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Abstract—In recent years, there has been a growing interest between the initial uncertainty, i.e. the degree of ignoean
in considering the probabilistic aspects of Information Fbw. In about the secrdieforewe run the system, and the remaining
this abstract we review some of the main approaches that have uncertainty, i.e. the degree of ignorance about the saftest
been considered to quantify the notion of information leakae, T . .
and we focus on some recent developments. we run the system and ob_serve its outcome. Following the
principle advocated by Smith [9], and by many others:

I. INTRODUCTION information leakage = initial uncertainty (1)

One of the concerns in the use of computer systems is
to avoid the leakage of secret information through public
observables. Ideally we would like systems to be completelyn (1), the initial uncertainty depends solely on the input
secure, but in practice this goal is often impossible todistribution, akaa priori distribution. Intuitively, the more
achieve. Therefore it is important to express the amount ofiniform this is, the less we know about the secret (in the
leakage in quantitative terms, so to be able to assess whethgrobabilistic sense). After we run the system, if there is a
a system is better than another, although they may both hegrobabilistic correlation between input and output, thies t
insecure. observation of the output should increase our knowledge of

Several works in literature use an Information Theoreticthe secret. This is determined by the fact that the disfobut
approach to model the problem and define the leakage ian the input changes: in fact we can update the probability
a quantitative way, see for example [1], [2], [3], [4], [5], of each input with the corresponding conditional probpili
[6], [7]. The idea is that the system is seen ashannel of the same input, given the output. The new distribution
The input represents the secret, the output represents tlie calleda posteriori distribution In case input and output
observable, and the correlation between the input and butpare independent, then the a priori and the a posteriori
(mutual informatiol represents the information leakage. distributions coincide and the knowledge should remain the
The worst case leakage corresponds then tacépacityof ~ same. In the following, we will use the attributes “a priori”
the channel, which is by definition the maximum mutualand “a posteriori” to refer to before and after the obseovrati
information that can be obtained by varying the inputof the output, respectively.
distribution. The above intuitions should be reflected by any reasonable

In the works mentioned above, the notion of mutualnotion of uncertainty: it should be higher on more uniform
information is based o8hannon entropwhich (because of distributions, and it should decrease or remain equal with
its mathematical properties) is the most established nmeasuthe observation of related events.
of uncertainty. From the security point of view, this measur  If the uncertainty is expressed in terms of Shannon
corresponds to a particular model of attack and a particulagntropy, then the initial uncertainty is the entropy of the
way of estimating the security threat (vulnerability of the input, the remaining uncertainty is the conditional enyrop
secret). Other notions have been considered, and argu&d the input given the output, and (1) matches exactly the
to be more appropriate for security in certain scenariosdefinition of mutual information. This justifies the notioh o
These includeRényi min-entropy[8], [9], Bayes risk[10], leakage adopted in the works mentioned before ([1], [2], [3]
[11], guessing entropy12], and marginal guesswork13].  [4], [5], [6], [7]).

In Section Il we will discuss their meaning and show how The analogy between information flow in a system and a
they relate (or do not relate) to each other and to Shannotsimple) channel works well when
entropy. () there is no nondeterminism, i.e. either the system is

Whatever definition of uncertainty (i.e. vulnerability) we deterministic, or purely probabilistic, and
want to adopt, the notion of leakage is inherent to the system(ii) there is a precise temporal relation between secreds an
as can be expressed in a uniform way as the difference  observables in the computations; namely, the value of

remaining uncertainty



the secret is chosen at the beginning of the computa- The rest of the paper is organized as follows: in next sec-
tion, and, the computation of the system produces anion we discuss and compare various notions of uncertainty
observable outcome, with a probability that dependsgproposed in literature. In Section Il we illustate our pospl
solely on the chosen input and on the system. Furtherfor modeling interactive systems and defining the notion
more, each new run of the system is independent fronof leakage. In Section IV we recall briefly thpossibilistic

the previous ones. approaches proposed in literature to characterize thanabse

Restriction (i) implies that for each secret there is exactl Of leakage in nondeterministic systems, we discuss the-prob
one conditional probability distribution on the obseneshl lems that arise with respect to |mplement§t|on refinement,
where the condition is the secret value. Restriction (ii)@nd those caused by the presence of omniscent schedulers.
ensures that this conditional distribution depends urjque We then illustrate our proposal to cope with nondeterminism

on the system (not on the input distribution). These con-
ditional probabilities constitute the so-calledatrix of the

