Information Hiding in Probabilistic Concurrent Systems

Miguel E. Andrés®!, Catuscia Palamidessi®,
Peter van Rossum?®, Ana Sokolova®?

“Institute for Computing and Information Sciences, Radboud University, The Netherlands.
YINRIA and LIX, Ecole Polytechnique Palaiseau, France.
¢Departament of Computer Sciences, University of Salzburg, Austria.

Abstract

Information hiding is a general concept which refers to the goal of preventing
an adversary to infer secret information from the observables. Anonymity and
Information Flow are examples of this notion. We study the problem of in-
formation hiding in systems characterized by the coexistence of randomization
and concurrency. It is well known that the presence of nondeterminism, due
to the possible interleavings and interactions of the parallel components, can
cause unintended information leaks. The most established approach to solve
this problem is to fix the strategy of the scheduler beforehand. In this work,
we propose a milder restriction on the schedulers, and we define the notion of
strong (probabilistic) information hiding under various notions of observables.
Furthermore, we propose a method, based on the notion of automorphism, to
verify that a system satisfies the property of strong information hiding, namely
strong anonymity or no-interference, depending on the context. Through the
paper, we use the canonical example of the Dining Cryptographers to illustrate
our ideas and techniques.

1. Introduction

The problem of information hiding consists in trying to prevent the adversary
to infer confidential information from the observables. Instances of this issue
are Anonymity and Information Flow. In both fields there is a growing interest
in the quantitative aspects of the problem, see for instance [23, 3, 37, 13, 14,
26, 27, 4, 16, 10, 11, 35]. This is justified by the fact that often we have some
a priori knowledge about the likelihood of the various secrets (which we can
usually express in terms of a probability distribution), and by the fact that
protocols often use randomized actions to obfuscate the link between secret and
observable, like in the case of the anonymity protocols of DC Nets [12], Crowds
[31], Onion Routing [36], and Freenet [15].

1Supported by NWO project 612.000.526.
2Supported by the Austrian Science Fund (FWF), Project V00125.

Preprint submitted to Elsevier September 29, 2010

In a concurrent setting, like in the case of multi-agent systems, there is
also another source of uncertainty, which derives from the fact that the various
entities may interleave and interact in ways that are usually unpredictable, either
because they depend on factors that are too complex to analyze, or because (in
the case of specifications) they are implementation-dependent.

The formal analysis of systems which exhibit probabilistic and nondetermin-
istic behavior usually involves the use of so-called schedulers, which are functions
that, for each path, select only one possible (probabilistic) transition, thus de-
livering a purely probabilistic execution tree, where each event has a precise
probability.

In the area of security, there is the problem that secret choices, like all
choices, give rise to different paths. On the other hand, the decision of the
scheduler may influence the observable behavior of the system. Therefore the
security properties are usually violated if we admit as schedulers all possible
functions of the paths: certain schedulers induce a dependence of the observ-
ables on the secrets, and protocols which would not leak secret information
when running in “real” systems (where the scheduling devices cannot “see” the
internal secrets of the components and therefore cannot depend on them), do
leak secret information under this more permissive notion of scheduler. This is
a well known problem for which various solutions have already been proposed
[6, 7,9, 8. We will come back to these in the “Related work” section.

1.1. Contribution

We now list the main contribution of this work:

e We define a class of partial-information schedulers (which we call admis-
sible), schedulers in this class are a restricted version of standard (full-
information) schedulers. The restriction is rather flexible and has strong
structural properties, thus facilitating the reasoning about security prop-
erties. In short, our systems consist of parallel components with certain
restrictions on the secret choices and nondeterministic choices. The sched-
uler selects the next component (or components, in case of synchroniza-
tion) for the subsequent step independently of the secret choices. We
then formalize the notion of quantitative information flow, or degree of
anonymity, using this restricted notion of scheduler.

e We propose alternative definitions to the property of strong anonymity de-
fined in [3]. Our proposal differs from the original definition in two aspects:
(1) the system should be strongly anonymous for all admissible schedulers
instead of all schedulers (which is a very strong condition, never satis-
fied in practice), (2) we consider several variants of adversaries, namely
(in increasing level of power): external adversaries, internal adversaries,
and adversaries in collusion with the scheduler (in a Dolev-Yao fashion).
Additionally, we use admissible schedulers to extend the notions of mul-
tiplicative and additive leakage (proposed in [35] and [5] respectively) to
the case of a concurrent system.

e We propose a sufficient technique to prove probabilistic strong anonymity,
and probabilistic noninterference, based on automorphisms. The idea is
the following: In the purely nondeterministic setting, the strong anonymity
of a system is often proved (or defined) as follows: take two users A and B
and a trace in which user A is ‘the culprit’. Now find a trace that looks the
same to the adversary, but in which user B is ‘the culprit’ [23, 20, 28, 24].
This new trace is often most easily obtained by switching the behavior of
A and B. Non-interference can be proved in the same way (where A and
B are high information and the trace is the low information).

