest
probability.

Definition 7.1. Let M be a MC, and σ ∈ Paths⋆(Ac(Mψ)) a rail of M. We define
the representant of Torr(M, σ) as

repTorr (M, σ) = repTorr




⊎

ρ∈GenTorr(M,σ)

〈ρ〉



 , arg max
ρ∈GenTorr(M,σ)

Pr(〈ρ〉)

Note that given repTorr (M, σ), one can easily recover σ. Therefore, no information
is lost by presenting torrents as a single element of the torrent instead of as a rail.

Expanding SCC. It is possible that the system contains some very large strongly
connected components. In that case, a single witness could have a very large probability
mass and one could argue that the information presented to the user is not detailed
enough. For instance, consider the Markov chain of Figure 6 in which there is a single
large SCC with input state t and output state u.

K

1

s

t

u

Fig. 6:

The most-indicative torrent counterexample to the
property M |=

≤0.9
♦ψ is simply {GenTorr(stu)}, i.e., a sin-

gle witness with probability mass 1 associated to the rail
stu. Although this may seem uninformative, we argue that
it is more informative than listing several paths of the form
st · · ·u with probability summing up to, say, 0.91. Our
single witness counterexample suggests that the outgoing
edge to a state not reaching ψ was simply forgotten; the
listing of paths still allows the possibility that one of the
probabilities in the whole system is simply wrong.
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Nevertheless, if the user needs more information to tackle bugs inside strongly
connected components, note that there is more information available at this point. In
particular, for every strongly connected component K, every input state s of K (even
for every state in K), and every output state t of K, the probability of reaching t from
s is already available from the computation of Ac(Mψ) during the SCC analysis stage
of Section 7.2.

8 Final Discussion

We have presented a novel technique for representing and computing counterexamples
for nondeterministic and probabilistic systems. We partition a counterexample in wit-
nesses and state five properties that we believe good witnesses should satisfy in order
to be useful as debugging tool: (similarity) elements of a witness should provide similar
debugging information; (originality) different witnesses should provide different debug-
ging information; (accuracy) witnesses with higher probability should indicate system
behavior more likely to contain errors; (significance) probability of a witness should
be relatively high; (finiteness) there should be finitely many witnesses. We achieve this
by grouping finite paths in a counterexample together in a witness if they behave the
same outside the strongly connected components.

Presently, some work has been done on counterexample generation techniques for
different variants of probabilistic models (Discrete Markov chains and Continues Markov
chains) [AHL05,AL06,HK07a,HK07b]. In our terminology, these works consider wit-
nesses consisting of a single finite path. We have already discussed in the Introduction
that the single path approach does not meet the properties of accuracy, originality,
significance, and finiteness.

Instead, our witness/torrent approach provides a high level of abstraction of a coun-
terexample. By grouping together finite paths that behave the same outside strongly
connected components in a single witness, we can achieve these properties to a higher
extent. Behaving the same outside strongly connected components is a reasonable way
of formalizing the concept of providing similar debugging information. This grouping
also makes witnesses significantly different form each other: each witness comes form
a different rail and each rail provides a different way to reach the undesired property.
Then each witness provides original information. Of course, our witnesses are more sig-
nificant than single finite paths, because they are sets of finite paths. This also gives us
more accuracy than the approach with single finite paths, as a collection of finite paths
behaving the same and reaching an undesired condition with high probability is more
likely to show how the system reaches this condition than just a single path. Finally,
because there is a finite number of rails, there is also a finite number of witnesses.

Another key difference of our work to previous ones is that our technique allows us
to generate counterexamples for probabilistic systems with nondeterminism. However, a
recent report [AL07] also considers counterexample generation for MDPs. This work is
limited to upper bounded pCTL formulas without nested temporal operators. Besides,
their technique significantly differs from ours.

Finally, among the related work, we would like to stress the result of [HK07a],
which provides a systematic characterization of counterexample generation in terms of
shortest paths problems. We use this result to generate counterexamples for the acyclic
Markov Chains.

In the future we intend to implement a tool to generate our significant diagnostic
counterexamples; a very preliminary version has already been implemented. There is
still work to be done on improving the visualization of the witnesses, in particular,
when a witness captures a large strongly connected component. Another direction is
to investigate how this work can be extended to timed systems, either modeled with
continuous time Markov chains or with probabilistic timed automata.
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Appendix: Proofs

In this appendix we give proofs of the results that were omitted from the paper for
space reasons.