channel. Note that in a (basic) information-theoretic ¢cf@n | this section we recall various definitions of uncertainty
the matrix must be invariant with respect to the inputproposed in literature, and we discuss the relation with
distribution, which is exactly what condition (ii) guaraes.  security attacks and the way of measuring their success. In
If a system is deterministic, then under the same inpugeneral we consider the kind of threats that in the model
each run produces always the same output, with probabilitgf [16] are calledbrute-force guessing attackwhich can
1. Therefore the matrix contains onlys and 1's. The pe summarized as follows: The goal of the adversary is to
problem of inferring the secret is still interesting though determine the value of a random variable. He can make
because the same output may correspond to different inputs. series of queries to an oracle. Each query must have a
If the system is probabilistic, i.e. it uses some randomizeqes/no answer. In general the adversaryaiaptive i.e.
mechanisms, then the matrix usually contains probalslitie he can choose the next query depending on the answer to
different from0 and 1. the previous ones. We assume that the adversary knows the
Unfortunately, for real-life systems usually conditioms ( probability distribution.
and (i) are too restrictive: In the following, A, B denote two discrete random vari-

« Specifications typically need to use nondeterminismables with carriersd = {a,,...,a,}, B = {b;,...,b,,},
in order to abstract from implementation details. Thisand probability distributiong4(-), pz(:), respectively. We
is particularly compelling in the case of concurrentWill use A A B to represent the random variable with
and distributed systems: The order in which the var-carrier.Ax B3 and joint probability distributiom 4 5(a, b) =
ious components get executed, and their interactiong}a(a) - p(b | A = a), while A - B will denote the random
depend on scheduling policies that may differ from variable with carrierA x B and probability distribution
implementation to implementation. Furthermore, evendefined as product, i.@..5(a,b) = pa(a) - pp(b). Clearly,
if the scheduling policy is fixed, there are run time if A and B are independent, we haw A B = A - B.
circumstances that may influence the relative speed ofVe shall omit the subscripts on the probabilities when they
the processes. Nondeterminism is an unavoidable aspeate clear from the context. In reference to a channel, in
of concurrency. generalA will denote the input (secret), ang the output

« Secrets and observables often alternate and interact du@bservable).
ing an execution. In particular, the choice of a new se-
cret may depend on previous observables. Furthermoré). Shannon entropy
new execution of the systems may depend on previous The Shannon entropy of [17] is defined as
ones. This may be due to the way the system works, or
to the presence of an active adversary that may use the H(A) = — Z p(a)log p(a)
knowledge derived from previous observations to try acA

to tamper with the mechanisms of the system, with the . . . .
purpose of increasing the leakage. Examples of sucffhe minimum valuet (A) = 0 is obtained whemp() is

systems, that we call heriateractive systems (were cqncentrated on a single value (i.e. when) i; a delt_a of
interaction refers to the interplay between secrets an&rac)- The maximum valug(4) = log |A| is obtained

observables), can be found in the area of game theor hen p(~)_ is the uniform distribution. USL_JaIIy the base of
auction protocols, web servers, GUI applications, etc. _he Iogar|thm_|s setto b2 and, correspondingly, the entropy
. . , is measured irbits.

In this paper, we consider the challenges of extending the The conditional entropyof A given B is

information-theoretic approach when conditions (i) any (i
are lifted, and we illustrate two approaches that we have H(A|B) = Zp(b) H(A|B=b)

Il. UNCERTAINTY AND LEAKAGE

recently proposed in [14] and [15]. beB @



where Shannon entropy is obtained by taking the limit/éf as
« approaches. In fact we can easily prove, using I'HOpital's

H(A|B=b) = —> pla|b)logp(a|b) rule, that
acA def
We can prove thad < H(A | B) < H(A). The minimum Hi(4) = lim Ho(4) = = ) p(a)log pla)

value, 0, is obtained wherA is completely determined by acA

B. The maximum valueH (A) is obtained wherB reveals We are particularly interested in the limit off, as «
no information about!, i.e. when4 and B are independent. approachesc. This is calledmin-entropy It can be proven

The mutual informationbetweenA and B is defined as  that

[(A;B) = H(A)— H(A|B) @) Hoo(4) = lim Ha(A) = —log max p(a)
and it measures the amount of information abeuthat Rényi considered also ther-generalization of the
we gain by observing. It can be shown thaf(4; B) =  Kullback-Liebler divergence, which is defined as (assuming
I(B; A) and0 < I(A; B) < H(A). thatp and ¢ are distributions on the same s¥&):
Meaning in security:To explain whatH (A) represents p(x)

from the security point of view, consider a partitioa, }ic r Dxr(plle) = Z p(z) log ()
of A. The adversary is allowed to ask questions of the form zeX