In this work, we make this technique explicit for anonymity in systems
where probability and nondeterminism coexist, and we need to cope with
the restrictions on the schedulers. We formalize the notion of switching
behaviors by using automorphism (it is possible to switch the behavior of
A and B if there exist an automorphism between them) and then show
that the existence of an automorphism implies strong anonymity.

e We illustrate the problem with full-information schedulers in security,
our solution providing admissible schedulers, and the application of our
proving technique by means of the well known Dining Cryptographers
anonymity protocol.

1.2. Related Work

The problem of the full-information scheduler has already been extensively
investigated in literature. The works [6] and [7] consider probabilistic automata
and introduce a restriction on the scheduler to the purpose of making them suit-
able to applications in security. Their approach is based on dividing the actions
of each component of the system in equivalence classes (tasks). The order of
execution of different tasks is decided in advance by a so-called task scheduler.
The remaining nondeterminism within a task is resolved by a second scheduler,
which models the standard adversarial scheduler of the cryptographic commu-
nity. This second entity has limited knowledge about the other components: it
sees only the information that they communicate during execution. Their no-
tion of task scheduler is similar to our notion of admissible scheduler, but more
restricted since the strategy of the task scheduler is decided entirely before the
execution of the system.

Another work along these lines is [18], which uses partitions on the state-
space to obtain partial-information schedulers. However that work considers a
synchronous parallel composition, so the setting is rather different from ours.

The work in [9, 8] is similar to ours in spirit, but in a sense dual from a
technical point of view. Instead of defining a restriction on the class of sched-
ulers, they provide a way to specify that a choice is transparent to the scheduler.
They achieve this by introducing labels in process terms, used to represent both
the states of the execution tree and the next action or step to be scheduled.
They make two states indistinguishable to schedulers, and hence the choice be-
tween them private, by associating to them the same label. Furthermore, their

“equivalence classes” (schedulable actions with the same label) can change dy-
namically, because the same action can be associated to different labels during
the execution.

In [1] we have extended the framework presented in this work (by allowing
internal nondeterminism and adding a second type of scheduler to resolve it)
with the aim of investigating angelic vs demonic nondeterminism in equivalence-
based properties.

The fact that full-information schedulers are unrealistic has also been ob-
served in fields other than security. With the aim to cope with general properties
(not only those concerning security), first attempts used restricted schedulers
in order to obtain rules for compositional reasoning [18]. The justification for
those restricted schedulers is the same as for ours, namely, that not all informa-
tion is available to all entities in the system. Later on, it was shown that model
checking is unfeasible in its general form for the kind of restricted schedulers
presented in [18]. See [22] and, more recently, [21].

Finally, to the best of our knowledge, this is the first work using automor-
phisms as a sound proof technique (in our case to prove strong anonymity and
non-interference). The closest line of work we are aware of is in the field of
model checking. There, isomorphisms can be used to identify symmetries in the
system, and such symmetries can then be exploited to alleviate the state space
explosion (see for instance [25]).

A preliminary version of this work, without proofs, appeared in [2].

1.3. Plan of the paper

Looking ahead, after reviewing some preliminaries (Section 2) we formalize
the notions of systems and components (Section 3). In Section 4 we present
admissible schedulers. We then formalize the notions of internal and external
strong anonymity in a probabilistic and nondeterministic setting for admissible
schedulers (Section 5). Finally, we turn our attention to the verification prob-
lem, in Section 6 we present a strong-anonymity proving technique based on
automorphisms. We conclude and outline some future work in Section 7.

2. Preliminaries

In this section we gather preliminary notions and results related to proba-
bilistic automata [34, 33], information theory [17], and information leakage [35,
5].

2.1. Probabilistic automata

A function p: Q — [0,1] is a discrete probability distribution on a set @ if
> 4€Q 1(g) = 1. The set of all discrete probability distributions on @ is denoted
by D(Q).

A probabilistic automaton is a quadruple M = (Q,X,§,0) where @ is a
countable set of states, ¥ a finite set of actions, ¢ the initial state, and 6 a

transition function 0 : Q@ — P(D(Z x Q)). Here P(X) is the set of all subsets
of X.

If 8(q) = 0, then q is a terminal state. We write ¢g—u for u € 6(q), q € Q.
Moreover, we write ¢—»r for g, € Q whenever ¢—p and p(a,r) > 0. A fully
probabilistic automaton is a probabilistic automaton satisfying |6(q)| < 1 for all
states. In case 6(q) # 0 in a fully probabilistic automaton, we will overload
notation and use 6(g) to denote the distribution outgoing from ¢. A path in a
probabilistic automaton is a sequence o = gy 2> ¢1 =3 --- where ¢; € Q, a; € X
and QiaiIQi_l,_l. A path can be finite in which case it ends with a state. A path is
complete if it is either infinite or finite ending in a terminal state. Given a path
o, first(o) denotes its first state, and if o is finite then last(c) denotes its last
state. A cycle is a path o such that last(o) = first(c). Let Paths,(M) denote
the set of all paths, Paths™ (M) the set of all finite paths, and CPaths, (M) the
set of all complete paths of an automaton M, starting from the state g. We will
omit g if ¢ = ¢. Paths are ordered by the prefix relation, which we denote by <.
The trace of a path is the sequence of actions in ¥* U3 obtained by removing
the states, hence for the above path o we have trace(o) = arag.... ¥ C X,
then tracesy (o) is the projection of trace(o) on the elements of X'

Let M = (Q,%,§,0) be a (fully) probabilistic automaton, ¢ € @ a state,
and let o € Pathsj (M) be a finite path starting in gq. The cone generated by o
is the set of complete paths (o) = {0’ € CPathsy(M) | o < o’}. Given a fully
probabilistic automaton M = (Q,%,q,0) and a state g, we can calculate the
probability value, denoted by P, (o), of any finite path o starting in ¢ as follows:
P,(¢)=1and Py,(c = ¢') =Py(o) u(a,q'), where last(c) — p.

