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Abstract. We address the problem of computing the information leakage of a
system in an efficient way. We propose two methods: one based on reducing
the problem to reachability, and the other based on techniques from quantitative
counterexample generation. The second approach can be used either for exact or
approximate computation, and provides feedback for debugging. These methods
can be applied also in the case in which the input distribution is unknown. We then
consider the interactive case and we point out that the definition of associated
channel proposed in literature is not sound. We show however that the leakage
can still be defined consistently, and that our methods extend smoothly.

1 Introduction

By information hiding, we refer generally to the problem of constructing protocols or
programs that protect sensitive information from being deduced by some adversary. In
anonymity protocols [4], for example, the concern is to design mechanisms to prevent
an observer of network traffic from deducing who is communicating. In secure infor-
mation flow [17], the concern is to prevent programs from leaking their secret input to
an observer of their public output. Such leakage could be accidental or malicious.

Recently, there has been particular interest in approaching these issues quantitatively,
using concepts of information theory. See for example [13,5,10,6,4]. The secret input
S and the observable output O of an information-hiding system are modeled as random
variables related by a channel matrix, whose (s, o) entry specifies P (o|s), the condi-
tional probability of observing output o given input s. If we define the vulnerability of
S as the probability that the adversary could correctly guess the value of S in one try,
then it is natural to measure the information leakage by comparing the a priori vulner-
ability of S with the a posteriori vulnerability of S after observing O. We consider two
measures of leakage: additive, which is the difference between the a posteriori and a
priori vulnerabilities; and multiplicative, which is their quotient [19,3].

We thus view a protocol or program as a noisy channel, and we calculate the leakage
from the channel matrix and the a priori distribution on S. But, given an operational
specification of a protocol or program, how do we calculate the parameters of the noisy
channel: the sets of inputs and outputs, the a priori distribution, the channel matrix, and
the associated leakage? These are the main questions we address in this paper. We focus
on probabilistic automata, whose transitions are labeled with probabilities and actions,
each of which is classified as secret, observable, or internal.
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We first consider the simple case in which the secret inputs take place at the begin-
ning of runs, and their probability is fixed. The interpretation in terms of noisy channel
of this kind of systems is well understood in literature. The framework of probabilistic
automata, however, allows to represent more general situations. Thanks to the nonde-
terministic choice, indeed, we can model the case in which the input distribution is
unknown, or variable. We show that the definition of channel matrix extends smoothly
also to this case. Finally, we turn our attention to the interactive scenario in which in-
puts can occur again after outputs. This case has also been considered in literature, and
there has been an attempt to define the channel matrix in terms of the probabilities of
traces [11]. However it turns out that the notion of channel is unsound. Fortunately the
leakage is still well defined, and it can be obtained in the same way as the simple case.

We consider two different approaches to computing the channel matrix. One uses a
system of linear equations as in reachability computations. With this system of equa-
tions one can compute the joint matrix, the matrix of probabilities of observing both s
and o; the channel matrix is trivially derived from this joint matrix. The other approach
starts with a 0 channel matrix, which we call a partial matrix at this point. We iteratively
add the contributions in conditional probabilities of complete paths to this partial ma-
trix, obtaining, in the limit, the channel matrix itself. We then group paths with the same
secret and the same observable together using ideas from quantitative counterexample
generation, namely by using regular expressions and strongly connected component
analysis. In this way, we can add the contribution of (infinitely) many paths at the same
time to the partial matrices. This second approach also makes it possible to identify
which parts of a protocol contribute most to the leakage, which is useful for debugging.

Looking ahead, after reviewing some preliminaries (Section 2) we present restric-
tions on probabilistic automata to ensure that they have well-defined, finite channel
matrices (Section 3). This is followed by the techniques to calculate the channel ma-
trix efficiently (Section 4 and Section 5). We then turn our attention to extensions of
our information-hiding system model. We use nondeterministic choice to model the
situation where the a priori distribution on the secret is unknown (Section 6). Finally,
we consider interactive systems, in which secret actions and observable actions can be
interleaved arbitrarily (Section 7).

2 Preliminaries

2.1 Probabilistic Automata

This section recalls some basic notions on probabilistic automata. More details can be
found in [18]. A function μ : Q → [0, 1] is a discrete probability distribution on a set Q
if the support of μ is countable and

∑
q∈Q μ(q) = 1. The set of all discrete probability

distributions on Q is denoted by D(Q).
A probabilistic automaton is a quadruple M = (Q, Σ, q̂, α) where Q is a countable

set of states, Σ a finite set of actions, q̂ the initial state, and α a transition function
α : Q → ℘f (D(Σ × Q)). Here ℘f(X) is the set of all finite subsets of X . If α(q) = ∅
then q is a terminal state. We write q→μ for μ ∈ α(q), q ∈ Q. Moreover, we write
q

a→r for q, r ∈ Q whenever q→μ and μ(a, r) > 0. A fully probabilistic automaton is
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a probabilistic automaton satisfying |α(q)| ≤ 1 for all states. In case α(q) �= ∅ we will
overload notation and use α(q) to denote the distribution outgoing from q.