‘is A € A;?" according to some strategy. Lefa) be the  Rényi's a-generalization is:

number of questions that are needed to determine the value 1

of a, when A = a. Then H(A) represents the lower bound Da(pllg) = log Y pla)* q(a)*

. . 1-—
to the expected value of(-), with respect to all possible Y gex

partitions and strategies of the adversary [13], [16]. The standard case, i.e. the Kullback-Liebler divergense, i
o again obtained by taking the limit db, asa — 1.
B. Renyi min-entropy The interest of the above for our purposes lies on the
In [8], Rényi introduced a one-parameter family of en- fact that Shannon mutual information can equivalently be
tropy measures, intended as a generalization of Shanndigfined in terms of the Kullback-Liebler divergence (see for
entropy. The Rényi entropy of order (« > 0, a # 1)  instance [10]):

of a random variablel is defined as I(A;B) = Dy (ANB || A-B)
1
H,(A) = T—a log Z p(a)® Therefore, it seems natural to define thgeneralization of
acA the mutual information as:
Rényi's motivations were of axiomatic nature: Shannon I(A;B) = D(AAB| A-B) (6)

entropy satisfies four axioms, namely symmetry, continuity
value1l on the Bernoulli uniform distribution, and the chain Othera-generalizations of the mutual information, based on
rulet: the same idea, are explored in [18].
H(AAB) = H(A|B)+ H(B) 4) A; a — oo, the aboye definit?on gives the following min-
version of the mutual information:

(The entropy of the joint probability/ (A A B), is more def .. p(a,b)
commonly denoted byH (A, B). We will use the latter loc(AiB) = lim Io(A;B) = log e p(a) p(b) (7)
notation in the following.) .

Shannon entropy is also thanly function that satisfies ~ Another natural way to generaliz§A; B) would be to

those axioms. However, if we replace (4) with a weaker'€PlaceH by He in Definition (3). However, Rényi did not

property representing the additivity of entropy for indepe define_ thea-generalization of th_e conditional entropy, and
dent distributions: there is no agreement on what it should be.

Various researchers, including Cachin [19], have consid-

H(A-B) = H(A)+ H(B) (5)  ered the following definition, based on (2):
then there are more functions satisfying the axioms, among H&™"™(A | B) = Y p(b) Ha(A| B =b) 8)
which all those of the Rényi’s family. beB

which, asa — oo, becomes

1The original axiom, called the grouping axiom, does not rieent Cachi
the conditional entropy. However it corresponds to the rchaie if the HpMn(A | B) = —Z p(b) log maxp(a | b) 9)
conditional entropy is defined as in (2). be B acA



An alternative proposal foH. (- | -) came from Smith [9]:  thenp(a;) > p(a;). Then the guessing entropy is defined as

1 1 , 10 follows:
s ( | ) = — ngbegmaXaGA p(aa ) ( ) HG(A) = Z Zp(al)

Using (9), (10), and the analogue of (3) we can define 1<i<|A|

ICachin and ISmith.
o0 . A Massey did not define the notion of conditional guessing
Meaning in security:Renyi min-entropy can be related entropy. In some works, like [19], [16], it is defined analo-

to a model of adversary who is allowed to ask exactly one )
guestion, which must be of the form “id = a?” (one-try gously to (2):
attacks). More precisely{,(A) represents the (logarithm

of the inverse of the) probability of success for this kind of
attacks and with the best strategy, which consists, of epurs

in choosing thex with the maximum probability. Meaning in security: Guessing entropy represents an
As for Hw(A | B) and Io(A; B), the most interesting  adversary who is allowed to ask repeatedly questions of the

versions, in terms of security, seem to be those of Smith{grm “is 4 = 4?”. More precisely, H;(A) represents the

In fact, H3™™(A | B) represents the inverse of the expected number of questions that the adversary needs to

(expected value of the) probability that the same kind ofask to determine the value of, assuming that he follows

adversary succeeds in guessing the valuel @f posteriori  the best strategy, which consists, of course, in choosiag th

i.e. after observing the result &. The complement of this  4’s in order of decreasing probability.

p_robal_aility ?s also known agrobability of error or Bgyes He(A | B) represents the expected number of questions

risk. Since in generaB and A are correlated, observing  posteriori i.e. after observing the value & and reordering

increases the probability of success. In fact we can provg,e queries according to the updated probabilities (i.e. th

formally that 3™ (A | B) < HJM™(A), with equality  queries will be chosen in order of decreasing a posteriori
if and only if A and B are independent/S*"(4; B)  probabilities).

corresponds to theatio between the probabilities of success
a priori and a posteriori, which is a natural notion of leakag han or equal toH(A), so the corresponding notion of

Smith . ic i i . . . .
(155" (4; B) is in the format of (1), but the difference 4,4 information is not guaranteed to be non-negative
becomes ratio due to the presence of the logarithms.) Note

that I5mith(A; B) > 0, which seems desirable for a good
notion of leakage.

