
Conditional Probabilities over Probabilistic and
Nondeterministic Systems

Miguel E. Andrés and Peter van Rossum

Institute for Computing and Information Sciences,
Radboud University Nijmegen, The Netherlands.

Email:{mandres,petervr}@cs.ru.nl

Abstract. This paper introduces the logic cpCTL, which extends the
probabilistic temporal logic pCTL with conditional probability, allowing
one to express that the probability that ϕ is true given that ψ is true is
at least a. We interpret cpCTL over Markov Chain and Markov Decision
Processes. While model checking cpCTL over Markov Chains can be done
with existing techniques, those techniques do not carry over to Markov
Decision Processes. We present a model checking algorithm for Markov
Decision Processes. We also study the class of schedulers that suffice to
find the maximum and minimum probability that ϕ is true given that
ψ is true. Finally, we present the notion of counterexamples for cpCTL
model checking and provide a method for counterexample generation.

1 Introduction

Conditional probabilities are a fundamental concept in probability theory. In
system validation these appear for instance in anonymity, risk assessment, and
diagnosability. Typical probabilities here are the probability that a certain mes-
sage was sent by Alice, given that an intruder observes a certain traffic pattern;
the probability that the dykes break, given that it rains heavily; the probability
that component A has failed, given error message E.

This paper introduces the logic cpCTL extending the probabilistic temporal
logic pCTL [HJ89] with new probabilistic operators of the form P≤a[ϕ|ψ], which
expresses that the probability that ϕ is true given that ψ is true is at most a.
We interpret cpCTL formulas over Markov Chains (MCs) and Markov Decision
Processes (MDPs). Model checking cpCTL over MCs can be done with model
checking techniques for pCTL*, using the equality P[ϕ|ψ] = P[ϕ ∧ ψ]/P[ψ].

For MDPs, cpCTL model checking is significantly more complex. Writing
Pη[ϕ|ψ] for the probability P[ϕ|ψ] under scheduler η, model checking P≤a[ϕ|ψ]
boils down to computing P+[ϕ|ψ] = maxη Pη[ϕ|ψ] = maxη Pη[ϕ ∧ ψ]/Pη[ψ].
Thus, we have to maximize a non-linear function. (Note that in general it is not
true that P+[ϕ|ψ] = P+[ϕ ∧ ψ]/P+[ψ]). Therefore, we cannot reuse the efficient
machinery for pCTL model checking, which heavily relies on linear optimization
techniques [BA95].

In particular we show that, unlike for pCTL [BA95], memoryless schedulers
are not sufficient for optimizing reachability properties. We introduce the class

of semi history-independent schedulers and show that these suffice to attain
the optimal conditional probability. We also show that in cpCTL optimizing
schedulers are not determined by the local structure of the system. That is,
the choices made by the scheduler in one branch may influence the optimal
choices in other branches. Surprisingly, deterministic schedulers still suffice to
find the optimal conditional probability. This is remarkable indeed, since many
non-linear optimization problems attain their optimal value in the interior of a
convex polytope (which correspond to randomized schedulers in our setting).

Based on these properties, we present an exponential algorithm for checking
if a given system satisfies a formula in the logic. We also present two heuristic
optimizations of this algorithm: one trades time for space by exploiting the semi-
history-independentness of optimizing schedulers; the other uses the fact that in
certain cases optimal decisions can be decided locally. Finally, we present the
notion of counterexamples for cpCTL model checking as pairs of sets of paths
and provide a method for counterexample generation.

1.1 Applications

Complex Systems. One application of the techniques in this paper can be
found in the area of complex system behavior. Modeling naturally occurring
events as probabilistic choices and operator actions as non-deterministic choices,
computing maximum and minimum conditional probabilities can help optimize
run-time behavior. For instance, suppose that the desired behavior of the system
is expressed as a pCTL formula ϕ and that during run-time we are making an
observation about the system, expressed as a pCTL formula ψ. The techniques
in this paper allow us to compute the maximum probability of obtaining ϕ given
that ψ is true and compute the corresponding actions (non-deterministic choices)
that have to be taken to achieve this probability.

Anonymizing Protocols. Another application can be found in anonymizing
protocols. These protocols such as Onion Routing [CL05], Dining Cryptogra-
phers [Cha88], voting protocols [FOO92] try to hide the originator of a message
rather than the content. Strong anonymity is commonly formulated [Cha88,BP05]
in terms of conditional probability: A protocol is considered strongly anonymous
if no information about the sender of a message can be derived from observations
of the network traffic. Formally, this is expressed by saying that the (random
variable representing) sender of a specific message is independent of the (ran-
dom variable representing) the observations the adversary makes. That is, for
all users u and all observations of the adversary o:

P[sender = u | observations = o] = P[sender = u].

It is customary to give the adversary full control over the network [DY83] and
model the capabilities of the adversary as nondeterministic choices in the system;
probabilistic choices model user behavior and random choices in the protocol.
Since anonymity should be guaranteed for all possible attacks of the adversary,
equality should hold for all schedulers. That is: for all schedulers η, all users u
and all adversarial observations o:

Pη[sender = u | observations = o]= Pη[sender = u]

In practice, Pη[sender = u] does not depend on the adversary. Since the tech-
niques in this paper allow us to compute the maximal and minimal conditional
probabilities, we can use them to prove strong anonymity.

Similarly, probable innocence is often formulated as saying that a user is (at
worst) as likely to have not sent a message as to have sent it. In cpCTL this can
immediately be expressed as P≤1/2[sender = u | observations = o].

1.2 Organization of the paper

In Section 2 we present the necessary background on MDPs. In Section 3 we
introduce conditional probabilities over MDPs and cpCTL is introduced in Sec-
tion 4. Section 5 introduces the class of semi history-independent schedulers and
Section 6 explains how to compute maximum and minimum conditional proba-
bilities. In Section 7, we investigate the notion of counterexamples. Finally, in
Section 8 we give directions for future research.

2 Markov Decision Processes

Markov Decision Processes constitute a formalism that combines nondetermin-
istic and probabilistic choices. They are a dominant model in corporate finance,
supply chain optimization and system verification and optimization. While there
are many slightly different variants of this formalism (e.g., action-labeled MDPs
[Bel57,FV97], probabilistic automata [SL95,SV04]), we work with the state-
labeled MDPs from [BA95].