Let Q4 def CPathsq (M) be the sample space, and let F, be the smallest o-
algebra generated by the cones. Then P, induces a unique probability measure
on F, (which we will also denote by P,) such that P,({c)) = P,(c) for every
finite path o starting in gq. For ¢ = ¢ we write P instead of Pj.

A (full-information) scheduler for a probabilistic automaton M is a function
¢: Paths® (M) — (D(XxQ)U{L}) such that for all finite paths o, if 0(last(0)) #
() then (o) € O(last(0)), and ((o) = L otherwise. Hence, a scheduler ¢ selects
one of the available transitions in each state, and determines therefore a fully
probabilistic automaton, obtained by pruning from M the alternatives that are
not chosen by (. Note that a scheduler is history dependent since it can take
different decisions for the same state s according to the past evolution of the
system.

2.2. Noisy Channels

This section briefly recalls the notion of noisy channels from Information
Theory [17].
def

A noisy channel is a tuple C = (X,), P(:|-)) where X = {x1,22,...,2,}
is a finite set of input values, modeling the secrets of the channel, and Y =
{y1,Y2,. -, Ym} is a finite set of output values, the observables of the channel.
For z; € X and y; € Y, P(y;| x;) is the conditional probability of obtaining the
output y; given that the input is x;. These conditional probabilities constitute

the so called channel matriz, where P(y;|x;) is the element at the intersection
of the i-th row and the j-th column. For any input distribution Py on X,
Px and the channel matrix determine a joint probability P» on X x), and
the corresponding marginal probability Py on) (and hence a random variable
Y). Px is also called a priori distribution and it is often denoted by m. The
probability of the input given the output is called a posteriori distribution.

2.3. Information leakage

We recall here the definitions of multiplicative leakage proposed in [35], and
of additive leakage proposed in [5]3. We assume given a noisy channel C =

(X,Y,P(-])) and a random variable X on X. The a priori vulnerability of the

secrets in X is the probability of guessing the right secret, defined as V(X) def
max;ex Px(x). The rationale behind this definition is that the adversary’s best
bet is on the secret with highest probability. The a posteriori vulnerability of the
secrets in & is the probability of guessing the right secret, after the output has
been observed, averaged over the probabilities of the observables. The formal
definition is V(X|Y) ©' Y2), Py (y) maxex P(x|y). Again, this definition is
based on the principle that the adversary will choose the secret with the highest
a posteriori probability.

Note that, using Bayes theorem, we can write the a posteriori vulnerability
in terms of the channel matrix and the a priori distribution, or in terms of the
joint probability:

VX| V)= Y max(P(y |) Px ()= 3 max Py ()
yeY yeY
The multiplicative leakage is L (C, Px) ef V‘(/)(%f)

age is £4(C, Px) € V(X]Y) - V(X).

whereas the additive leak-

2.4. Dining Cryptographers

This problem, described by Chaum in [12], involves a situation in which
three cryptographers are dining together. At the end of the dinner, each of
them is secretly informed by a central agency (master) whether he should pay
the bill, or not. So, either the master will pay, or one of the cryptographers will
be asked to pay. The cryptographers (or some external observer) would like to
find out whether the payer is one of them or the master. However, if the payer
is one of them, they also wish to maintain anonymity over the identity of the
payer.

A possible solution to this problem, described in [12], is that each cryptogra-
pher tosses a coin, which is visible to himself and his neighbor to the left. Each
cryptographer observes the two coins that he can see and announces agree or

3The notion proposed by Smith in [35] was given in a (equivalent) logarithmic form, and
called simply leakage. For uniformity sake we use here the terminology and formulation of [5].

disagree. If a cryptographer is not paying, he will announce agree if the two sides
are the same and disagree if they are not. The paying cryptographer will say
the opposite. It can be proved that if the number of disagrees is even, then the
master is paying; otherwise, one of the cryptographers is paying. Furthermore,
in case one of the cryptographers is paying, neither an external observer nor the
other two cryptographers can identify, from their individual information, who
exactly is paying (provided that the coins are fair). The Dining Cryptographers
(DC) will be a running example through the paper.

out,
% Crypto,
A
co 1 c0,0
my,
Coin, Cﬂ @ Coin,

out, Mm _/v‘% out,
‘/Cryptol C, & [P Cryptoz\‘
Coin,

Figure 1: Chaum’s system for the Dining Cryptographers ([12])

3. Systems

In this section we describe the kind of systems we are dealing with. We
start by introducing a variant of probabilistic automata, that we call tagged
probabilistic automata (TPA). These systems are parallel compositions of purely
probabilistic processes, that we call components. They are equipped with a
unique identifier, that we call tag, or label, of the component. Note that, because
of the restriction that the components are fully deterministic*, nondeterminism
is generated only from the interleaving of the parallel components. Furthermore,
because of the uniqueness of the tags, each transition from a node is associated
to a different tag / pair of two tags (one in case only one component makes a
step, and two in case of a synchronization step among two components).