A path in a probabilistic automaton is a sequence σ = q0
a1→ q1

a2→ · · · where qi ∈ Q,
ai ∈ Σ and qi

ai+1→ qi+1. A path can be finite in which case it ends with a state. A path is
complete if it is either infinite or finite ending in a terminal state. Given a path σ, first(σ)
denotes its first state, and if σ is finite then last(σ) denotes its last state. A cycle is a
path σ such that last(σ) = first(σ). We denote the set of actions occurring in a cycle
as CyclesA(M). Let Pathsq(M) denote the set of all paths, Paths�

q(M) the set of all
finite paths, and CPathsq(M) the set of all complete paths of an automaton M , starting
from the state q. We will omit q if q = q̂. Paths are ordered by the prefix relation, which
we denote by ≤. The trace of a path is the sequence of actions in Σ∗∪Σ∞ obtained by
removing the states, hence for the above σ we have trace(σ) = a1a2 . . .. If Σ′ ⊆ Σ,
then traceΣ′(σ) is the projection of trace(σ) on the elements of Σ′. The length of a
finite path σ, denoted by |σ|, is the number of actions in its trace.

Let M = (Q, Σ, q̂, α) be a (fully) probabilistic automaton, q ∈ Q a state, and let
σ ∈ Paths�

q(M) be a finite path starting in q. The cone generated by σ is the set of
complete paths 〈σ〉 = {σ′ ∈ CPathsq(M) | σ ≤ σ′}. Given a fully probabilistic
automaton M = (Q, Σ, q̂, α) and a state q, we can calculate the probability value,
denoted by Pq(σ), of any finite path σ starting in q as follows: Pq(q) = 1 and Pq(σ

a→
q′) = Pq(σ) μ(a, q′), where last(σ) → μ.

Let Ωq � CPathsq(M) be the sample space, and let Fq be the smallest σ-algebra
generated by the cones. Then P induces a unique probability measure on Fq (which we
will also denote by Pq) such that Pq(〈σ〉) = Pq(σ) for every finite path σ starting in
q. For q = q̂ we write P instead of Pq̂ .

Given a probability space (Ω,F , P ) and two events A, B ∈ F with P (B) > 0, the
conditional probability of A given B, P (A | B), is defined as P (A ∩ B)/P (B).

2.2 Noisy Channels

This section briefly recalls the notion of noisy channels from Information Theory [7].
A noisy channel is a tuple C � (X ,Y,P (·|·)) where X = {x1, x2, . . . , xn} is a finite

set of input values, modeling the secrets of the channel, and Y = {y1, y2, . . . , ym} is
a finite set of output values, the observables of the channel. For xi ∈ X and yj ∈ Y ,
P(yj |xi) is the conditional probability of obtaining the output yj given that the input
is xi. These conditional probabilities constitute the so called channel matrix, where
P(yj |xi) is the element at the intersection of the i-th row and the j-th column. For any
input distribution PX on X , PX and the channel matrix determine a joint probability P∧
on X × Y , and the corresponding marginal probability PY on Y (and hence a random
variable Y ). PX is also called a priori distribution and it is often denoted by π. The
probability of the input given the output is called a posteriori distribution.

2.3 Information Leakage

We recall here the definitions of multiplicative leakage proposed in [19], and additive
leakage proposed in [3]1. We assume given a noisy channel C = (X ,Y,P (·|·)) and a

1 The notion proposed by Smith in [19] was given in a (equivalent) logarithmic form, and called
simply leakage. For uniformity’s sake we use here the terminology and formulation of [3].
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random variable X on X . The a priori vulnerability of the secrets in X is the probability
of guessing the right secret, defined as V(X) � maxx∈X PX(x). The rationale behind
this definition is that the adversary’s best bet is on the secret with highest probability.

The a posteriori vulnerability of the secrets in X is the probability of guessing
the right secret, after the output has been observed, averaged over the probabilities of
the observables. The formal definition is V(X | Y) �

∑
y∈Y PY (y)maxx∈X P (x | y).

Again, this definition is based on the principle that the adversary will choose the secret
with the highest a posteriori probability.

Note that, using Bayes theorem, we can write the a posteriori vulnerability in terms
of the channel matrix and the a priori distribution, or in terms of the joint probability:

V(X | Y) =
∑

y∈Y
max
x∈X

(P (y |x)PX(x)) =
∑

y∈Y
max
x∈X

P∧(x, y). (1)

The multiplicative leakage is defined as L×(C, PX) � V(X|Y)
V(X) and the additive leakage

as L+(C, PX) � V(X|Y) − V(X).

3 Information Hiding Systems

To formally analyze the information-hiding properties of protocols and programs, we
propose to model them as a particular kind of probabilistic automata, which we call
Information-Hiding Systems (IHS). Intuitively, an IHS is a probabilistic automaton in
which the actions are divided in three (disjoint) categories: those which are supposed
to remain secret (to an external observer), those which are visible, and those which are
internal to the protocol.

First we consider only the case in which the choice of the secret takes place entirely
at the beginning, and is based on a known distribution. Furthermore we focus on fully
probabilistic automata. Later in the paper we will relax these constraints.

Definition 3.1 (Information-Hiding System). An information-hiding system (IHS) is
a quadruple I = (M, ΣS , ΣO, Στ ) where M = (Q, Σ, q̂, α) is a fully probabilistic
automaton, Σ = ΣS ∪ ΣO ∪ Στ where ΣS , ΣO, and Στ are pairwise disjoint sets of
secret, observable, and internal actions, and α satisfies the following restrictions:

1. α(q̂) ∈ D(ΣS × Q),
2. ∀s ∈ ΣS ∃!q . α(q̂)(s, q) �= 0,
3. α(q) ∈ D(ΣO ∪ Στ × Q) for q �= q̂,
4. ∀a ∈ (ΣS ∪ ΣO) . a �∈ CyclesA(M),
5. P(CPaths(M) ∩ Paths�(M)) = 1.