The set of all discrete probability distributions on a set S is denoted by
Distr(S). The Dirac distribution on an element s ∈ S is written as 1s. We also
fix a set P of propositions.

Definition 2.1. A Markov Decision Process (MDP) is a four-tuple Π = (S, s0, τ,
L), where S is the finite state space of the system; s0 ∈ S is the initial state;
L : S → ℘(P) is a labeling function that associates to each state s ∈ S a subset
of P; τ : S → ℘(Distr(S)) is a function that associates to each s ∈ S a non-empty
and finite subset of Distr(S) of successor distributions.

s0 {P}

s1

{B,P}

s2

{P}

s3

{B,P}

s4

{P}

s5

{}

s6

{P}

s7

{}

π1

π2 π3

3

4

1

4

1

2
−α

α

1

2
1

10

9

10

Fig. 1: Markov Decision Process

We define a successor relation ρ ⊆ S × S
by ρ , {(s, t)|∃π ∈ τ(s) . π(t) > 0} and
for each state s ∈ S we define the sets
Ωs , {s0s1s2 . . . ∈ Sω|s0 = s ∧ ∀n ∈
N . ρ(sn, sn+1)}, and Ω∗

s , {s0s1 . . . sn ∈
S?|s0 = s ∧ ∀ 0 ≤ i < n . ρ(sn, sn+1). of
paths and finite paths resp. beginning at s.
For ω ∈ Ωs, we write the n-th state of ω as
ωn. As usual, we let Bs ⊆ ℘(Ωs) be the Borel
σ-algebra on the basic cylinders 〈s0 . . . sn〉 ,
{ω ∈ Ωs|ω0 = s0 ∧ . . . ∧ ωn = sn}.
Example 2.2. Figure 1 shows a MDP. Ab-
sorbing states (i.e., states s with τ(s) = {1s})

are represented by double lines. This MDP features a single nondeterministic de-
cision, to be made in state s2.

Schedulers (also called strategies, adversaries, or policies) resolve the nondeter-
ministic choices in a MDP [PZ93,Var85,BA95].

Definition 2.3. Let Π = (S, s0, τ, L) be a MDP and s ∈ S. An s-scheduler η
on Π is a function from Ω∗

s to Distr(℘(Distr(S))) such that for all σ ∈ Ω∗
s we

have η(σ) ∈ Distr(τ(last(σ))). We denote the set of all s-schedulers on Π by
Schs(Π). When s = s0 we omit it.

Note that our schedulers are randomized, i.e., in a finite path σ a scheduler
chooses an element of τ(last(σ)) probabilistically. Under a scheduler η, the proba-
bility that the next state reached after the path σ is t, equals

∑
π∈τ(last(σ)) η(σ)(π)·

π(t). In this way, a scheduler induces a probability measure on Bs as usual.

Definition 2.4. Let Π be a MDP, s ∈ S, and η an s-scheduler on Π. We
define the probability measure µs,η as the unique measure on Bs such that for
all s0s1 . . . sn ∈ Ω∗

s

µs,η(〈s0s1 . . . sn〉) =
n−1∏

i=0

∑

π∈τ(si)

η(s0s1 . . . si)(π) · π(si+1).

We recall the notions of deterministic and history independent schedulers.

Definition 2.5. Let Π be a MDP, s ∈ S, and η an s-scheduler of Π. We say
that η is deterministic if η(σ)(πi) is either 0 or 1 for all πi ∈ τ(last(σ)) and
all σ ∈ Ω∗

s . We say that a scheduler is history independent (HI) if for all finite
paths σ1, σ2 of Π with last(σ1) = last(σ2) we have η(σ1) = η(σ2) The set of all
deterministic and HI s-schedulers will be denoted by SchHI

s (Π).

Definition 2.6. Let Π be a MDP, s ∈ S, and ∆ ∈ Bs. Then the maximal and
minimal probabilities of ∆, µ+

s (∆), µ−s (∆), are defined by
µ+

s (∆) , sup
η∈Schs(Π)

µs,η(∆) and µ−s (∆) , inf
η∈Schs(Π)

µs,η(∆).

A scheduler that attains µ+
s (∆) or µ−s (∆) is called a maximizing or minimizing

scheduler respectively.

We define the notion of (finite) convex combination of schedulers.

Definition 2.7. Let Π be a MDP, s ∈ S. An s-scheduler η is a convex com-
bination of the s-schedulers η1, . . . , ηn if there are α1, . . . , αn ∈ [0, 1] with α1 +
· · ·+ αn = 1 such that for all ∆ ∈ Bs, µs,η(∆) = α1µs,η1(∆) + · · ·+ αnµs,ηn(∆).

Note that taking the convex combination η of η1 and η2 as functions, i.e.,
η(σ)(π) = αη1(σ)(π) + (1− α)η2(σ)(π), does not imply that η is a convex com-
bination of η1 and η2 in the sense above.

3 Conditional Probabilities over MDPs

The conditional probability P (A | B) is the probability of an event A, given the
occurrence of another event B. Recall that given a probability space (Ω, F, P) and
two events A,B ∈ F with P (B) > 0, P (A | B) is defined as P (A ∩B)/P (B).

If P (B) = 0, then P (A | B) is undefined. In particular, given a MDP Π, a
scheduler η and a state s, (Ωs,Bs, µs,η) is a probability space. So, for two sets
of paths ∆1,∆2 ∈ Bs with µs,η(∆2) > 0, the conditional probability of ∆1

given ∆2 is µs,η(∆1 | ∆2) = µs,η(∆1 ∩∆2)/µs,η(∆2). If µs,η(∆2) = 0, then
µη,s(∆1 | ∆2) is undefined. For technical reasons, we define the maximum and
minimum conditional probabilities for all ∆2 ∈ Bs.

Definition 3.1. Let Π be a MDP. The maximal and minimal conditional prob-
abilities µ+

s (∆1|∆2), µ−s (∆1|∆2) of sets of paths ∆1,∆2 ∈ Bs are defined by

µ+
s (∆1|∆2) ,

{
supη∈Sch>0

∆2
µs,η(∆1|∆2) if Sch>0

∆2
6= ∅,

0 otherwise,

µ−s (∆1|∆2) ,
{

infη∈Sch>0
∆2

µs,η(∆1|∆2) if Sch>0
∆2
6= ∅,

1 otherwise,

where Sch>0
∆2

= {η ∈ Schs(Π) | µs,η(∆2) > 0}.
The following lemma generalizes Lemma 6 of [BA95] to conditional probabilities.