Observation 8.1. Let M be a MC. Since Ac(M) is acyclic we have σi 6∼ σj for every
σ ∈ Paths⋆(Ac(M)) and i 6= j (with the exception of absorbing states).

Observation 8.2. Let σ, ω and f be such that σ �f ω. Then ∀i : ∃j : ωi ∼ σj. This
follows from σ ⊑f ω and the inertia property.

Lemma 8.3. Let M be a MC, and σts ∈ Paths⋆(Ac(M)). Additionally let ∆σts ,
{ρ tail(π)|ρ ∈ GenTorr(σt), π ∈ Paths⋆(SCC+

t , t, {s})}. Then ∆σts = GenTorr(σts).

Proof. .
( ⊇ ) Let ρ0ρ1 · · · ρk ∈ GenTorr(σts) and nt the lowest subindex of ρ such that ρnt = t.
Take ρ , ρ0ρ1 · · · ρnt and π , ρnt · · · ρk (Note that ρ0ρ1 · · · ρk = ρ tail(π)). In order to
prove that ρ0ρ1 · · · ρk ∈ ∆σts we need to prove that

(1) ρ ∈ GenTorr(σt), and
(2) π ∈ Paths⋆(SCC+

t , t, {s}).

(1) Let f be such that σts �f ρ0ρ1 · · · ρk and f(|σts|−1) = k. Take g : {0, 1, . . . , |σt|−
1} → N be the restriction of f . It is easy to check that σt �g ρ. Additionally
f(|σt| − 1) = nt (otherwise f would not satisfy the freshness property for i =
|σt| − 1). Then, by definition of g, we have g(|σt| − 1) = nt.

(2) It is clear that π is a path from t to s. Therefore we only have to show that every
state of π is in SCC+

t . By definition of SCC+
t , π0 = t ∈ SCC+

t and s ∈ SCC+
t

since s ∈ OutSCC+
t
. Additionally, since f satisfies inertia property we have that

∀f(|σt|−1)<j<f(|σts|−1) : ρf(|σt|−1) ∼ ρj , since f(|σt| − 1) = nt and π , ρnt · · · ρk we

have ∀0<j<|π|−1 : t ∼ πj proving that πj ∈ SCC+
t for j ∈ {1, · · · , |π| − 2}.

( ⊆ ) Take ρ ∈ GenTorr(σt) and tail(π) ∈ Paths⋆(SCC+
t , t, {s}). In order to prove that

ρ tail(π) ∈ GenTorr(σts) we need to show that there exists a function g such that:

(1) σts �g ρ tail(π),
(2) g(|σts| − 1) = |ρ tail(π)| − 1.

Since ρ ∈ GenTorr(σt) we know that there exists f be such that σt �f ρ and
f(|σt| − 1) = |ρ| − 1. We define g : {0, 1, . . . , |σts| − 1} → {0, 1, . . . , |ρ tail(π)| − 1} by

g(i) ,

{
f(i) if i < |σts| − 1,
|ρ tail(π)| − 1 if i = |σts| − 1.

(1) It is easy to check that σts ⊑g ρ tail(π). Now we will show that g satisfies Freshness
and Inertia properties.
Freshness property: We need to show that for all 0 ≤ i < |σts| we have ∀0≤j<g(i) :
ρ tail(π)g(i) 6∼ ρ tail(π)j . For the cases i ∈ {0, . . . , |σt| − 1} this holds since σt �f ρ
and definition of g.
Consider i = |σts|−1, in this case we have to prove ∀0≤j<|ρ tail(π)|−1 : ρ tail(π)|ρ tail(π)|−1) 6∼
ρ tail(π)j or equivalently ∀0≤j<|ρ tail(π)|−1 : s 6∼ ρ tail(π)j .