The first two restrictions are on the initial state and mean that only secret actions can
happen there (1) and each of those actions must have non null probability and occur only
once (2), Restriction 3 forbids secret actions to happen in the rest of the automaton, and
Restriction 4 ensures that the channel associated to the IHS has finitely many inputs and
outputs. Finally, Restriction 5 means that infinite computations have probability 0 and
therefore we can ignore them.
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We now show how to interpret an IHS as a noisy channel. We call traceΣS (σ) and
traceΣO(σ) the secret and observable traces of σ, respectively. For s ∈ Σ∗

S , we define
[s] � {σ ∈ CPaths(M) | traceΣS (σ) = s}; similarly for o ∈ Σ∗

O, we define [o] �
{σ ∈ CPaths(M) | traceΣO(σ) = o}.

Definition 3.2. Given an IHS I = (M, ΣS , ΣO, Στ ), its noisy channel is (S,O,P ),
where S � ΣS , O � traceΣO (CPaths(M)), and P(o | s) � P([o] | [s]). The a priori
distribution π ∈ D(S) of I is defined by π(s) � α(q̂)(s, ·). If C is the noisy channel of
I, the multiplicative and additive leakage of I are naturally defined as

L×(I) � L×(C, π) and L+(I) � L+(C, π).

Example 3.3. Crowds [16] is a well-known anonymity protocol, in which a user (called
the initiator) wants to send a message to a web server without revealing his identity. To
achieve this, he routes the message through a crowd of users participating in the proto-
col. Routing is as follows. In the beginning, the initiator randomly selects a user (called
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Fig. 1. Crowds Protocol

a forwarder), possibly himself, and forwards the re-
quest to him. A forwarder performs a probabilistic
choice. With probability p (a parameter of the pro-
tocol) he selects a new user and again forwards the
message. With probability 1−p he sends the message
directly to the server. One or more users can be cor-
rupted and collaborate with each other to try to find
the identity of the initiator.

We now show how to model Crowds as an IHS
for 2 honest and 1 corrupted user. We assume that
the corrupted user immediately forwards messages
to the server, as there is no further information to be
gained for him by bouncing the message back.

Figure 1 shows the automaton2. Actions a and b
are secret and represent who initiates the protocol;
actions A, B, and U are observable; A and B rep-
resent who forwards the message to the corrupted user; U represents the fact that the
message arrives at the server undetected by the corrupted user. We assume U to be ob-
servable to represent the possibility that the message is made publically available at the
server’s site.

The channel associated to this IHS has S = {a, b}, O = {A, B, U}, and a priori
distribution π(a) = 1

3 , π(b) = 2
3 . Its channel matrix is computed in the next section.

4 Reachability Analysis Approach

This section presents a method to compute the matrix of joint probabilities P∧ associ-
ated to an IHS, defined as

P∧(s, o) � P([s] ∩ [o]) for all s ∈ S and o ∈ O.

2 For the sake of simplicity, we allow the initiator of the protocol to send the message to the
server also in the first step of the protocol.
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We omit the subscript ∧ when no confusion arises. From P∧ we can derive the channel
matrix by dividing P∧(s, o) by π(s). The leakage can be computed directly from P∧,
using the second form of the a posteriori vulnerability in (1).

We write xλ
q for the probability of the set of paths with trace λ ∈ (ΣS∪ΣO)� starting

from the state q of M :
xλ

q � Pq([λ]q),

where [λ]q � {σ ∈ CPathsq(M) | traceΣS∪ΣO(σ) = λ}. The following key lemma
shows the linear relation between the xλ

q ’s. We assume, w.l.o.g., that the IHS has a
unique final state qf .

Lemma 4.1. Let I = (M, ΣS , ΣO, Στ ) be an IHS. For all λ ∈ (ΣS ∪ ΣO)� and
q ∈ Q we have

xε
qf

= 1,

xλ
qf

= 0 for λ �= ε,

xε
q =

∑
h∈Στ

∑
q′∈succ(q) α(q)(h, q′) · xε

q′ for q �= qf ,

xλ
q =

∑
q′∈succ(q) α(q)(first(λ), q′) · xtail(λ)

q′

+
∑

h∈Στ
α(q)(h, q′) · xλ

q′ for λ �= ε and q �= qf .

Furthermore, for s ∈ S and o ∈ O we have P([s] ∩ [o]) = xso
q̂ .

Using this lemma, one can compute joint probabilities by solving the system of linear
equations in the variables xλ

q ’s. It is possible that the system has multiple solutions; in
that case the required solution is the minimal one.

Example 4.2. Continuing with the Crowds example, we show how to compute joint
probabilities. Note that qf = S. The linear equations from Lemma 4.1 are

xaA
init = 1

3 · xA
qa

, xA
qa

= p
3 · xA

qa
+ p

3 · xA
qb

+ p
3 · xε

corr, xA
corr = xA

S ,

xbA
init = 2

3 · xA
qb

, xA
qb

= p
3 · xA

qa
+ p

3 · xA
qb

+ p
3 · xA

corr, xA
S = 0,

xaB
init = 1

3 · xB
qa

, xB
qa

= p
3 · xB

qa
+ p

3 · xB
qb

+ p
3 · xB

corr, xB
corr = xB

S ,

xbB
init = 2

3 · xB
qb

, xB
qb

= p
3 · xB

qa
+ p

3 · xB
qb

+ p
3 · xε

corr, xB
S = 0,

xaU
init = 1

3 · xU
qa

, xU
qa

= p
3 · xU

qa
+ p

3 · xU
qb

+ (1−p) · xε
S, xε

corr = xε
S,

xbU
init = 2

3 · xU
qb

, xU
qb

= p
3 · xU

qa
+ p

3 · xU
qb

+ (1−p) · xε
S, xε

S = 1.