Lemma 3.2. Given ∆1,∆2 ∈ Bs, its maximal and minimal conditional proba-
bilities are related by: µ+

s (∆1|∆2) = 1− µ−s (Ωs −∆1|∆2).

4 Conditional Probabilistic Temporal Logic

The logic cpCTL extends pCTL with formulas of the form P./a[ϕ|ψ]. Intuitively,
P≤a[ϕ|ψ] holds if the probability that ϕ holds given that ψ holds is at most a.

Definition 4.1. The cpCTL logic is defined as the set of state and path formu-
las, i.e., cpCTL , Stat∪Path, where Stat and Path are defined inductively:

P ⊆ Stat,
ϕ, ψ ∈ Stat ⇒ ϕ ∧ ψ,¬ϕ ∈ Stat,
ϕ, ψ ∈ Path ⇒ Aϕ,Eϕ,P./a[ϕ],P./a[ϕ|ψ] ∈ Stat,
ϕ, ψ ∈ Stat ⇒ ϕ Uψ,♦ϕ, ¤ ϕ ∈ Path .

Here ./∈ {<,≤, >,≥} and a ∈ [0, 1].

Semantics. Satisfiability of state-formulas (s |= ϕ for a state s) and path-
formulas (ω |= ψ for a path ω) is defined as an extension of satisfiability for
pCTL. Satisfiability of the logical, temporal, and pCTL operators is defined in
the usual way. For the conditional probabilistic operators we define

s |= P≤a[ϕ|ψ] ⇔ µ+
s ({ω ∈ Ωs | ω |= ϕ}|{ω ∈ Ωs | ω |= ψ}) ≤ a,

s |= P≥a[ϕ|ψ] ⇔ µ−s ({ω ∈ Ωs | ω |= ϕ}|{ω ∈ Ωs | ω |= ψ}) ≥ a,

and similarly for s |= P<a[ϕ|ψ] and s |= P>a[ϕ|ψ]. Following [BA95] we define

P+
s [ϕ] , µ+

s ({ω ∈ Ωs | ω |= ϕ}),
P+

s [ϕ|ψ] , µ+
s ({ω ∈ Ωs | ω |= ϕ}|{ω ∈ Ωs | ω |= ψ}),

Ps,η[ϕ|ψ] , µs,η({ω ∈ Ωs | ω |= ϕ}|{ω ∈ Ωs | ω |= ψ})
and we define P−s [ϕ|ψ] and P−s [ϕ] analogously.

Observation 4.2. As usual, for checking if s |= P./a[ϕ|ψ], we only need to
consider the cases where ϕ = ϕ1Uϕ2 and where ψ is either ψ1Uψ2 or ¤ψ1. This
follows using ¤ϕ ↔ ¬♦¬ϕ, ♦ϕ ↔ trueUϕ, and the relations

P+
s [¬ϕ|ψ] = 1−P−s [ϕ|ψ] P−s [¬ϕ|ψ] = 1−P+

s [ϕ|ψ]
derived from Lemma 3.2. Because there is no way to relate P+[ϕ|ψ] and P+[ϕ|¬ψ],
we have to provide two algorithms, one to compute P+[ϕ|ψ1Uψ2] and one to
compute P+[ϕ|¤ψ1]

5 Deterministic and Semi History-Independent Schedulers

Recall that there exist maximizing and minimizing schedulers on pCTL that are
deterministic and HI [BA95]. We show that for cpCTL deterministic schedulers
still suffice to reach optimal conditional probability. Because we now have to
solve a non-linear optimization problem, the proof differs from the pCTL case
in an essential way. We also show that HI schedulers do not suffice and we
introduce semi history-independent schedulers that do attain optimal conditional
probability.

To simplify notation, for a deterministic scheduler η, we use η(σ) to denote
the unique distribution π ∈ τ(last(σ)) such that η(σ)(π) = 1.

5.1 Semi History-Independent Schedulers

{} s0

s1

{B}

{P} s2
s3

{P}

s4

{}

π1
π2

π3

π4

π5

1

2

1

2

Fig. 2: MDP

The following example shows that maximizing schedulers
are not necessarily HI.

Example 5.1. Let Π be the MDP of Figure 2 and the
conditional probability Ps0,η[♦B|♦P]. There are only three
deterministic history independent schedulers, choosing π1,
π2, or π3 in s0. For the first one, the conditional probability
is undefined and for the second and third it is 0. The sched-
uler η that maximizes Ps0,η[♦B|♦P] satisfies η(s0) = π3,
η(s0s3) = π5, and η(s0s3s0) = π1. Since η chooses on s0

first π2 and later π1, η is not history independent.

However, there exists a maximizing scheduler that is “nearly
HI” in the sense that it always takes the same decision before
the system reaches a certain condition ϕ and also always
takes the same decision after ϕ. This family of schedulers is called ϕ-semi history
independent (ϕ-sHI for short).

Definition 5.2. Let Π = (S, s0, τ, L) be a MDP, s ∈ S, η a scheduler of Π, and
ϕ ∈ Stat. We say that η is a ϕ-sHI s-scheduler if it satisfies

1. for all σ1, σ2 ∈ Ω∗
s , if last(σ1) = last(σ2) and σ1, σ2 6|= ♦ϕ, then η(σ1) =

η(σ2);
2. for all σ ∈ Ω∗

s , if σ |= ♦ϕ, then for all σ′, σ′′ ∈ Ω∗
last(σ) such that σ v σ′,

σ v σ′′, and last(σ′) = last(σ′′) we have η(σ′) = η(σ′′).

Here last(s0s1 . . . sn) = sn, tail(s0s1 . . . sn) = s1 . . . sn, and v denotes the prefix
order over finite paths, i.e. σ′ v σ ⇔ σ = σ′σ′′ for some σ′′.

Theorem 5.3. Let Π be a MDP, s ∈ S, and ϕ1Uϕ2, ψ1Uψ2, ¤ψ1 ∈ cpCTL.
There exists a (¬ϕ1 ∨ ϕ2 ∨ ¬ψ1 ∨ ψ2)-sHI s-scheduler η′ such that

Ps,η′ [ϕ1Uϕ2|ψ1Uψ2] = P+
s [ϕ1Uϕ2|ψ1Uψ2]

and a (¬ϕ1 ∨ ϕ2 ∨ ¬ψ1)-sHI s-scheduler η′′ such that

Ps,η′′ [ϕ1Uϕ2|¤ψ1] = P+
s [ϕ1Uϕ2|¤ψ1].