4In [1] we have extended this framework by allowing nondeterministic choices in the com-
ponents. There we use an additional (internal) scheduler to handle such “internal” nondeter-
minism.

8.1. Tagged Probabilistic Automata
We now formalize the notion of TPA.

Definition 1. A tagged probabilistic automaton (TPA) is a tuple (Q, L, %, G, 6),
where

e () is a set of states,

L is a set of tags, or labels,

3 is a set of actions,

G € Q 1is the initial state,
e 0:Q — P(Lx DX xQ)) is a transition function.

with the additional requirement that for every q € Q and every ¢ € L there is at
most one i € D(X x Q) such that (¢,) € 0(q).

A path for a TPA is a sequence o0 = qq ey q1 2,89 g2 -+ . In this way, the
process with identifier [; induces the system to move from ¢;_; to g; performing
the action a;, and it does so with probability py,(a;i,q;), where py, is the dis-
tribution associated to the choice made by the component I;. Finite paths and
complete paths are defined in a similar manner.

In a TPA, the scheduler’s choice is determined by the choice of the tag. We
will use enab(q) to denote the tags of the components that are enabled to make
a transition. Namely,

enab(q) € {L € L|IpeD(E % Q) : (£, p) € 0(q)} (1)

We assume that the scheduler is forced to select a component among those
which are enabled, i.e., that the execution does not stop unless all components
are blocked (suspended or terminated). This is in line with the spirit of process
algebra, and also with the tradition of Markov Decision Processes, but contrasts
with that of the Probabilistic Automata of Lynch and Segala [34]. However,
the results in this paper do not depend on this assumption; we could as well
allow schedulers which decide to terminate the execution even though there are
transitions which are possible from the last state.

Definition 2. A scheduler for « TPA M = (Q,L,%,q,0) is a function (:
Paths*(M) — (LU{L}) such that for all finite paths o, ((c) € enab(last(o)) if
enab(last(o)) # 0 and ((c) = L otherwise.

8.2. Components

To specify the components we use a sort of probabilistic version of CCS [29,
30]. We assume a set of secret actions Xg with elements s, s1,892, -+, and a
disjoint set of observable actions o with elements a,ay,as,---. Furthermore
we have communication actions, which are also observable, of the form c(x)
(receive x on channel ¢, where x is a formal parameter), or ¢(v) (send v on

channel ¢, where v is a value on some domain V). Sometimes we need only to
synchronize without transmitting any value, in which case we will use simply ¢
and ¢. We denote the set of channel names by C.

A component ¢ is specified by the following grammar:

Components
qg == 0 termination

| agq observable prefix

| ipita blind choice

| > pitsiq secret choice

| if x =v then q1 else ¢o conditional

| A process call
Observables

a == clé simple synchronization

| c(z)] &) synchronization and communication

The p;, in the blind and secret choices, represents the probability of the
i-th branch and must satisfy 0 < p; < 1 and Zipi = 1. When no confusion
arises, we use simply + for a binary choice. The process call A is a simple
process identifier. For each of them, we assume a corresponding unique process
declaration of the form A & q. The idea is that, whenever A is executed,
it triggers the execution of ¢. Note that ¢ can contain A or another process
identifier, which means that our language allows (mutual) recursion.

We remark once again that each component contains only probabilistic and
sequential constructs. In particular, there is no internal parallelism. Hence
each component corresponds to a purely probabilistic automaton (apart from
the input nondeterminism, which disappears in the definition of a system), as
described by the operational semantics below.

Components’ semantics: The operational semantics consists of probabilistic
transitions of the form g—p where ¢ € @ is a process, and u € D(X x Q)
is a distribution on actions and processes. They are specified by the following
rules:

veV

PRF1 PRF2 — ifa+#c(x)

c(x).qg — §(c(v), q[v/x]) a.q — 6(a,q)
INT SECR
Zipi L q; — El Di - 5(7'7 Qi) Zipi P84y — El Dbi- 5(51',(11')
v # v

CND1 if v = v then ¢ CND2 4f v =o' then ¢

else g2 — 0(T,q1) else g2 — (7, q2)

. .
CALL 27“ it A%,

— p

», pi - pi is the distribution g such that p(z) = Y, pini(x). We use §(x) to
represent the delta of Dirac, which assigns probability 1 to x. The silent action,
T, is a special action different from all the observable and the secret actions.
g[v/x] stands for the process ¢ in which any occurrence of x has been replaced
by v. To shorten the notation, in the examples throughout the paper, we omit
writing explicit termination, i.e., we omit the symbol 0 at the end of a term.