4.1 Complexity Analysis

We now analyze the computational complexity for the computation of the channel ma-
trix of a simple IHS. Note that the only variables (from the system of equations in
Lemma 4.1) that are relevant for the computation of the channel matrix are those xλ

q

for which it is possible to get the trace λ starting from state q. As a rough overestimate,
for each state q, there are at most |S| · |O| λ’s possible: in the initial state one can have
every secret and every observable, in the other states no secret is possible and only a
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suffix of an observable can occur. This gives at most |Q| · |S| · |O| variables. Therefore,
we can straightforwardly obtain the desired set of values in O((|Q| · |S| · |O|)3) time
(using Gaussian Elimination). Note that using Strassen’s methods the exponent reduces
to 2.807, this consideration applies to similar results in the rest of the paper as well.

Because secret actions can happen only at the beginning, the system of equations
has a special form. The variables of the form xso

q̂ only depend on variables of the form
xo

q (with varying o and q �= q̂) and not on each other. Hence, we can first solve for all
variables of the form xo

q and then compute the remaining few of the form xso
q̂ . Required

time for the first step is O((|O| · |Q|)3) and the time for the second step can be ignored.
Finally, in some cases not only do the secret actions happen only at the beginning

of the protocol, but the observable actions happen only at the end of the protocol, i.e.,
after taking a transition with an observable action, the protocol only performs internal
actions (this is, for instance, the case for our model of Crowds). In this case, one might
as well enter a unique terminal state qf after an observable action happens. Then the
only relevant variables are of the form xso

q̂ , xo
q , and xε

qf
; the xso

q̂ only depends on the xo
q ,

the xo
q only depend on xo

q′ (with the same o, but varying q’s) and on xε
qf

and xε
qf

= 1.
Again ignoring the variables xso

q̂ for complexity purposes, the system of equations has
a block form with |O| blocks of (at most) |Q| variables each. Hence the complexity in
this case decreases to O(|O| · |Q|3).

5 The Iterative Approach

We now propose a different approach to compute channel matrices and leakage. The
idea is to iteratively construct the channel matrix of a system by adding probabilities of
sets of paths containing paths with the same observable trace o and secret trace s to the
(o|s) entry of the matrix.

One reason for this approach is that it allows us to borrow techniques from quan-
titative counterexample generation. This includes the possibility of using or extending
counterexample generation tools to compute channel matrices or leakage. Another rea-
son for this approach is the relationship with debugging. If a (specification of a) system
has a high leakage, the iterative approach allows us to determine which parts of the
system contribute most to the high leakage, possibly pointing out flaws of the protocol.
Finally, if the system under consideration is very large, the iterative approach allows us
to only approximate the leakage (by not considering all paths, but only the most relevant
ones) under strict guarantees about the accuracy of the approximation. We will focus
on the multiplicative leakage; similar results can be obtained for the additive case.

5.1 Partial Matrices

We start by defining a sequence of matrices converging to the channel matrix by adding
the probability of complete paths one by one. We also define partial version of the a
posteriori vulnerability and the leakage. Later, we show how to use techniques from
quantitative counterexample generation to add probabilities of many (maybe infinitely
many) complete paths all at once.
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Definition 5.1. Let I = (M, ΣS , ΣO, Στ ) be an IHS, π its a priori distribution, and
σ1, σ2, . . . an enumeration of the set of complete paths of M . We define the partial
matrices Pk : S ×O → [0, 1] as follows

P0(o|s) � 0, Pk+1(o|s) �

⎧
⎪⎨

⎪⎩

Pk(o|s) + P(〈σk+1〉)
π(s) if traceΣO(σk+1) = o

and traceΣS (σk+1) = s,

Pk(o|s) otherwise.

We define the partial vulnerability Vk
S,O as

∑
o maxs Pk(o|s) · π(s), and the partial

multiplicative leakage Lk
×(I) as V k

S,O/maxs π(s).

The following lemma states that partial matrices, a posteriori vulnerability, and leakage
converge to the correct values.

Lemma 5.2. Let I = (M, ΣS , ΣO, Στ ) be an IHS. Then

1. Pk(o|s) ≤ Pk+1(o|s), and limk→∞ Pk(o|s) = P(o|s),
2. V k

S,O ≤ V k+1
S,O , and limk→∞ V k

S,O = V(S|O),

3. Lk×(I) ≤ Lk+1
× (I), and limk→∞ Lk×(I) = L×(I).

Since rows must sum up to 1, this technique allow us to compute matrices up to given
error ε. We now show how to estimate the error in the approximation of the multiplica-
tive leakage.

Proposition 5.3. Let (M, ΣS , ΣO, Στ ) be an IHS. Then we have

Lk
×(I) ≤ L×(I) ≤ Lk

×(I) +
|S|∑

i=1

(1 − pk
i ),

where pk
i denotes the mass probability of the i-th row of Pk, i.e. pk

i �
∑

o Pk(o|si).

5.2 On the Computation of Partial Matrices

After showing how partial matrices can be used to approximate channel matrices and
leakage we now turn our attention to accelerating the convergence. Adding most likely
paths first is an obvious way to increase the convergence rate. However, since automata
with cycles have infinitely many paths, this (still) gives an infinite amount of path to
process. Processing many paths at once (all having the same observable and secret trace)
tackles both issues at the same time: it increases the rate of convergence and can deal
with infinitely many paths at the same time,

Interestingly enough, these issues also appear in quantitative counterexample gen-
eration. In that area, several techniques have already been provided to meet the chal-
lenges; we show how to apply those techniques in the current context. We consider two
techniques: one is to group paths together using regular expression, the other is to group
path together using strongly connected component analysis.