We define ϕU , ¬ϕ1 ∨ϕ2 ∨¬ψ1 ∨ψ2 and ϕ¤ , ¬ϕ1 ∨ϕ2 ∨¬ψ1. We refer to ϕU

(resp. ϕ¤) as the until (resp. globally) stopping condition.

5.2 Deterministic Schedulers

Lemma 5.4. Let v1, v2 ∈ [0,∞) and w1, w2 ∈ (0,∞). Then the function f : R→
R defined by f(x) , xv1+(1−x)v2

xw1+(1−x)w2
is monotonous.

Proof. f ′(x) = v1w2−v2w1
(xw1−(1−x)w2)2

which is always ≥ 0 or always ≤ 0.

The following result states that taking the convex combination of schedulers
does not increase the conditional probability P[ϕ|ψ].

Lemma 5.5. Let Π be a MDP, s a state, and ϕ,ψ path formulas. Suppose
that the s-scheduler η is a convex combination of η1 and η2. Then Ps,η[ϕ|ψ] ≤
max(Ps,η1

[ϕ|ψ],Ps,η2
[ϕ|ψ]).

Proof. Applying the above lemma to

[0, 1] 3 α 7→ αPs,η1
[ϕ ∧ ψ] + (1− α)Ps,η2

[ϕ ∧ ψ]
αPs,η1

[ψ] + (1− α)Ps,η2
[ψ]

we get that the maximum is reached at α = 0 or α = 1. Because η is a con-
vex combination of η1 and η2, Ps,η[ϕ|ψ] ≤ Ps,η2

[ϕ|ψ] (in the first case) or
Ps,η[ϕ|ψ] ≤ Ps,η1

[ϕ|ψ] (in the second case).

Theorem 5.6. Let Π be a MDP, s a state, and ϕ a path formula. Then every
s-scheduler on Π is a convex combination of deterministic ϕ-sHI s-schedulers.

Theorem 5.7. Let Π be a MDP, s ∈ S, and ϕ1Uϕ2, ψ1Uψ2, ¤ψ1 ∈ cpCTL.
There exists a deterministic ϕU -sHI s-scheduler η′ such that

Ps,η′ [ϕ1Uϕ2|ψ1Uψ2] = P+
s [ϕ1Uϕ2|ψ1Uψ2]

and a deterministic ϕ¤-sHI s-scheduler η′′ such that

Ps,η′′ [ϕ1Uϕ2|¤ψ1] = P+
s [ϕ1Uϕ2|¤ψ1],

where ϕU and ϕ¤ are the stopping conditions.

Example 5.8. Consider the MDP and cpCTL formula of Example 5.1. Accord-
ing to Theorem 5.7 there exists a deterministic and (B ∨ P)-sHI scheduler that
maximizes Ps0,η[♦B|♦P]. In this case, a maximizing scheduler will take always
the same decision (π3) before the system reaches s3 (a state satisfying the until
stopping condition (B ∨P)) and always the same decision (π1) after the system
reaches s3.

6 Model Checking cpCTL

Model checking cpCTL means checking if a state s satisfies a certain state for-
mula ϕ. We focus on formulas of the form P≤a[ϕ|ψ] and show how to compute
P+

s [ϕ|ψ] given ϕ,ψ ∈ Path. The case P−s [ϕ|ψ] is similar.
Recall that model checking pCTL is based on the Bellman-equations. For

instance, P+
s [♦B] = maxπ∈τ(s)

∑
t∈succ(s) π(t)P+

t [♦B] whenever s 6|= B. So a
scheduler η that maximizes Ps[♦B] chooses π ∈ τ(s) maximizing

∑
t∈succ(s)π(t) ·

P+
t [♦B]. In a successor state t, η still behaves as a scheduler that maximizes

Pt[♦B]. As shown below, such a local Bellman-equation is not true for condi-
tional probabilities: a scheduler that maximizes a conditional probability such
as Ps[♦B|¤P] does not necessarily maximize Pt[♦B|¤P] for successors t of s.

Example 6.1. Again, consider the MDP and cpCTL formula P≤a[♦B|¤P] of
Figure 1. There are only two deterministic schedulers. The first one, η1, chooses
π2 when the system reaches the state s2 and the second one, η2, chooses π3 when
the system reaches s2. For the first one Ps0,η1

[♦B|¤P] = 1 − 2α
7 , and for the

second one Ps0,η2
[♦B|¤P] = 30

31 . So P+
s0

[♦B|¤P] = max(1− 2α
7 , 30

31). Therefore,
if α ≥ 7

62 the scheduler that maximizes Ps0
[♦B|¤P] is η2 (Ps0,η2

[♦B|¤P] =
P+

s0
[♦B|¤P]) and otherwise it is η1 (Ps0,η1

[♦B|¤P] = P+
s0

[♦B|¤P]).
Furthermore, P+

s1
[♦B|¤P] = 1 and P+

s2
[♦B|¤P] = 1−2α; the scheduler that

obtains this last maximum is the one that chooses π2 in s2.
So, if α ≥ 7

62 the scheduler that maximizes the conditional probability from
s0 is taking a different decision than the one that maximize the conditional
probability from s2. Furthermore, for all α, max(1 − 2α

7 , 30
31) = P+

s0
[♦B|¤P] 6=

3
4P

+
s1

[♦B|¤P] + 1
4P

+
s2

[♦B|¤P] = 1 − 1
2α, showing that the Bellman-equation

from above does not generalize to cpCTL.

An obvious way to compute P+
s [ϕ|ψ] is by computing the pairs (Ps,η[ϕ ∧ ψ],

Ps,η[ψ]) for all sHI schedulers η, and taking the maximum quotient Ps,η[ϕ ∧ ψ]/
Ps,η[ψ]. We present two methods to avoid the computation of certain pairs of
acyclic MDPs. We can use these for a MDP with cycles by first transforming it
to an equivalent acyclic one using the strongly connected component structure.

6.1 Acyclic MDP

Note that every MDP has cycles associated to absorbing states. We call a MDP
acyclic if it the only if the only cycles are selfloops taken with probability one.