3.3. Systems

A system consists of n processes (components) in parallel, restricted at the
top-level on the set of channel names C:

C)allall |l gn

The restriction on C' enforces synchronization (and possibly communication) on
the channel names belonging to C, in accordance with the CCS spirit. Since
C is the set of all channels, all of them are forced to synchronize. This is to
eliminate, at the level of systems, the nondeterminism generated by the rule for
the receive prefix, PRF1.

Systems’ semantics: The semantics of a system gives rise to a TPA, where the
states are terms representing systems during their evolution. A transition now
is of the form ¢ 4 p where p € (D(X x Q)) and ¢ € L is either the identifier
of the component which makes the move, or a two-element set of identifiers
representing the two partners of a synchronization. The following two rules
provide the operational semantics rules in the case of interleaving and synchro-
nisation/communication, respectively.

Interleaving.

a4 — Ej pj - 6(ay, gi;)

; Ifa; ¢C
@ all Mgl lan—2,p56(a;, (C)all - a1l an)
where ¢ indicates the tag of the component making the step.
Synchronization/Communication.
¢ —0(cv),q) ¢ —6(c(v),q))
© ar - laill - an "2 6@ an g - g |- I aw)

10

here {4, j} is the tag indicating that the components making the step are i and
j. For simplicity we write —% instead of {Z—J]; The rule for synchronization
without communication is similar, the only difference is that we do not have (v)
and (v) in the actions. Note that ¢ can only be an observable action (neither
a secret nor 7), by the assumption that channel names can only be observable
actions.

We note that both interleaving and synchronization rules generate nonde-
terminism. The only other source of nondeterminism is PRF1, the rule for a
receive prefix c¢(z). However the latter is not real nondeterminism: it is intro-
duced in the semantics of the components but it disappears in the semantics of
the systems, given that the channel c is restricted at the top-level. In fact the
restriction enforces communication, and when communication takes place, only
the branch corresponding to the actual value v transmitted by the corresponding
send action is maintained, all the others disappear.

Proposition 1. The operational semantics of a system is a TPA with the fol-
lowing characteristics:

(a) Ewvery step q 4 w is either

a blind choice: p =Y, p; - d(7,¢), or
a secret choice: u =% p;-0(si,qi), or

a delta of Dirac: p = d(a,q’) with @ € o or a=rT.

(b) Ifqﬁu andqﬁu’ then p = p'.
Proof.

(a) The rules for the components and the rule for synchronization / commu-
nication can only produce blind choices, secret choices, or deltas of Dirac.
Furthermore, because of the restriction on all channels, the transitions at
the system level cannot contain communication actions. Finally, observe
that the interleaving rule maintains these properties.

(b) At the component level, the only source of nondeterminism is PRF1, the
rule for a receive prefix ¢(x). At the system level, this action is forced to
synchronize with a corresponding send action, and, in a component, there
can be only one such action available at a time. Hence the tag determines
the value to be sent, which in turn determines the selection of exactly one
branch in the receiving process. The only other sources of nondeterminism
are the interleaving and the synchronization/communication rules, and
they induce a different tag for each alternative.

O

11

Example 1. We now present the components for the Dining Cryptographers
using the introduced syntax. They correspond to Figure 1 and to the au-
tomata depicted in Figure 3. As announced before, we omit the symbol 0
for explicit termination at the end of each term. The secret actions s; rep-
resent the choice of the payer. The operators &,6 represent the sum mod-
ulo 2 and the difference modulo 2, respectively. The test ¢ == n returns
1 (true) if ¢ = n, and 0 otherwise. The set of restricted channel names is
02{00,0700,1,61,1,61,2,02,0,62,2,m0,m1,m2}-

Master < p: mo(0) . m1(0) . m2(0) + (1 —p) : Z?:o Di:Si.
mo(i == 0). M1 (i == 1) .M (i == 2)
Crypt; def mi(pay) . ¢;i(coing) . ¢iig1(coing) . out; (pay & coiny & coing)
Coin; € 0.5:8,(0).&ic1:(0) + 0.5:¢,(1). Ee1i(1)
System %' (C) Master || [T2, Crypt, || [T, Coin;

Figure 2: Dining Cryptographers CCS

The operation pay @ coini ® coing in Figure 2 is syntactic sugar, it can be
defined using the if-then-else operator. Note that, in this way, if a cryptographer
is not paying (pay = 0), then he announces 0 if the two coins are the same (agree)
and 1 if they are not (disagree).

4. Admissible Schedulers

We now introduce the class of admissible schedulers.

Standard (full-information) schedulers have access to all the information
about the system and its components, and in particular the secret choices.
Hence, such schedulers can leak secrets by making their decisions depend on the
secret choice of the system. This is the case with the Dining Cryptographers
protocol of Section 2.4: among all possible schedulers for the protocol, there are
several that leak the identity of the payer. In fact the scheduler has the freedom
to decide the order of the announcements of the cryptographers (interleaving),
so a scheduler could choose to let the payer announce lastly. In this way, the
attacker learns the identity of the payer simply by looking at the interleaving
of the announcements.

4.1. The screens intuition

Let us first describe admissible schedulers informally. As mentioned in the
introduction, admissible schedulers can base their decisions only on partial in-
formation about the evolution of the system, in particular admissible schedulers
cannot base their decisions on information concerned with the internal behavior
of components (such as secret choices).