Computing the Leakage of Information-Hiding Systems 381

Regular expressions. In [9], regular expressions containing probability values are used
to reason about traces in Markov Chains. This idea is used in [8] in the context of
counterexample generation to group together paths with the same observable behaviour.
The regular expression there are over pairs 〈p, q〉 with p a probability value and q a
state, to be able to track both probabilities and observables. We now use the same idea
to group together paths with the same secret action and the same observable actions.

We consider regular expressions over triples of the form 〈a, p, q〉 with p ∈ [0, 1]
a probability value, a ∈ Σ an action label and q ∈ Q a state. Regular expressions
represent sets of paths as in [8]. We also take the probability value of such a regular
expression from that paper.

Definition 5.4. The function val : R(Σ) → R evaluates regular expressions:

val(ε) � 1, val(r · r′) � val (r) × val(r′),
val (〈a, p, q〉) � p, val(r∗) � 1 if val(r) = 1,

val (r + r′) � val(r) + val(r′), val(r∗) � 1
1−val(r) if val (r) �= 1.

The idea is to obtain regular expressions representing sets of paths of M , each regular
expression will contribute in the approximation of the channel matrix and leakage. Sev-
eral algorithms to translate automata into regular expressions have been proposed (see
[14]). Finally, each term of the regular expression obtained can be processed separately
by adding the corresponding probabilities [9] to the partial matrix.

As mentioned before, all paths represented by the regular expression should have the
same observable and secret trace in order to be able to add its probability to a single
element of the matrix. To ensure that condition we request the regular expression to be
normal, i.e., of the form r1 + · · · + rn with the ri containing no +’s.

For space reasons, instead of showing technical details we only show an example.

Example 5.5. We used JFLAP 7.0 [12] to obtain the regular expression r � r1 + r2 +
· · · + r10 equivalent to the automaton in Figure 1.

r1 � 〈b, 2
3 , qb〉 · r̂� · 〈B, 0.3, corr〉 · 〈τ, 1, S〉,

r2 � 〈b, 2
3 , qb〉 · r̂� · 〈τ, 0.3, qa〉 · 〈τ, 0.3, qa〉� · 〈A, 0.3, corr〉 · 〈τ, 1, S〉,

r3 � 〈a, 1
3 , qa〉 · 〈τ, 0.3, qa〉� · 〈A, 0.3, corr〉 · 〈τ, 1, S〉,

r4 � 〈b, 2
3 , qb〉 · r̂� · 〈U, 0.1, S〉,

r5 � 〈a, 1
3 , qa〉 · 〈τ, 0.3, qa〉� · 〈τ, 0.3, qb〉 · r̂� · 〈B, 0.3, corr〉 · 〈τ, 1, S〉,

r6 � 〈b, 2
3 , qb〉 · r̂� · 〈τ, 0.3, qa〉 · 〈τ, 0.3, qa〉� · 〈U, 0.1, S〉,

r7 � 〈a, 1
3 , qa〉 · 〈τ, 0.3, qa〉� · 〈U, 0.1, S〉,

r8 � 〈a, 1
3 , qa〉 · 〈τ, 0.3, qa〉� · 〈τ, 0.3, qb〉 · r̂� · 〈τ, 0.3, qa〉 · 〈τ, 0.3, qa〉�·

〈A, 0.3, corr〉 · 〈τ, 1, S〉,
r9 � 〈a, 1

3 , qa〉 · 〈τ, 0.3, qa〉� · 〈τ, 0.3, qb〉 · r̂� · 〈U, 0.1, S〉,
r10 � 〈a, 1

3 , qa〉 · 〈τ, 0.3, qa〉� · 〈τ, 0.3, qb〉 · r̂� · 〈τ, 0.3, qa〉 · 〈τ, 0.3, qa〉� · 〈U, 0.1, S〉,
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where r̂�(〈τ, 0.3, qb〉� · (〈τ, 0.3, qa〉 · 〈τ, 0.3, qa〉� · 〈τ, 0.3, qb〉)�). We also note

val(r1) = 7
20 (b, B), val(r2) = 3

20 (b, A), val(r3) = 1
7 (a,A), val(r4) = 7

60 (b, U),
val(r5) = 3

40 (a, B), val(r6) = 1
20 (b, U), val(r7) = 1

21 (a, U), val(r8) = 9
280 (a,A),

val(r9) = 1
40 (a, U), val(r10) = 3

280 (a, U),

where the symbols between brackets denote the secret and observable traces of each
regular expression.

Now we have all the ingredients needed to define partial matrices using regular
expressions.

Definition 5.6. Let I = (M, ΣS , ΣO, Στ ) be an IHS, π its a priori distribution, and
r = r1 + r2 + · · ·+ rn a regular expression equivalent to M in normal form. We define
for k = 0, 1, . . . , n the matrices Pk : S × O → [0, 1] as follows

Pk(o|s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if k = 0,

Pk−1(o|s) + val(rk)
π(s) if k �= 0 and traceΣO(rk) = o

and traceΣS (rk) = s,

Pk−1(o|s) otherwise.

Note that in the context of Definition 5.6, we have Pn = P .

SCC analysis approach. In [2], paths that only differ in the way they traverse strongly
connected components (SCC’s) are grouped together. Note that in our case, such paths
have the same secret and observable trace since secret and observable actions cannot
occur on cycles. Following [2], we first abstract away the SCC’s, leaving only proba-
bilistic transitions that go immediately from an entry point of the SCC to an exit point
(called input and output states in [2]). This abstraction happens in such a way that the
observable behaviour of the automaton does not change.