Definition 6.2. A MDP Π is called acyclic if for all states s ∈ S and all
π ∈ τ(s) we have π(s) = 0 or π(s) = 1 and for all paths ω and all i < j such
that ωi = ωj we have ωi = ωi+1 = · · · = ωj .

The idea behind the algorithm for acyclic MDPs is as follows. We label each
state s by a sequence (p1, q1), . . . , (pn, qn) of pairs of probabilities, where pi =
Ps,ηi

[ϕ ∧ ψ] and qi = Ps,ηi
[ψ] for a certain sHI s-scheduler ηi. The algorithm

starts by labeling each leaf s with a single pair (Ps,η[ϕ ∧ ψ],Ps,η[ψ]) for the
unique deterministic sHI s-scheduler η. The labeling is propagated towards the
root node s0. We obtain the maximum conditional probability P+

s0
[ϕ|ψ] as the

maximum quotient p/q for all (p, q) in the labeling of s0. Section 6.3 shows that
certain pairs can be discarded when propagating the labeling.

Definition 6.3. Let L be the set of expressions of the form (p1, q1)∨· · ·∨(pn, qn)
where pi, qi ∈ [0,∞) and qi ≥ pi, for all n ∈ N?. On L we consider the smallest
congruence relation ≡1 satisfying (Idempotence) (p1, q1) ∨ (p1, q1) ≡1 (p1, q1),
(Associativity) ((p1, q1) ∨ (p2, q2)) ∨ (p3, q3) ≡1 (p1, q1) ∨ ((p2, q2) ∨ (p3, q3)),
(Commutatitivity) (p1, q1) ∨ (p2, q2) ≡1 (p2, q2) ∨ (p1, q1). Note that (p1, q1) ∨
· · · ∨ (pn, qn) ≡1 (p′1, q

′
1) . . . (p′n′ , q

′
n′) if and only if {(p1, q1), . . . , (pn, qn)} =

{(p′1, q′1), . . . , (p′n′ , q′n′)}.
We let L1 be the set of equivalence classes and denote the projection map

L → L1 that maps each expression to its equivalence class by f1. On L we also
define maximum quotient > : L → [0,∞), and minimum quotient ⊥ : L → [0,∞)
by >(

∨n
i=1(pi, qi)) , max({pi

qi
|qi 6= 0, i = 1, . . . , n} ∪ {0}) and ⊥(

∨n
i=1(pi, qi)) ,

min({pi

qi
|qi 6= 0, i = 1, . . . , n} ∪ {1}).

Note that > and ⊥ induce maps >1 : L1 → [0,∞) and ⊥1 : L1 → [0,∞) such
that >1 ◦ f1 = > and ⊥1 ◦ f1 = ⊥.

Definition 6.4. Let Π be a MDP. We define the function δ : S×Stat×Path×
Path → L by δ(s, ϕ, ϕ, ψ) ,

∨
η∈Schϕ

s (Π)

(
Ps,η[ϕ ∧ ψ],Ps,η[ψ]

)
and we define

δ1 : S × Stat×Path×Path → L1 by δ1 , f1 ◦ δ.

s0 (7−2α

8
,

7

8
) ∨ (3

4
,

11

44
)

s1

(1, 1)

s2 (1

2
− α,

1

2
) ∨ (0,

1

10
)

s3

(1, 1)

s4

(0, 1)

s5

(0, 0)

s6

(0, 1)

s7

(0, 0)

3

4

1

4

1

2
−α

α

1

2
1

10

9

10

Fig. 3: δ-values

When no confusion arises, we omit the subscripts 1
and omit the projection map f1, writing (p1, q1) ∨
· · · ∨ (pn, qn) for the equivalence class it generates.

Example 6.5. In Figure 3 we show the value
δ(s, B ∨ ¬P, ♦B, ¤P) associated to each state s of
the MDP previously presented in Figure 1.

The following result says that we can compute max-
imum conditional probability from δUs or δ¤

s .

Theorem 6.6. Given Π = (S, s0, L, τ) an acyclic
MDP, and ϕ1, ϕ2, ψ1, ψ2 ∈ Stat. Then

P+
s [ϕ1Uϕ2|ψ1Uψ2] = >(

,δUs (ϕ1,ϕ2,ψ1,ψ2)︷ ︸︸ ︷
δ(s, ϕU , ϕ1Uϕ2, ψ1Uψ2))

and

P+
s [ϕ1Uϕ2|¤ψ1] = >(

,δ¤
s (ϕ1,ϕ2,ψ1)︷ ︸︸ ︷

δ(s, ϕ¤, ϕ1Uϕ2, ¤ψ1)).

6.2 Extension to general MDP

Now, we extend our results to general, not necessarily acyclic, MDPs. We first
reduce all cycles in Π and create a new acyclic reduced MDP [Π] such that the
probabilities involved in the computation of P+[−|−] are preserved. We do so
by removing every strongly connected component (SCC) c of (the graph of) a
MDP Π, keeping only input states and transitions to output states. We show

that P+[−|−] on [Π] is equal to the corresponding value on Π. For this, we have
to make sure that states satisfying the stopping condition are ignored when we
are removing the SCCs.

Identifying SCCs. Our first step is to make stopping condition states absorb-
ing.

Definition 6.7. Let Π = (S, s0, τ, L) be a MDP and ϕ ∈ Stat a state formula.
We define a new MDP 〈Π〉ϕ = (S, s0, 〈τ〉ϕ, L) where 〈τ〉ϕ(s) is equal to τ(s) if
s 6|= ϕ and to 1s otherwise.

Typically ϕ will be either the until stopping condition (ϕU) or the globally
stopping condition (ϕ¤).

To recognize cycles in the MDP we define a graph associated to it.

Definition 6.8. Let Π = (S, s0, τ, L) be MDP and ϕ ∈ Stat. We define the
digraph G = GΠ,ϕ = (S,→) associated to 〈Π〉ϕ = (S, s0, 〈τ〉ϕ, L) where →
satisfies u → v ⇔ ∃π ∈ 〈τ〉ϕ(u).π(v) > 0.

Now we let SCC = SCCΠ,ϕ ⊆ ℘(S) be the set of SCC of G. For each SCC c
we define the sets Inpc of all states in c that have an incoming transition of Π
from a state outside of c; we also define the set Outc of all states outside of c
that have an incoming transition from a state of c. Formally, for each c ∈ SCC
we define

C Input States

Output States

Inpc , {u ∈ c | ∃ s ∈ S − c.∃π ∈ τ(s).π(u) > 0},

Outc , {s ∈ S − c | ∃u ∈ c.∃π ∈ τ(u).π(s) > 0}.