12

Master Coin; Crypti

. 1(1 []

[]
.

[] []

ciim(hd

0 Ciﬂ(o)l lci’i<1> s 1@1 l/
[] []

[]

Ci,iP1 1)

ma(Ci@l,i<0\ /3iel,i<1> - \ /
. out;(0) out;

Nl=
=

Figure 3: Dining Cryptographers Automata

We follow the subsequent intuition: admissible schedulers are entities that
have access to a screen with buttons, where each button represents one (cur-
rent) available option. At each point of the execution the scheduler decides the
next step among the available options (by pressing the corresponding button).
Then the output (if any) of the selected component becomes available to the
scheduler and the screen is refreshed with the new available options (the ones
corresponding to the system after making the selected step). We impose that the
scheduler can base its decisions only on such information, namely: the screens
and outputs he has seen up to that point of the execution (and, of course, the
decisions he has made).

Example 2. Consider § % ({c1,¢2}) g1l g21 g3, where

q1 def 0.5:51.¢1.C2 + 0.5 : 52.C1.Ca,
2% (0501 +05:b1), g3 ¢2.(0.5:az+0.5: by).

Figure 4 shows the sequence of screens corresponding to a particular sequence
of choices taken by the scheduler®. Interleaving and communication options
are represented by yellow and red buttons, respectively. An arrow between
two screens represents the transition from one to the other (produced by the

5The transitions from screens 4 and 5 represent 2 steps each (for simplicity we omit the
T-steps generated by blind choices)

13

[]
. "““V Yi“’
1-p

cii(

scheduler pressing a button), additionally, the decision taken by the scheduler
and corresponding outputs are depicted above each arrow.

Figure 4: Screens intuition

Note that this system has exactly the same problem as the DC protocol:
a full-information scheduler could reveal the secret by basing the interleaving
order (g first or g3 first) on the secret choice of the component ¢;. However,
the same does not hold anymore for admissible schedulers (the scheduler cannot
deduce the secret choice by just looking at the screens and outputs). This is
also the case for the DC protocol, i.e., admissible schedulers cannot leak the
secret of the protocol.

4.2. The formalization

Before formally defining admissible schedulers we need to formalize the in-
gredients of the screens intuition. The buttons on the screen (available options)
are the enabled options given by the function enab (see (1)), the decision made
by the scheduler is the tag of the selected enabled option, observable actions are
obtained by sifting the secret actions to the schedulers by means of the following
function:

sift(o) djf{ a ifaeXpoU{r}

T faeXs.

The partial information of a certain evolution of the system is given by the map
t defined as follows.

~ 1,01 L, on

Definition 3. Let § — -+ == gn41 be a finite path of the system, then we
define t as:

(a0 g) (enad(@). 6, sift(an)) - (enab(an), o sift ().
Finally, we have all the ingredients needed to define admissible schedulers.

Definition 4 (Admissible schedulers). A scheduler ¢ is admissible if for all
0,0’ € Paths*

t(o) =t(o") implies ((o) = (o).

14

In this way, admissible schedulers are forced to take the same decisions on
paths that they cannot tell apart. Note that this is a restriction on the original
definition of (full-information) schedulers where ¢ is the identity map over finite
paths (and consequently the scheduler is free to choose differently).

Note also that the admissible schedulers are well-defined, in the sense that
t(o) = t(o’) implies that the last states of o and ¢’ have the same possible
transitions, hence it is possible to ensure that ((o) = ((¢’). In the kind of
systems we consider (the TPAs), indeed, the only source of nondeterminism are
the interleaving and interactions of the parallel components, hence the transi-
tions available in the last states of o are determined by the set of components
enabled in the last state of o, and (o) gives (among other information) such
set. In addition, the definition of TPA allows to express in a natural and simple
way the in and the role of the scheduler is simply to select, at each step, the
component or pair of components which will perform the next transition.

5. Information-hiding properties in presence of nondeterminism

In this section we revise the standard definition of information flow and
anonymity in our framework of controlled nondeterminism.

We first consider the notion of adversary. We consider three possible notions
of adversaries, increasingly more powerful.

5.1. Adversaries
External adversaries: Clearly, an adversary should be able, by definition, to see
at least the observable actions. For an adversary external to the system S, it
is natural to assume that these are also the only actions that he is supposed to
see. Therefore, we define the observation domain, for an external adversary, as
the set of the (finite) sequences of observable actions, namely:

0. 53,
Correspondingly, we need a function ¢, : Paths*(S) — O, that extracts the
observables from the executions:

£1,0a1 L,y def . .
te (g0 == -+ =" gnn) = sieve(ay) - - - sieve(ay,)

where

sicve(a) def o ifae o,
e faeXgU{r}.

Internal adversaries: An internal adversary may be able to see, besides the
observables, also the intearleaving and synchronizations of the various compo-
nents, i.e. which component(s) are active, at each step of the execution. Hence
it is natural to define the observation domain, for an internal adversary, as the

15

sequence of pairs of observable action and tag (i.e. the identifier(s) of the active
component(s)), namely:
def *
O; = (Lx(ZoU{r}H))".
Correspondingly, we need a function ¢; : Paths*(S) — O; that extracts the
observables from the executions:

t; (qO RIL I an) def (b1, sieve(aq)) - -+ (bn, sieve(ay,)).