The definition of, in (7) has also an interpretation in  The marginal guesswork is a variant of guessing entropy
security: it represents the maximum gain in the probability that was proposed by Pliam [13]. It is parametric to a number
success, i.e. the maximum ratio between the a posteriori and> 0, and is defined as follows. Again, we assume that the
the a priori probability. Note that alsb.(A4; B) is always  elements of4 are ordered by decreasing probabilities.
non-negative and it i8 if and only if A and B are indepen-
dent. Furthermoré.(A; B) coincides with/5™*" if B is H.(A) = min{j | > pla;) > e}
uniformly distributed. More in general . (p || ¢) and its 1<i<j
a-extensionD,(p || ¢) should represent the “inefficiency” ) ) N ) )
of an adversary who bases its strategy on the distributioff!iam did not define the conditional version of marginal
g, when in fact the real distribution is. Hencel,(4; B) ~ 9uesswork, but in [16] it is defined following (2):
defined asD,(A A B || A - B) should represent the gain
of the adversary in revising his strategy according to the H(A[B) = Z p(b) Ho(A| B =)
knowledge of the correlation betweehand B. beB

Concerning H™*"™ and I5*™, they have some nice Meaning in security:Consider again an adversary who
properues. For mstance_they enjoy weak versions of th(?s allowed to ask repeatedly questions of the form Ais-
chain rule (4). More precisely, the=" in (4) becomes = a?". H.(A) represents the minimum number of questions

for < 1, and "<” for a > 1. However, there is no general 5 e adversary needs to ask to determine the valugé of
relation betweer/ 3" (A | B) andHo(A), and therefore i probability at leas.

I53<"™ is not guaranteed to be non-negative. H_.(A | B) represents the same notion, but using the a
posteriori probabilities. Again, it is not necessarily ttase
that H.(A | B) < H.(A).

The notion of guessing entropy was introduced by Massey

in [12]. Let us assume, TOI’ Slmp|ICIT()_/,_tha'F the_ elementsiof 2This problem is inherent to the probabilistic case, andetiuee it does
are ordered by decreasing probabilities, i.d. # i < j <n not occur in [16], since that work considers only deterntiaisystems.

He(A|B) = 3 p(b) Ho(A| B =)
beB

Also in this caseHs(A | B) is not necessarily smaller

D. Marginal guesswork

C. Guessing entropy



E. Comparison and Discussion Shannon entropy this new principle coincides with (1), but

The various notions of entropy discussed in this sectiori? general they are different.
have been carefully compared with Shannon entropy, to FOr instance, in the case of the guessing entropy, we
conclude that in general there is no tight relation. Fano'sshould define/(A; B) as the expected value (averaged us-
inequality gives a lower bound to the Bayes risk in termsing the a posteriori probabilities) of the divergence betwe
of (conditional) Shannon entropy, and Rényi [20], Hellman the number of queries when thes are ordered using the
Raviv [21], and Santhi-Vardi [22] give upper bounds as well,& priori distribution onA, and the number of queries when
but all these are rather weak. Smith has shown in [9] thathe a’s are ordered using the a posteriori distribution4n
the orderings induced on channels by the Bayes risk and by .
Shannon entropy are in general unrelated. Io(A;B) = > _p(b) Z #(plai [ b) = plax, [ b)) (11)
Massey has shown that the exponential of the Shannon beb LsisiAl
entropy is a lower bound for the guessing entropy, andvherek; is a permutation which reorders the elementsdof
that, in case of a geometric distribution, the bound is tightso that their a posteriori probabilities are decreasingein
However Massey has also shown that in the general case1 < i < j < n, thenp(ax,) > p(ax, ).
the Shannon entropy can be arbritrarily clos& tehile the Note that, if we applied (3) with the definitions of
guessing entropy is constant [12]. guessing entropy given above, we would obtain, instead:
As for the marginal guesswork. Pliam has shown that it
is essentially unrelated with Shannon entropy [13]. Ia(A;B) = > p(b) > i(plai) - plax, | b))
We conclude this section with an observation about the beB 1<i<| A
principle (1). As we have seen above this principle pressrib |, s possible to prove that, if defined as in (11), then
that, given a model of attacl_< (and ameasure of success), O_Q’%(A; B) is always non-negative.
should find the corresponding notion of entropy and condi-
tional entropy, which will then be considered as the initial I11. | NTERACTIVE INFORMATION FLOW
and the residual uncertainty, respectively. The tendency i
literature is to define the conditional entropy followingeth
formula (2).
It is important to realize that the notion of probability