We then associate a MDP Πc to each SCC c of G. The space of states of Πc is
c ∪Outc and the transition relation is induced by the transition relation of Π.

Definition 6.9. Let Π be a MDP and c ∈ SCC be a scc in Π. We pick an
arbitrary element sc of Inpc and define the MDP Πc = (Sc, sc, τc, L) where
Sc = c ∪Outc and τc(s) is equal to {1s} if s ∈ Outc and to τ(s) otherwise.

Defining the new acyclic MDP. To obtain a reduced acyclic MDP from the
original one we first define the probability of reaching one state from another
according to a given HI scheduler in the following way.

Definition 6.10. Let Π = (S, s0, τ, L) be a MDP, and η be a HI scheduler on
Π. Then for each s, t ∈ S we define the function R such that RΠ(s

ηÃ t) ,
µs,η({ω ∈ Ωs | ∃ i.ωi = t}).
Now we are able to define an acyclic MDP [Π] related to Π such that P+

[Π] [−|−] =
P+

Π [−|−].

Definition 6.11. Let Π = (S, s0, τ, L) be a MDP. Then we define [Π] as
([S], s0, [τ], L) where

[S] =

Scom︷ ︸︸ ︷
S −

⋃

c∈SCC

c ∪
Sinp︷ ︸︸ ︷⋃

c∈SCC

Inpc

and for all s ∈ [S] the set [τ](s) of probabilistic distributions on [S] is given by

[τ](s) =
{

τ(s) if s ∈ Scom,

{λ ∈ [S].RΠcs
(s

ηÃ t)) | η ∈ SchHI
s (Πcs

)} if s ∈ Sinp.

Here cs is the SCC associated to s.

Theorem 6.12. Let Π = (S, s0, τ, L) be a MDP, and P≤a[ϕ|ψ] ∈ cpCTL.
Then [Π] is an acyclic MDP and P+

s0,Π [ϕ|ψ] = P+
s0,[Π] [ϕ|ψ], where P+

s,Π′ [−|−]
represents P+

s [−|−] on the MDP Π ′.

Finally we can use the technique for acyclic MDPs on the reduced MDP in
order to obtain P+

s0
[−|−]. Note that to compute P+

s0
[−|−] it is not necessary to

compute reachability properties on SCC that are not reachable on G from its
initial state, so in model checking we avoid that.

6.3 Optimizations

We have already shown that δ is computable. Now we show two optimizations
in order to compute δ in a more efficient way.

Optimization 1: Reusing Information. We now show how to compute
δUs (ϕ1, ϕ2, ψ1, ψ2) and δ¤

s (ϕ1, ϕ2, ψ1, ψ2) recursively in s. The base cases of the
recursion are the states where the stopping condition holds. Because there exists
an optimizing scheduler that is sHI, we only need to consider HI (and deter-
mininstic) schedulers in such a state. In the recursive case we can express δUs
(resp. δ¤

s) in terms of the δUt (resp. δ¤
t) of the successor states t of s. There-

fore, if we encounter the same state t in more than one branch of the recursive
computation, we can reuse the previously computed value of δUt (resp. δ¤

t).
To do this, we now define a scalar multiplication operator ¯ and an addition

operator ⊕ on L.

Definition 6.13. We define ¯ : [0,∞) × L → L and ⊕ : L × L → L by c ¯∨n
i=1(pi, qi) ,

∨n
i=1(c ·pi, c ·qi) and

∨n
i=1(pi, qi)⊕

∨m
j=1(p

′
j , q

′
j) ,

∨n
i=1

∨m
j=1(pi +

p′j , qi + q′j).

Note that ¯ and ⊕ induce maps ¯1 : [0,∞)×L1 → L1 and ⊕1 : L1 ×L1 → L1.
As before, we omit the subscript 1 if that will not cause confusion.

The following result gives recursive equations for the values of δUs and δ¤
s . If

the MDP is acyclic, it can be used to compute these values.

Theorem 6.14. Let Π be a MDP, s ∈ S, and ϕ1Uϕ2, ψ1Uψ2, ¤ψ1 ∈ Path.
Then δUs (ϕ1, ϕ2, ψ1, ψ2) =

∨
η∈SchHI

s (Π)(Ps,η[ψ1Uψ2],Ps,η[ψ1Uψ2]) if s |= ϕ2,∨
η∈SchHI

s (Π)(Ps,η[ϕ1Uϕ2], 1) if s |= ¬ϕ2 ∧ ψ2,∨
η∈SchHI

s (Π)(0,Ps,η[ψ1Uψ2]) if s |= ¬ϕ1 ∧ ¬ϕ2 ∧ ¬ψ2,

(0, 0) if s |= ϕ1 ∧ ¬ϕ2 ∧ ¬ψ1 ∧ ¬ψ2,∨
π∈τ(s)

(⊕
t∈succ(s)π(t)¯ δUt (ϕ1, ϕ2, ψ1, ψ2)

)
if s |= ϕ1 ∧ ¬ϕ2 ∧ ψ1 ∧ ¬ψ2,

and δ¤
s (ϕ1, ϕ2, ψ1) =

∨
η∈SchHI

s (Π)(Ps,η[¤ψ1],Ps,η[¤ψ1]) if s |= ϕ2,

(0, 0) if s |= ¬ϕ2 ∧ ¬ψ1,∨
η∈SchHI

s (Π)(0,Ps,η[¤ψ1]) if s |= ¬ϕ1 ∧ ¬ϕ2 ∧ ψ1,∨
π∈τ(s)

(⊕
t∈succ(s)π(t)¯ δ¤

t (ϕ1, ϕ2, ψ1)
)
) if s |= ϕ1 ∧ ¬ϕ2 ∧ ψ1.

Optimization 2: Using pCTL algorithms after the stopping condition.
Up to now we have computed (Ps0,η[ϕ ∧ ψ],Ps0,η[ψ]) for all sHI schedulers. The
reason for this is that the (local) Bellman-equations do not hold for cpCTL.
Therefore, it is not enough to know the values P+

t [ϕ|ψ] for all successors t of s.
However, in some cases, we can locally decide that one sHI scheduler is guar-
anteed to be better than another one. We now give some intuition for this; a
formal claim is in Lemma 6.16 below.