Note that in this definition we could have equivalently used sift instead than
sieve.

Adversaries in collusion with the scheduler: Finally, we consider the case in
which the adversary is in collusion with the scheduler, or possibly the adversary
is the scheduler, like in the Dolev-Yao model. Here the observation domain
coincides with the one of the scheduler:

O ¥ (P(L) x L x (S U{r})*.
The corresponding function
ts : Paths™(S) — Oy
is defined as the one of the scheduler, i.e. t5 = t.

5.2. Information leakage

In Information Flow and Anonymity there is a converging consensus for
formalizing the notion of leakage as the difference or the ratio between the a
priori uncertainty that the adversary has about the secret, and the a posteriori
uncertainty, that is, the residual uncertainty of the adversary once it has seen
the outcome of the computation. The uncertainty can be measured in different
ways. One popular approach is the information-theoretic one, according to
which the system is seen as a noisy channel between the secret inputs and the
observable output, and uncertainty corresponds to the Shannon entropy of the
system (see preliminaries, section B). In this approach, the leakage is represented
by the so-called mutual information, which expresses the correlation between
the input and the output.

The above approach, however, has been recently criticized by Smith [35], who
has argued that Shannon entropy is not suitable to represent the security threats
in the typical case in which the adversary is interested in figuring out the secret
in one-try attempt, and he has proposed to use Rényi’s min entropy instead, or
equivalently, the average probability of succeeding. This leads to interpret the
uncertainty in terms of the notion of vulnerability defined in the preliminaries,
section C. The corresponding notion of leakage, in the pure probabilistic case,
has been investigated in [35] (multiplicative case) and in [5] (additive case).

16

Here we adopt the vulnerability-based approach to define the notion of leak-
age in our probabilistic and nondeterministic context. The Shannon-entropy-
based approach could be extended to our context as well, because in both cases
we only need to specify how to determine the conditional probabilities which
constitute the channel matrix, and the marginal probabilities that constitute
the input and the output distribution.

We will denote by S the random variable associated to the set of secrets
S = Xg, and by O, the random variables associated to the set of observables
O,., where z € {e,i,s}. So, O, represents the observation domains for the
various kinds of adversaries defined above.

As mentioned before, our results require some structural properties for the
system: we assume that there is a single component in the system containing a
secret choice and this component contains a single secret choice. This hypothesis
is general enough to allow expressing protocols like the Dining Cryptographers,
Crowds, voting protocols, etc., where the secret is chosen only once.

Assumption 1. A system contains exactly one component with a syntactic
occurrence of a secret choice, and such a choice does not occur in the scope of
a recursive call.

Note that the assumption implies that the choice appears exactly once in
the operational semantics of the component. It would be possible to relax the
assumption and allow more than one secret choice in a component, as long as
there are no observable actions between the secret choices. But for the sake
of simplicity in this paper we impose the more restrictive requirement. As a
consequence, we have that the operational semantics of systems satisfies the
following property:

Proposition 2. If ¢ LN uoand q' 5 w' are both secret choices, then £ = ' and
there exist p;’s, ¢;’s and g, ’s such that:

N_Epz' 517% and M_Epz' Szu%

i.e., u and p' differ only for the continuation states.

Proof. Because of Assumption 1, there is only one component that can generate
a secret choice, and it generates only one such choice. Due to the different
possible interleavings, this choice can appear as an outgoing transition in more
than one state of the TPA, but the probabilities are always the same, because
the interleaving rule does not change them. O

Given a system, each scheduler ¢ determines a fully probabilistic automaton,
and, as a consequence, the probabilities

P. (s,0) dﬁt P, (U{ o € Paths*(S),t,(0) = o, secr(o) = s })

for each secret s € S and observable o € O, where x € {e,i,s}. Here secr is the
map from paths to their secret action. From these we can derive, in standard

17

ways, the marginal probabilities P¢ (s), P¢ (0), and the conditional probabilities
P: (o] s).

We have that the probabilities of the secrets are actually independent from
the scheduler:

Proposition 3. Given a system, for every pair of schedulers ¢ and (' we have
that P¢ (s) = Per (s), for every secret s.

Because of the previous proposition, we can omit ¢ in P.
Every scheduler leads to a (generally different) noisy channel, whose matrix
is determined by the conditional probabilities as follows:

Definition 5. Let x € {e,i,s}. Given a system and a scheduler ¢, the corre-
sponding channel matriz CZ” has rows indexed by s € S and columns indexed by
0 € Oy. The value in (s,0) is given by

def P (870) _ P¢ (870)
Pl =% = PG

Given a scheduler ¢, the multiplicative leakage can be defined as £ (& Ps),
while the additive leakage can be defined as L (C¢, Ps) where Ps is the a priori
distribution on the set of secrets (see preliminaries, section C). However, we
want a notion of leakage independent from the scheduler, and therefore it is
natural to consider the worst case over all possible admissible schedulers.