In this section we consider the applicability of the
information-theoretic approach to interactive systems, i
those systems in which there can be an alternation of
gecrets and observables during the computation, and they

to the use of them made by the adversary to decide itgnfluence each other. The c_onditional probabilitjﬁs_ |. @)
strategy. The other is for averaging purposes. While th an be computed as the ratio between the probability that a

distribution used in the first way depends on the knowledg omputz_m(_)n has trac, b), given tha_t it has secret trg@_g

of the adversary, and changes from a priori to a posterio 23]. Th|_s_ is natural ar_n_j C(_)rrect, as it f(.)".ows the def|rr_|rt|o
with the revelation of the observable, the distributiondise of conq[t|onal probability in terms of joint and marglnall
in the second way should always be the real one, i.e. thgrobabmty. However, as shown by the example below, it

a posteriori one. Some of the definitions of entropy given oes not help t_o_(_jefme an |nformat|on-theo_ret|c_chanr_1e|
previously do not satisfy this rule, and in fact we obtain thebecause by deflnmon a ‘?haf‘”e' should be '”"a”a”F W't.h
counterintuitive consequence that the a posteriori uairest respect to the input distribution, and such construction is
may be higher than the a priori one. not. ) N
An alternative of the principle (1) would be to define the Example: Consider the protocol represented in Fig-

leakage as information flow directly by using a suitableUr® 1. This plrotocol is used in a Wepsite with one seller
variant of the Kullback-Liebler divergence, like in (6). @nd two possible buyers (one of thempisor and the other

As discussed at the end of Section II-B, this divergencdiCh)- The sale starts with the seller offering a product, which
represents the “inefficiency” of an adversary who base€@n be eithecheap(with probability r) or expensivewith
its strategy on the distribution, when in fact the real Probabilityl—r).In case the offered product is cheap, the

distribution isp. So, the new principle would be: poor buyer aquires the product with probabiliiywhereas
the rich buyer does it with probability— s. Similarly (with

Leakage — effectiveness of the attack using the probabilitiest and1 — t) for the case on which the offered
a posteriori distribution product is expensive. We assume that the offered product
— is observable, since it is visible to everyone in the website
effectiveness of the attack using the while the identity of the buyer is secret. In the following,
a priori distribution we use the notation to represent — r.
If we want to build the channel matrix, one could think of

where the computations are done taking into account tha#sing the standard formula for conditional probabilip |

the real distribution is the a posteriori one. In the case ofz) = ”ISZ;Z)’) to fill each entry of the matrix. That is what is




cheap

expensive

A. Applications

Interactive systems can be found in a variety of disparate
areas such as game theory, auction protocols, and zero-
knowledge proofs. We now present two examples of inter-
active systems.

« In the area of auction protocols, consider the cocaine

Figure 1. Interactive System
cheap | expensive
TS Tt
Poor | vsiTi rsirt
. rs Tt
rich rs+7t rs+7t

Table |
CHANNEL MATRIX

indeed proposed in [23]. Proceeding this way we obtain the
matrix on Table I.

However, the entries of the matrix are not invariant with
respect to the input distribution. If we fix the parameters
r = 7 = 0.5 and make two different assignments to the
values ofs, 3, t, T we induce two different input distributions,
with the associated matrices, as shown in Table Il

(a)T’I%,S=§7t=

3
5
al

cheap | expensive || Marginalp(-)
2 3 T
poor = 5 1
. 8 7 3
rich 1= 15 I
-1 -1 ;_ 3
O)r=3.s=1w1t=1
cheap | expensive || Marginalpa(-)
T 3 T
poor 1 g 5
. 9 7 1
rich 15 16 5
Table Il

TWO DIFFERENT CHANNEL MATRICES DEPENDING ON THE INPUT
DISTRIBUTION

As shown by this example, when secrets ocefiler
observables the conditional probabilities depend on tee di
tribution on secrets and, thus, so it does the matrix making
it unsound to analyze such systems using information-
theoretical approaches.