Again, instead of going into technical details (which also involves translating the
work [2] from Markov chains to fully probabilistic automata), we show an example.

Example 5.7. Figure 2 shows the automaton obtained after abstracting SCC. In the
following we show the set of complete paths of the automaton, together with their cor-
responding probabilities and traces

σ1 � init
a−→ qa

A−→ corr
τ−→ S, P(σ1) = 7

40 , (a, A),
σ2 � init

b−→ qb
B−→ corr

τ−→ S, P(σ2) = 7
20 , (b, B),

σ3 � init
a−→ qa

U−→ S, P(σ3) = 1
12 , (a, U),

σ4 � init
b−→ qb

U−→ S, P(σ4) = 1
6 , (b, U),

σ5 � init
a−→ qa

B−→ corr
τ−→ S, P(σ5) = 3

40 , (a, B),
σ6 � init

b−→ qb
A−→ corr

τ−→ S, P(σ6) = 3
20 , (b, A).
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40

B

9
40

1
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A

9
40

B

21
40

U 1
4

1
3

a
2
3

b

1

Fig. 2. Crowds after the
SCC analysis

Note that the SCC analysis approach groups more paths to-
gether (for instance σ1 group together the same paths than
the regular expressions r3 and r8 in the examples of this
section), as a result channel matrix and leakage are obtained
faster. On the other hand, regular expressions are more in-
formative providing more precise feedback.

5.3 Identifying High-Leakage Sources

We now describe how to use the techniques presented in
this section to identify sources of high leakage of the sys-
tem. Remember that the a posteriori vulnerability can be
expressed in terms of joint probabilities

V(S | O) =
∑

o

max
s

P([s] ∩ [o]).

This suggests that, in case we want to identify parts of the system generating high leak-
age, we should look at the sets of paths [o1]∩ [s1], . . . , [on]∩ [sn] where {o1, . . . on} =
O and si ∈ arg (maxs P([oi] ∩ [s])). In fact, the multiplicative leakage is given divid-
ing V(S | O) by V(S), but since V(S) is a constant value (i.e., it does not depend on the
row) it does not play a role here. Similarly for the additive case.

The techniques presented in this section allow us to obtain such sets and, further-
more, to partition them in a convenient way with the purpose of identifying states/parts
of the system that contribute the most to its high probability. Indeed, this is the aim
of the counterexamples generation techniques previously presented. For further details
on how to debug sets of paths and why these techniques meet that purpose we refer
to [1,8,2].

Example 5.8. To illustrate these ideas, consider the path σ1 of the previous example;
this path has maximum probability for the observable A. By inspecting the path we find

the transition with high probability qa
A→ corr. This suggests to the debugger that the

corrupted user has an excessively high probability of intercepting a message from user
a in case he is the initiator.

In case the debugger requires further information on how corrupted users can inter-
cept messages, the regular expression approach provides further/more-detailed infor-
mation. For instance, we obtain further information by looking at regular expressions
r3 and r8 instead of path σ1 (in particular it is possible to visualize the different ways
the corrupted user can intercept the message of user a when he is the generator of the
message).

6 Information Hiding Systems with Variable a Priori

In Section 3 we introduced a notion of IHS in which the distribution over secrets is
fixed. However, when reasoning about security protocols this is often not the case. In
general we may assume that an adversary knows the distribution over secrets in each
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particular instance, but the protocol should not depend on it. In such scenario we want
the protocol to be secure, i.e. ensuring low enough leakage, for every possible distribu-
tion over secrets. This leads to the definition of maximum leakage.

Definition 6.1 ([19,3]). Given a noisy channel C = (S,O,P ), we define the maximum
multiplicative and additive leakage (respectively) as

ML×(C) � max
π∈D(S)

L×(C, π), and ML+(C) � max
π∈D(S)

L+(C, π).

In order to model this new scenario where the distribution over secrets may change, the
selection of the secret is modeled as nondeterministic choice. In this way such a distri-
bution remains undefined in the protocol/automaton. We still assume that the choice of
the secret happens at the beginning, and that we have only one secret per run. We call
such automaton an IHS with variable a priori.

Definition 6.2. An IHS with variable a priori is a quadruple I = (M, ΣS , ΣO, Στ )
where M = (Q, Σ, q̂, α) is a probabilistic automaton, Σ = ΣS ∪ΣO ∪Στ where ΣS ,
ΣO, and Στ are pairwise disjoint sets of secret, observable, and internal actions, and α
satisfies the following restrictions:

1. α(q̂) ⊆ D(ΣS × Q),
2. |α(q̂)| = |S| ∧ ∀s ∈ ΣS . ∃ q . π(s, q) = 1, for some π ∈ α(q̂),
3. α(q) ⊆ D(ΣO ∪ Στ × Q) and |α(q)| ≤ 1, for all q �= q̂,
4. ∀a ∈ (ΣS ∪ ΣO) . a �∈ CyclesA(M),
5. ∀q, s ∀π∈α(q̂) . (π(s, q) = 1 ⇒ P(CPathsq(M) ∩ Paths∗q(M)) = 1).

Restrictions 1, 2 and 3 imply that the secret choice is non deterministic and happens
only at the beginning. Additionally, 3 means that all the other choices are probabilistic.
Restriction 4 ensures that the channel associated to the IHS has finitely many inputs
and outputs. Finally, 5 implies that, after we have chosen a secret, every computation
terminates except for a set with null probability.