Case j ∈ {|ρ|, . . . |ρ tail(π)| − 1}
Since π ∈ Paths⋆(SCC+

t , t, {s}) and s ∈ Out+
SCC+

t

we have ∀0≤j<| tail(π)|−1 : s 6∼

tail(π)j
Case j ∈ {0, . . . , |ρ| − 1}

Since σts ∈ Paths⋆(Ac(M)) and Observation 8.1 we have ∀0≤j<|σt|−1 : s 6∼ σtj .
Additionally, σt �f ρ, def. g, and Observation 8.2 imply ∀0≤j<|ρ| : s 6∼ ρj or
equivalently ∀0≤j<|ρ| : s 6∼ ρ tail(π)j .
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Inertia property: Since π ∈ Paths⋆(SCC+
t , t, {s}) we know that ∀0≤j<|π|−1 : t ∼ πj

which implies that ∀|ρ|−1<j<|ρ tail(π)|−1 : ρ tail(π)|ρ|−1 ∼ ρ tail(π)j or equivalently
∀g(|σ|−1)<j<g(|σs|−1) : ρ tail(π)g(|ρ|−1) ∼ ρ tail(π)j showing that g satisfies the iner-
tia property.

(2) Follows from the definition of g.

Theorem 5.10. Let M = (S, s0,P , L) be a MC. Then for every rail σ ∈ Paths⋆(Ac(M))
we have

Pr
Ac(M)

(〈σ〉) = Pr
M

(Torr(σ)).

Proof. By induction on the structure of σ.

Base Case: PrAc(M)(〈s0〉) = PrAc(M)(Paths(Ac(M), s0)) = 1 = PrM(Paths(M, s0)) =
PrM(Torr(s0)).

Inductive Step: Let t be such that last(σ) = t. Suppose that t ∈ SCom. Then

PrAc(M)(〈σs〉)
= PrAc(M)(〈σ〉) · Ac(P)(t, s)

= PrM(Torr(σ)) · P(t, s)
{Inductive Hypothesis and definition of P}

= PrM(
⊎

ρ∈GenTorr(σ)〈ρ〉) · P(t, s) {Lem. 5.9}

=
∑

ρ∈GenTorr(σ) PrM(〈ρ〉) ·PrM(〈ts〉)

=
∑

ρ∈GenTorr(σ) PrM(〈ρ tail(ts)〉)

{Distributivity and last(ρ) = t for all ρ ∈ GenTorr(σ)}
=

∑

ρ∈GenTorr(σ),π∈Paths(SCC+
t ,t,{s})

PrM(〈ρ tail(π)〉)

=
∑

ρ∈∆σs
µ

M
(〈ρ〉) {Dfn. ∆}

=
∑

ρ∈GenTorr(σs) µM
(〈ρ〉) {Lem. 8.3}

= Pr
M

(
⊎

ρ∈GenTorr(σs)〈ρ〉)

= Pr
M

(Torr(σs)) {Lem. 5.9}

Now suppose that t ∈ SInp. We denote by Ac(P) to the probability matrix of
Ac(M), then

Pr
Ac(M)

(〈σs〉)

= Pr
Ac(M)

(〈σ〉) · Ac(P)(t, s)

= Pr
M

(Torr(σ)) · Ac(P)(t, s) {HI}
= Pr

M
(
⊎

ρ∈GenTorr(σ)〈ρ〉) · Ac(P)(t, s) {Lem. 5.9}

=
(
∑

ρ∈GenTorr(σ) Pr
M

(〈ρ〉)
)

· Ac(P)(t, s)

=
∑

ρ∈GenTorr(σ) Pr
M

(〈ρ〉) ·Pr
M,t

(Paths(SCC+
t , t, {s}))

{By definition of Ac(P) and distributivity}
=

∑

ρ∈GenTorr(σ) Pr
M

(〈ρ〉) ·
∑

π∈Paths⋆(SCC+
t ,t,{s})

Pr
M,t

(〈π〉)

=
∑

ρ∈GenTorr(σ),π∈Paths⋆(SCC+
t ,t,{s})

Pr
M

(〈ρ tail(π)〉) {Dfn. µ}

=
∑

ρ∈∆σs
Pr

M
(〈ρ〉) {Dfn. ∆}

=
∑

ρ∈GenTorr(σs) Pr
M

(〈ρ〉) {Lem. 8.3}

= Pr
M

(
⊎

ρ∈GenTorr(σs)〈ρ〉)

= Pr
M

(Torr(σs)) {Lem. 5.9}

17


	Significant Diagnostic Counterexamples in Probabilistic Model Checking
	Miguel E. Andrés1 , Pedro D'Argenio2  , Peter van Rossum1