In [14], we investigate an extension of the theory of simple
channels so to make the information-theoretic approach
applicable also the case of interactive systems. It turns
out that a richer notion of channels, known in Information
Theory aschannels with memory and feedbaskrves our
purposes. Indeed the dependence of inputs on past outputs
corresponds exactly to feedback, and the dependence of the
output on all previous inputs and outputs corresponds to
memory.

auction protocol [24]. The auction is organized as a
succession of rounds of bidding. Rouistarts with the
seller announcing the bid priée for that round. Buyers
havet seconds to make an offer (i.e. to 3@s meaning

“I am willing to buy at the current bid pricé;”). As
soon as one buyer say®s he becomes the winner
w; of that round and a new round begins. If nobody
says anything for seconds, round is concluded by
timeout and the auction is won by the winney_; of

the previous round.

The identities of the buyers in each round constitute the
input of the channel, whereas the bid prices constitute
the output of the channel. Note that inputs and outputs
alternate so the system is interactive. It is also easy
to see that inputs depend on past outputs (feedback):
the identity of the winner of each round depends on
the previous bid prices. Furthermore, outputs depend
on the previous inputs (memory): (in some scenarios)
the bid price of round may depend on the identity of
previous winners. For more details on the modeling of
this protocol using channels with memory and feedback
see [14].

In the area of game theory, consider the classic pris-
oner’s dilemma (the present formulation is due to
Albert W. Tucker [25], but it was originally devised
by Merrill Flood and Melvin Dresher in 1950). Two
suspects are arrested by the police. The police have
insufficient evidence for a conviction, and, having sep-
arated both prisoners, visit each of them to offer the
same deal. If one testifies (defects from the other) for
the prosecution against the other and the other remains
silent (cooperates with the other), the betrayer goes
free and the silent accomplice receives the full 10-
year sentence. If both remain silent, both prisoners
are sentenced to only six months in jail for a minor
charge. If each betrays the other, each receives a five-
year sentence. Each prisoner must choose to betray the
other or to remain silent. Each one is assured that the
other would not know about the betrayal before the end
of the investigation.

In the iterated prisoner’s dilemma, the game is played
repeatedly. Thus each player has an opportunity to
punish the other player for previous non-cooperative
play. In this case the strategy (cooperate or defect)
of each player is the input of the channel and the
sentence is the output. Once again, it is easy to see that
the system is interactive: inputs and outputs alternate.



Furthermore, inputs depend on previous outputs (thef nondeterminism isangelic the scheduler is expected to

strategy depend on the past sentences) and outpudstually help the protocol to confuse the adversary and thus

depend on previous inputs (the sentence of the suspegtsotect the secret information.

depend on their declarations - cooperate or defect). There is another issue, orthogonal to the angelic/demonic
dichotomy, but relevant for the achievement of securityppro

IV. NONDETERMINISM AND INFORMATION FLOW erties: the scheduleshould not be able to make its choices

As seen in previous Section II, theiseof the channel, dependent on the secretr else nearly every protocol would
namely the similarity between the rows of the channelP€ insecure, i.e. the scheduler would always be able to leak
matrix, helps preventing the inference of the secret froen th 1€ Sécret to an external observer (for instance by progucin
observables. In practice noise is created by using rangomiz different interleavings of the observables, dependinghen t
tion, see for instance the DCNet [26] and the Crowds [27]secret). This remark has been made several times already,
protocols. and several approaches have been proposed to cope with

In the literature about the foundations of Computer SeN€ problem of the “almighty” scheduler (aka omniscient,

curity, however, the quantitative aspects are often atitsta clafli_;:/oyankt, eftc.), see for ex?mple d[32], [33]’ [31], [34]'.
away, and probabilistic behavior is replaced by nondeter- € risk of a nalve use of non eterminism to s_pecn_‘y_a
ministic behavior. Correspondingly, there have been wario security property, is not only that it may rely on an implicit
approaches in which information-hiding properties are exassumption that the scheduler behaves angelically, bat als

pressed in terms of equivalences based on nondeterminism‘?‘t it is clairvoyant, i.e. that it peeks at th? sec_retst(thq
especially in a concurrent setting. For instance, [28] @sfin it'is not supposed to be able to see) to achieve its angelic

) ) . . trategy.
anonymityas follows: A protocol S is anonymous if, for S . . . .
every pair of culpritsa andb, S[*/,] and S[*/.] produce Consider the following system, in a CCS-like syntax:

the same observable traces. A similar definition is given in S (¢, out)(A | Corr || Hy | Hy),

[29] for secrecy with the difference that[¢/,] and S[®/.] def def -

are required to be bisimilar. In [30], an electoral systdm A= %(sec), Corr = c(s).oul(s)

preserves theonfidentiality of the yotdaf for any votersv H c(s).outla), Ho def o(s).out (b)

andw, the observable behavior 6fis the same if we swap . .