Given an IHS with variable a priori, by fixing the a priori distribution we can obtain
a standard IHS in the obvious way:

Definition 6.3. Let I = ((Q, Σ, q̂, α), ΣS , ΣO, Στ ) be an IHS with variable a priori
and π a distribution over S. We define the IHS associated to (I, π) as Iπ = ((Q, Σ,
q̂, α′), ΣS , ΣO, Στ ) with α′(q) = α(q) for all q �= q̂ and α′(q̂)(s, ·) = π(s).

The following result says that the conditional probabilities associated to an IHS with
variable a priori are invariant with respect to the a priori distribution. This is fundamen-
tal in order to interpret the IHS as a channel.

Proposition 6.4. Let I be an IHS with variable a priori. Then for all π, π′ ∈ D(S)
such that π(s) �= 0 and π′(s) �= 0 for all s ∈ S we have that PIπ

= PIπ′ .

Proof. The secret s appears only once in the tree and only at the beginning of paths,
hence P([s] ∩ [o]) = α′(q̂)(s, ·)Pqs ([o]) and P([s]) = α′(q̂)(s, ·). Therefore P([o] |
[s]) = Pqs([o]), where qs is the state after performing s. While α′(q̂)(s, ·) is different in
Iπ and Iπ′ , Pqs([o]) is the same, because it only depends on the parts of the paths after
the choice of the secret.
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Note that, although in the previous proposition we exclude input distributions with ze-
ros, the concepts of vulnerability and leakage also make sense for these distributions3.

This result implies that we can define the channel matrix of an IHS I with variable
a priori as the channel matrix of Iπ for any π, and we can compute it, or approximate
it, using the same techniques of previous sectionsSimilarly we can compute or approx-
imate the leakage for any given π.

We now turn the attention to the computation of the maximum leakage. The follow-
ing result from the literature is crucial for our purposes.

Proposition 6.5 ([3]). Given a channel C, arg maxπ∈D(S) L×(C, π) is the uniform dis-
tribution, and argmaxπ∈D(S) L+(C, π) is a corner point distribution, i.e. a distribution
π such that π(s) = 1

κ on κ elements of S, and π(s) = 0 on all the other elements.

As an obvious consequence, we obtain:

Corollary 6.6. Given an IHS I with variable a priori, we have ML×(I) = L×(Iπ),
where π is the uniform distribution, and ML+(I) = L+(Iπ′), where π′ is a corner
point distribution.

Corollary 6.6 gives us a method to compute the maxima leakages of I. In the multiplica-
tive case the complexity is the same as for computing the leakage4. In the additive case
we need to find the right corner point, which can be done by computing the leakages for
all corner points and then comparing them. This method has exponential complexity (in
|S|) as the size of the set of corner points is 2|S|−1. We conjecture that this complexity
is intrinsic, i.e. that the problem is NP-hard5.

7 Interactive Information Hiding Systems

We now consider extending the framework to interactive systems, namely to IHS’s in
which the secrets and the observables can alternate in an arbitrary way. The secret part
of a run is then an element of Σ∗

S , like the observable part is an element of Σ∗
O . The

idea is that such system models an interactive play between a source of secret infor-
mation, and a protocol or program that may produce, each time, some observable in
response. Since each choice is associated to one player of this “game”, it seems nat-
ural to impose that in a choice the actions are either secret or observable/hidden, but
not both.

The main novelty and challenge of this extension is that part of the secrets come after
observable events, and may depend on them.

Definition 7.1. Interactive IHS’s are defined as IHS’s (Definition 3.1), except that Re-
strictions 1 to 3 are replaced by α(q) ∈ D(ΣS × Q) ∪D(Σ − ΣS × Q).

3 We assume that conditional probabilities are extended by continuity on such distributions.
4 Actually we can compute it even faster using an observation from [19] which says that the

leakage on the uniform distribution can be obtained simply by summing up the maximum
elements of each column of the channel matrix.

5 Since submitting this paper, we have proved that our conjecture is true.
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Example 7.2. Consider an Ebay-like auction protocol with one seller and two possible
buyers, one rich and one poor. The seller first publishes the item he wants to sell, which
can be either cheap or expensive. Then the two buyers start bidding. At the end, the
seller looks at the profile of the bid winner and decides whether to sell the item or
cancel the transaction. Figure 4 illustrates the automaton representing the protocol, for
certain given probability distributions.

0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

cheap expensive

poor rich poor rich

sell cancel sell cancel sell cancel sell cancel

2
3

1
3

3
5

2
5

1
5

4
5

4
5

1
5

3
4

1
4

3
5

2
5

19
20

1
20

Fig. 3. Ebay Protocol

We assume that the identities of the buyers
are secret, while the price of the item and
the seller’s decision are observable. We ig-
nore for simplicity the hidden actions which
are performed during the bidding phase. Hence
ΣO = {cheap, expensive, sell, cancel}, Στ =
∅, S = ΣS = {poor, rich}, and O =
{cheap, expensive} × {sell, cancel}. The dis-
tributions on S and O are defined as usual.
For instance we have P([cheap sell]) =

P({q0
cheap−→ q1

poor−→ q3
sell−→ q7, q0

cheap−→ q1
rich−→ q3

sell−→ q7}) = 2
3 · 3

5 · 4
5 + 2

3 · 2
5 · 3

4 = 13
25 .