For instance, let s be a state that is reachable from s0. Assume that η′ and
η′′ are sHI s-schedulers such that Ps,η′ [ϕ ∧ ψ] = Ps,η′′ [ϕ ∧ ψ] and Ps,η′ [ψ] ≤
Ps,η′′ [ψ]. Furthermore, assume that η1 and η2 are sHI s0-schedulers that are
equal except that η1 behaves like η′ “below” s and η2 behaves like η′′ “below” s.
One can easily see that Ps0,η1

[ϕ|ψ] ≥ Ps0,η2
[ϕ|ψ]. Therefore, when computing

P+
s0

[ϕ|ψ] we do not have to consider all sHI s-schedulers, but, in this case, we
can omit η′′ from consideration.

Similarly, if Ps,η′ [ϕ ∧ ψ] ≤ Ps,η′′ [ϕ ∧ ψ] and Ps,η′ [ψ] = Ps,η′′ [ψ], then we do
not have to consider the scheduler η′.

Finally, it follows from Lemma 5.4 that we don’t have to consider the sched-
uler η′′ if Ps,η′ [ϕ ∧ ψ] + a = Ps,η′′ [ϕ ∧ ψ] and Ps,η′ [ψ] + a = Ps,η′′ [ψ]. This is
used to show that when we reach a state s satisfying the stopping condition,
we only have to compute P+

s [ψ] and we do not have to consider conditional
probabilities anymore.

As a consequence of these facts we do not have to compute (Ps0,η[ϕ ∧ ψ],
Ps0,η[ψ]) for all sHI schedulers. In particular, if we reach a state satisfying the
stopping condition we can always choose a scheduler that maximizes or minimizes
one pCTL formula.

Definition 6.15. Consider the set of expressions L defined in Definition 6.3.
On L we now consider the smallest congruence relation ≡2 containing ≡1 and
satisfying (1) (p1, q1) ∨ (p1, q2) ≡2 (p1,min(q1, q2)), (2) (p1, q1) ∨ (p2, q1) ≡2

(max(p1, p2), q1), (3) (p1+a, q1+a)∨(p1, q1) ≡2 (p1+a, q1+a), where a ∈ [0,∞).
We write L2 for the set of equivalence classes and denote the projection map
L2 → L by f2.

Since ≡1⊆≡2, this projection maps factors through f1, say g : L1 → L2 is the
unique map such that g ◦ f1 = f2. The following seemingly innocent lemma is
readily proven, but it contains the heart of this optimization. The fact that >
and ⊥ induce operations on L2 means that it is correct to “simplify” expressions
using ≡2 when we are interested in the maximum or minimum quotient. After
that, we show that this implies that we do not have to consider all sHI schedulers
when computing maximum or minimum conditional probabilities, but can on-
the-fly omit some from consideration.

Lemma 6.16. The operators ¯, ⊕, >, and ⊥ on L induce operators ¯2, ⊕2, >2,
and ⊥2 on L2.

Definition 6.17. We define δ2 : S × Stat×Path×Path → L2 by δ2 , f2 ◦ δ.

As usual, we omit subscripts 2 when confusion is unlikely. Note that with this
convention Theorem 6.6 still holds. Finally, the following theorem allow us to
recursively compute δUs and δ¤

s considering these last optimizations.

Theorem 6.18. Let Π be a MDP, s ∈ S, and ϕ1Uϕ2, ψ1Uψ2, ¤ψ1 ∈ Path.
Then δUs (ϕ1, ϕ2, ψ1, ψ2) =

(P+
s [ψ1Uψ2],P+

s [ψ1Uψ2]) if s |= ϕ2,
(P+

s [ϕ1Uϕ2], 1) if s |= ¬ϕ2 ∧ ψ2,
(0,P−s [ψ1Uψ2]) if s |= ¬ϕ1 ∧ ¬ϕ2 ∧ ¬ψ2,
(0, 0) if s |= ϕ1 ∧ ¬ϕ2 ∧ ¬ψ1 ∧ ¬ψ2,∨

π∈τ(s)

(⊕
t∈succ(s)π(t)¯ δUt (ϕ1, ϕ2, ψ1, ψ2)

)
if s |= ϕ1 ∧ ¬ϕ2 ∧ ψ1 ∧ ¬ψ2,

and δ¤
s (ϕ1, ϕ2, ψ1) =

(P+
s [¤ψ1],P+

s [¤ψ1]) if s |= ϕ2,
(0, 0) if s |= ¬ϕ2 ∧ ¬ψ1,
(0,P−s [¤ψ1]) if s |= ¬ϕ1 ∧ ¬ϕ2 ∧ ψ1,∨

π∈τ(s)

(⊕
t∈succ(s)π(t)¯ δ¤

t (ϕ1, ϕ2, ψ1))
)

if s |= ϕ1 ∧ ¬ϕ2 ∧ ψ1.

7 Counterexamples

Counterexamples in model checking provide important diagnostic information
used, among others, for debugging, abstraction-refinement [CGJ+00], and sched-
uler synthesis [LBB+01]. For systems without probability, a counterexample typ-
ically consists of a path violating the property under consideration. Counterex-
amples in MCs are sets of paths. E.g, a counterexample for the formula P≤a[ϕ]
is a set ∆ of paths, none satisfying ϕ, and such that the probability mass of ∆
is greater than a [HK07,And06,AL06].

In MDPs, we first have to find the scheduler achieving the optimal probability.
Both for pCTL and cpCTL, this scheduler can be derived from the algorithms
computing the optimal probabilities [And06]. Once the optimal scheduler is fixed,
the MDP can be turned into a Markov Chain and the approaches mentioned
before can be used to construct counterexamples for pCTL. For cpCTL however,
the situation is slightly more complex. It follows directly from the semantics that:

s 6|= P≤a[ϕ|ψ] iff ∃η ∈ Schs(Π).
µs,η({ω ∈ Ωs|ω |= ϕ ∧ ψ})

µs,η({ω ∈ Ωs|ω |= ψ}) > a.

Lemma 7.1. Let a ∈ [0, 1] and consider the formula P≤a[ϕ|ψ]. Let ∆ϕ , {ω ∈
Ω | ω |= ϕ}, ∆1 ⊆ ∆ϕ∧ψ, and ∆2 ⊆ ∆¬ψ. Then a < µη(∆1)/(1− µη(∆2))
implies a < Pη[ϕ|ψ].