the votes ofy andw. Namely,S[¢/, |* /w] ~ S[’/, |% /],  Where | is the parallel operator(sec) is a process that
where~ represents bisimilarity. sendssec on channek, ¢(s).P is a process that receives

These proposals are based on the implicit assumption th&" channek and then continues a8, and (c, out) is the
all the nondeterministic executions present in the spesific restriction operator, enforcing synchronizationcoand out.
tion of S will always be possible under every implementation!n this example sec represents a secret information.
of S. Or at least, that the adversary will believe so. In ItiS easy to see that we ha®/.cc| ~ S [°/sec]. Note
concurrency, however, as argued in [31], nondeterminisnihat, in order to simulate the third branch " /.|, the
has a rather different meaning: if a specificatirontains  Processs [*/scc] needs to select its first branch. Viceversa,
some nondeterministic alternatives, typically it is bessawe I Order to simulate the third branch [°/scc] the process
want to abstract from specific implementations, such as thé [*/sec] nNeeds to select its second branch. This means that,
scheduling policy. A specification is considered corredthw N order to achieve b|S|ml_JIat|0n,_ the sched_uler needs tavkno
respect to some property, if every alternative satisfies th&'€ Secret, and change its choice accordingly.
property. Correspondingly, an implementation is consider This examplg shows a system that intuitively is not secure,
correct if all executions are among those possible in th®€cause the third componeitorr, reveals whatever secret
specification, i.e. if the implementation is a refinementaft It r€céives. However, according to the equivalence-based

specification. There is no expectation that the implementa?®tions of security discussed abovejs secure But it is
tion will actually make possible all the alternatives iratied ~ Secure thanks to a scheduler that angelically helps thersyst
by the specification. to protect the secret, and it does so by making its choices

L I ini '
We argue that the use of nondeterminism in concurrencgepﬁndenﬁ (:jn Ithe secret! In_oulr opinion these assumptions
corresponds to demonicview: the scheduler, i.e. the entity on the scheduler are excessively strong.

that will decide which alternative to select, may try to ckeo In a recent work [15] we address the above issue by

the worst alternative. Hence we need to make sure that ,.aﬁiefini_ng a framewor_k in which it is_ possi_ble o co_mbi_ne bo.th
alternatives are good’, i.e. satisfy the intended propertyangel'c and demonic nondeterminism in a setting in which

In the above mentioned approaches to the formalizatiof.f?‘ls‘0 probabilistic behaviqr may pe pregent, and in. a context
of security properties, on the contrary, the interpretatio in which the scheduler is restricted (i.e. not clairvoyant)
We propose safe versions of typical equivalence relations

3The actual definition of [28] is more complicated, but therisps the (traces ar?d b_iSimUIati_O”)’ and we ShOV\_’ how to use them to
same. characterize information-hiding properties.



(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

Y. Zhu and R. Bettati, “Anonymity vs. information leakag
in anonymity systems,” ifProc. of ICDCS IEEE, 2005, pp.
514-524.

D. Clark, S. Hunt, and P. Malacaria, “Quantitative infaation
flow, relations and polymorphic typesJ. of Logic and
Computation vol. 18, no. 2, pp. 181-199, 2005.

P. Malacaria, “Assessing security threats of loopingh-co
structs,” inProc. of POPL ACM, 2007, pp. 225-235.

P. Malacaria and H. Chen, “Lagrange multipliers and maxi
mum information leakage in different observational mogels
in Proc. of PLAS ACM, 2008, pp. 135-146.

I. S. Moskowitz, R. E. Newman, and P. F. Syverson, “Quasi-
anonymous channels,” ifroc. of CNIS IASTED, 2003, pp.
126-131.

I. S. Moskowitz, R. E. Newman, D. P. Crepeau, and A. R.
Miller, “Covert channels and anonymizing networks."Hroc.
of PES ACM, 2003, pp. 79-88.

(17]

(18]

(19]

(20]

(21]

(22]

(23]

K. Chatzikokolakis, C. Palamidessi, and P. Panangaden,

“Anonymity protocols as noisy channelsiif. and Comp.
vol. 206, no. 2-4, pp. 378-401, 2008.

A. Rényi, “On Measures of Entropy and Information,” in

(24]

Proc. of the 4th Berkeley Symposium on Mathematics, Statis-

tics, and Probability 1961, pp. 547-561.

G. Smith, “On the foundations of quantitative infornaati
flow,” in Proc. of FOSSACSer. LNCS, vol. 5504. Springer,
2009, pp. 288-302.