Let us now consider how to model the protocol in terms of a noisy channel. It would
seem natural to define the channel associated to the protocol as the triple (S,O,P)
where P(o | s) = P([o] | [s]) = P([s]∩[o])

P([s]) . This is, indeed, the approach taken in [11].
For instance, with the protocol of Example 7.2, we would have:

P([cheap sell] | [poor]) =
P([poor] ∩ [cheap sell])

P([poor])
=

2
3 · 3

5 · 4
5

2
3 · 3

5 + 1
3 · 1

5

=
24
35

. (2)

However, it turns out that in the interactive case (in particular when the secrets are not
in the initial phase), it does not make sense to model the protocol in terms of a channel.
At least, not a channel with input S. In fact, the matrix of a channel is supposed to
be invariant with respect to the input distribution (like in the case of the IHS’s with
variable a priori considered in previous section), and this is not the case here. The
following is a counterexample.

Example 7.3. Consider the same protocol as in Example 7.2, but assume now that
the distribution over the choice of the buyer is uniform, i.e. α(q1)(poor, q3) = α(q1)
(rich, q4) = α(q2)(poor, q5) = α(q2)(rich, q6) = 1

2 . Then the conditional probabili-
ties are different than those for Example 7.2. In particular, in contrast to (2), we have

P([cheap sell] | [poor]) =
P([poor] ∩ [cheap sell])

P([poor])
=

2
3 · 1

2 · 4
5

2
3 · 1

2 + 1
3 · 1

2

=
8
15

.

The above observation, i.e. the fact that the conditional probabilities depend on the input
distribution, makes it unsound to reason about certain information-theoretic concepts in
the standard way. For instance, the capacity is defined as the maximum mutual infor-
mation over all possible input distributions, and the traditional algorithms to compute it
are based on the assumption that the channel matrix remains the same while the input
distribution variates. This does not make sense anymore in the interactive setting.



Computing the Leakage of Information-Hiding Systems 387

However, when the input distribution is fixed, the matrix of the joint probabilities is
well defined as P∧(s, o) = P([s] ∩ [o]), and can be computed or approximated using
the same methods as for simple IHS’s. The a priori probability and the channel matrix
can then be derived in the standard way:

π(s) =
∑

o

P∧(s, o), P(o | s) =
P∧(s, o)

π(s)
.

Thanks to the formulation (1) of the a posteriori vulnerability, the leakage can be com-
puted directly using the joint probabilities.

Example 7.4. Consider the Ebay protocol I presented in Example 7.2. The matrix of
the joint probabilities P∧(s, o) is:

cheap sell cheap cancel expensive sell expensive cancel

poor 8
25

2
25

1
25

2
75

rich 1
5

1
15

19
75

1
75

Furthermore π(poor) = 7
15 and π(rich) = 8

15 . Hence we have L×(I) = 51
40 and

L+(I) = 11
75 .

We note that our techniques to compute channel matrices and leakage extend smoothly
to the case where secrets are not required to happen at the beginning. However, no
assumptions can be made about the occurrences of secrets (they do not need to occur at
the beginning anymore). This increases the complexity of the reachability technique to
O((|S| · |O| · |Q|)3). On the other hand, complexity bounds for the iterative approach
remain the same.

8 Related Work

To the best of our knowledge, this is the first work dealing with the efficient com-
putation of channel matrices and leakage. However, for the simple scenario, channel
matrices can be computed using standard model checking techniques. Chatzikokolakis
et al. [4] have used Prism [15] to model Crowds as a Markov Chain and compute its
channel matrix. Each conditional probability P(o|s) is computed as the probability of
reaching a state where o holds starting from the state where s holds. Since for the simple
version of IHS’s secrets occur only once and before observables (as in Crowds), such a
reachability probability equals P(o|s). This procedure leads to O(|S| · |O| · |Q|3) time
complexity to compute the channel matrix, where Q is the space state of the Markov
Chain.

Note that the complexity is expressed in terms of the space state of a Markov Chain
instead of automaton. Since Markov Chains do not carry information in transitions they
have a larger state space than an equivalent automaton. Figure 4 illustrates this: to model
the automaton (left hand side) we need to encode the information in its transitions into
states of the Markov Chain (right hand side). Therefore, the probability of seeing ob-
servation a and then c in the automaton can be computed as the probability of reaching
the state ac. The Markov Chain used for modeling Crowds (in our two honest and one
corrupted user configuration) has 27 states.



388 M.E. Andrés et al.

a b

ac ae bc be

a b

c e

Fig. 4. Automaton vs
Markov Chain

For this reason we conjecture that our complexity O(|O|·
|Q|3) is a considerable improvement over the one on
Markov Chains O(|S| · |O| · |Q|3).

With respect to the interactive scenario, standard model
checking techniques do not extend because multiple occur-
rences of the same secret are allowed (for instance in our
Ebay example, P(cheap sell|rich) cannot be derived from
reachability probabilities from the two different states of the
automaton where rich holds).

9 Conclusion and Future Work

In this paper we have addressed the problem of computing the information leakage of a
system in an efficient way. We have proposed two methods: one based on reachability
techniques; the other based on quantitative counterexample generation.

We plan to use tools developed for counterexamples generation (in particular the
Prism implementation of both techniques presented in Section 5) in order to com-
pute/approximate leakage of large scale protocols. We also intend to investigate in more
depth how the results obtained from those tools can be used to identify flaws of the pro-
tocol causing high leakage.

In Section 7 we have shown that when the automaton is interactive we cannot define
its channel in the standard way. An intriguing problem is how to extend the notion of
channel so to capture the dynamic nature of interaction. One idea is to use channels with
history and/or feedback. Another idea is to lift the inputs from secrets to schedulers on
secrets, i.e. to functions from paths to distributions over secrets.
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