Proof. The proof follows from µη(∆1) ≤ µη(∆ϕ∧ψ) and µη(∆2) ≤ µη(∆¬ψ).
Then a <

µη(∆1)
1−µη(∆2)

≤ µη(∆ϕ∧ψ)
1−µη(∆¬ψ) = µη(∆ϕ∧ψ)

µη(∆ψ) = Pη[ϕ|ψ].

This leads to the following notion of counterexample.

Definition 7.2. A counterexample for P≤a[ϕ|ψ] is a pair (∆1,∆2) of measurable
sets of paths satisfying ∆1 ⊆ ∆ϕ∧ψ, ∆2 ⊆ ∆¬ψ, and a < µη(∆1)/(1− µη(∆2)),
for some scheduler η.

Note that such sets ∆1 and ∆2 can be computed using the techniques on Markov
Chains mentioned above.

Example 7.3. Consider the evaluation of s0 |= P≤3/4[♦B|¤P] on the MDP
obtained by taking α = 1

10 in Example 2.2 (see Figure 4(a)). In this case the
maximizing scheduler, say η, chooses π2 in s2. In Figure 4(b) we show the Markov
Chain derived from MDP using η. In this setting we have Ps0,η[♦B|¤P] = 68

70
and consequently s0 does not satisfy this formula.

We show this fact with the notion of counterexample of Definition 7.2. Note
that ∆♦B∧¤P = 〈s0s1〉 ∪ 〈s0s2s3〉 and ∆¬¤P = 〈s0s2s5〉. Using Lemma 7.1
with ∆1 = 〈s0s1〉 and ∆2 = 〈s0s2s5〉 we have 3

4 <
µη(∆1)

1−µη(∆2)
= 3/4

1−1/8 = 6
7 .

Consequently 3
4 < Ps0,η[♦B|¤P], which proves that s0 6|= P≤3/4[♦B|¤P].

s0 {P}

s1

{B,P}

s2

{P}

s3

{B,P}

s4

{P}

s5

{}

s6

{P}

s7

{}

π1

π2 π3

3

4

1

4

1

5 3

10

1

2
1

10

9

10

4(a) MDP

s0 {P}

s1

{B,P}

s2

{P}

s3

{B,P}

s4

{P}

s5

{}

s6 s7

π1

π2

3

4

1

4

1

5 3

10

1

2

4(b) Markov Chain

8 Conclusion and Future Work

In this paper we extended the probabilistic temporal logic pCTL to cpCTL, in
which it is possible to express conditional probabilities. We showed that optimal
scheduling decisions can always be reached by a deterministic and semi history-
independent scheduler. Using this we presented an algorithm to check if a MDP
satisfies a cpCTL-formula. Our algorithm first reduces the MDP to an acyclic
MDP and then computes optimal conditional probabilities in over this reduction.
Counterexamples for conditional formulas consist of two sets of paths in the MDP
or MC. We have sketched an algorithm for counterexample generation.

A natural direction for future research is to extend pCTL∗ to cpCTL∗ and
find algorithms for model checking cpCTL∗. Furthermore, we plan to investigate
ways to find better counterexamples in cpCTL model checking. Finally, we intend
to implement our algorithms in a probabilistic model checker and apply cpCTL
model checking to verify the correctness of anonymity protocols.

Acknowledgement. The authors thank Mariëlle Stoelinga for helpful com-
ments on an earlier version of this paper.

References

[AL06] H. Aljazzar and S. Leue. Extended directed search for probabilistic timed
reachability. In FORMATS ’06, pages 33–51, 2006.

[And06] M.E. Andrés. Derivation of counterexamples for quantitative model check-
ing. Master’s thesis, National University of Córdoba, 2006.

[BA95] A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeter-
ministic systems. In FSTTCS ’95, volume 1026 of LNCS, pages 499–513.
Springer, 1995.

[Bel57] R.E. Bellman. A Markovian decision process. J. Math. Mech., 6:679–684,
1957.

[BP05] M. Bhargava and C. Palamidessi. Probabilistic anonymity. CONCUR ’05,
volume 3653 of LNCS, pages 171–185. Springer, 2005.

[CGJ+00] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement. In CAV ’00, pages 154–169, 2000.

[Cha88] D. Chaum. The dining cryptographers problem: Unconditional sender and
recipient untraceability. Journal of Cryptology, 1(1):65–75, 1988.

[CL05] J. Camenisch and A. Lysyanskaya. A formal treatment of onion routing.
CRYPTO ’05, volume 3621 of LNCS, pages 169–187. Springer, 2005.

[DY83] D. Dolev and A. C. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, 29(2):198–208, 1983.

[FOO92] A. Fujioka, T. Okamoto, and K. Ohta. A practical secret voting scheme
for large scale elections. In AUSCRYPT ’92, volume 718 of LNCS, pages
244–251. Springer, 1992.

[FV97] J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer,
1997.

[HJ89] H. Hansson and B. Jonsson. A framework for reasoning about time and
reliability. In Proceedings of Real Time Systems Symposium, pages 102–111.
IEEE, 1989.

[HK07] T. Han and J.-P. Katoen. Counterexamples in probabilistic model checking.
In TACAS ’07, volume 4424 of LNCS, pages 60–75. Springer, 2007.

[LBB+01] K.G. Larsen, G. Behrmann, E. Brinksma, A. Fehnker, T.S. Hune, P. Petter-
son, and J. Romijn. As cheap as possible: Efficient cost-optimal reachability
for priced timed automata. In CAV’01, 2001.

[PZ93] A. Pnueli and L.D. Zuck. Probabilistic verification. Information and Com-
putation, 103(1):1–29, 1993.

[SV04] A. Sokolova and E.P. de Vink. Probabilistic automata: System types, parallel
composition and comparison. Validation of Stochastic Systems: A Guide to
Current Research, volume 2925 of LNCS, pages 1–43. Springer, 2004.

[SL95] R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes.
Nordic Journal of Computing, 2(2):250–273, 1995.

[Var85] M.Y. Vardi. Automatic verification of probabilistic concurrent finite-state
systems. In Proc. 26th IEEE Symp. Found. Comp. Sci., pages 327–338, 1985.