T. M. Cover and J. A. Thomasilements of Information
Theory John Wiley & Sons, Inc., 1991.

K. Chatzikokolakis, C. Palamidessi, and P. Pananga@n
the Bayes risk in information-hiding protocolsJournal of
Computer Securityvol. 16, no. 5, pp. 531-571, 2008.

Massey, “Guessing and entropy,” Proc. of ISIT
1994, p. 204.

IEEE,

Pliam, “On the incomparability of entropy and marginal
guesswork in brute-force attacks,” Proc. of INDOCRYPT
ser. LNCS, no. 1977. Springer-Verlag, 2000, pp. 67-79.

M. S. Alvim, M. E. Andrés, and C. Palamidessi, “Infortiza
Flow in Interactive Systems,” Tech. Rep., 2010, submitted f
publication. [Online]. Available: http://hal.archivesivertes.
fr/inria-00479672/en/

M. S. Alvim, M. E. Andrés, C. Palamidessi, and P. van
Rossum, “Safe Equivalences for Security Properties,” in
Proc. of IFIP TCS vol. To appear, 2010, submitted for
publication. [Online]. Available: http://hal.archivesivertes.
fr/inria-00479674/en/

B. Kopf and D. A. Basin, “An information-theoretic met
for adaptive side-channel attacks,” Rroc. of CCS ACM,
2007, pp. 286—296.

[25]
(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

C. E. Shannon, “A mathematical theory of communication
Bell System Technical Journalol. 27, pp. 379-423, 625-56,
1948.

I. Csiszar, “Generalized cutoff rates and Rényi'foimation
measures,”Transactions on Information Theqrwol. 41,
no. 1, pp. 26-34, 1995.

C. Cachin, “Entropy measures and unconditional ségumi
cryptography,” Ph.D. dissertation, 1997.

A. Rényi, “On Measures of Entropy and Information,” in
Proc. of the 4th Berkeley Symposium on Mathematics, Statis-
tics, and Probability 1960, pp. 547-561.

M. Hellman and J. Raviv, “Probability of error, equiaiwon,
and the Chernoff bound|/EEE Trans. on Information Theory
vol. IT-16, pp. 368-372, 2007.

N. Santhi and A. Vardy, “On an improvement over Rényi's

equivocation bound,” 2006, presented at the 44-th Annual
Allerton Conf. on Communication, Control, and Computing,

September 2006. Available at http://arxiv.org/abs/0380B7.

J. Desharnais, R. Jagadeesan, V. Gupta, and P. Pamsngad
“The metric analogue of weak bisimulation for probabitisti
processes,” ifProc. of LICS |EEE, 2002, pp. 413-422.

F. Stajano and R. J. Anderson, “The cocaine auctionoprot
col: On the power of anonymous broadcast,”liflormation
Hiding, 1999, pp. 434-447.

W. PoundstonePrisoners Dilemma Doubleday NY, 1992.

D. Chaum, “The dining cryptographers problem: Uncendi
tional sender and recipient untraceabilitydurnal of Cryp-
tology, vol. 1, pp. 65-75, 1988.

M. K. Reiter and A. D. Rubin, “Crowds: anonymity for Web
transactions,’”ACM Transactions on Information and System
Security vol. 1, no. 1, pp. 66-92, 1998.

S. Schneider and A. Sidiropoulos, “CSP and anonymity,”
Proc. of ESORICSser. LNCS, vol. 1146. Springer, 1996,
pp. 198-218.

M. Abadi and A. D. Gordon, “A calculus for cryptographic
protocols: The spi calculus|hf. and Comp.vol. 148, no. 1,
pp. 1-70, 1999.

S. Delaune, S. Kremer, and M. Ryan, “Verifying privacy-
type properties of electronic voting protocolslburnal of
Computer Securityvol. 17, no. 4, pp. 435-487, 2009.

K. Chatzikokolakis, G. Norman, and D. Parker, “Bisiratibn
for demonic schedulers,” ifProc. of FOSSACSser. LNCS,
vol. 5504. Springer, 2009, pp. 318-332.

R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N. Lynch,
O. Pereira, and R. Segala, “Task-structured probabiliftic
automata,” inProc. of WODES2006.

K. Chatzikokolakis and C. Palamidessi, “Making random
choices invisible to the scheduletfif. and Comp.2010.

M. E.Andrés, C. Palamidessi, P. van Rossum, and
A. Sokolova, “Information hiding in probabilistic concemt

systems,” Tech. Rep., 2010.