Definition 6 (xz-leakage). Let x € {e,i,s}. Given a system, the multiplicative
leakage is defined as

T def T
M‘CX(CC’PS) = Cg}?fmﬁx (CC7PS)5

while the additive leakage is defined as
x def x
ME+(CC5PS) = Cg}?fm‘c+(cgvps)v

where Adm is the class of admissible schedulers defined in the previous section.

We have that the classes of observables e, i, and s determine an increasing
degree of leakage:

Proposition 4. Given a system, for the multiplicative leakage we have
ML (CE, Ps) < MLy (Cp, Ps) < ML (CE, Ps).

Similarly for the additive leakage.

18

5.3. Strong anonymity (revised)

We consider now the situation in which the leakage is the minimum for all
possible admissible schedules. In the purely probabilistic case, we know that
the minimum possible multiplicative leakage is 1, and the minimum possible
additive one is 0. We also know that this is the case for all possible input distri-
butions if and only if the capacity of the channel matrix is 0, which corresponds
to the case in which the rows of the matrix are all the same. This corresponds to
the notion of strong probabilistic anonymity defined in [3]. In the framework of
information flow, it would correspond to probabilistic non-interference. Still in
[3], the authors considered also the extension of this notion in presence of non-
determinism, and required the condition to hold under all possible schedulers.
This is too strong in practice, as we have argued in the introduction: in most
cases we can build a scheduler that leaks the secret by changing the interleaving
order. We therefore tune this notion by requiring the condition to hold only
under the admissible schedulers.

Definition 7 (z-strongly anonymous). Let x € {e,i,s}. We say that a
system is x-strongly-anonymous if for all admissible schedulers ¢ we have

Pc(o]s1) =Pc(o] s2)
for all s1,s2 € ¥g, and 0 € O,.
The following corollary is an immediate consequence of Proposition 4.
Corollary 8.
1. If a system is s-strongly-anonymous, then it is also i-strongly-anonymous.
2. If a system is i-strongly-anonymous, then it is also e-strongly-anonymous.

The converse of point (2), in the previous corollary, does not hold, as shown
by the following example:

Example 3. Consider the system S ({c1,¢2}) P|| Q| T where

p (0.5:81.¢1)+(0.5:82.¢2) deefcl.o Tdéfcg.o

It is easy to check that S is e-strongly anonymous but not i-strongly anony-
mous, showing that (as expected) internal adversaries can “distinguish more”
than external adversaries.

On the contrary, for point (1) of Corollary 8, also the other direction holds:

Proposition 5. A system is s-strongly-anonymous if and only if it is i-strongly-
anonymous.

19

Proof. Corollary 8 ensures the only-if part. For the if part, we proceed by contra-
diction. Assume that the system is i-strongly-anonymous but that P¢ (o | s1) #
P (0| s2) for some admissible scheduler { and observable o € O;. Let 0 =
(enab(q), L1, sift(an)) - - - (enab(qn), tn, sift(ay)) and let o' be the projection of
oon O, ie. o = (0, sift(ar)) - (bn, sift(an,)). Since the system is i-strongly-
anonymous, P¢ (o' | s1) = P¢ (0’ | s2), which means that the difference in prob-
ability with respect to o must be due to at least one of the sets of available
processes. Let us consider the first set L in o which exhibits a difference in
the probabilities, and let o’ be the prefix of o up to the tuple containing L.
Since the probabilities are determined by the distributions on the probabilistic
choices which occur in the individual components, the probability of each £ € L
to be available (given the trace o) is independent of the other labels in L.
At least one such ¢ must therefore have a different probability, given the trace
0", depending on whether the secret choice was s; or sa. And, because of the
assumption on L, we can replace the conditioning on trace o” with the condi-
tioning on the projection o’ of 0’ on ©;. Consider now an admissible scheduler
¢’ that acts like ¢ up to o, and then selects £ if and only if it is available. Since
the probability that ¢ is not available depends on the choice of s; or s2, we have
P (0" | s1) # P¢ (0" | s2), which contradicts the hypothesis that the system is
i-strongly-anonymous. O

6. On the verification of strong anonymity: a proving technique based
on automorphisms

As mentioned in the introduction, several problems involving restricted sched-
ulers have been shown undecidable (including computing maximum/minimum
probabilities for the case of standard model checking [22], [21]). These results are
discouraging in the aim to find algorithms for verifying strong anonymity/non-
interference using our notion of admissible schedulers (and most definitions
based on restricted schedulers). Despite the fact that the problem seems to be
undecidable in general, in this section we present a sufficient (but not necessary)
anonymity proving technique: we show that the existence of automorphisms be-
tween each pair of secrets implies strong anonymity.

6.1. The proving technique

In practice proving anonymity often happens in the following way. Given a
trace in which user A is the ‘culprit’, we construct an observationally equivalent
trace in which user B is the ‘culprit’ [23, 20, 28, 24]. This new trace is typically
obtained by ‘switching’ the behavior of users A and B. We formalize this idea
by using the notion of automorphism, cf. e.g. [32].

Definition 9 (Automorphism). Given a TPA (Q,L,%,
bijection f : Q@ — @ is an automorphism if it satisfies f(q)

0 Dopi Sl i) <= f(a) = Popi - dle, S (@)

G,0) we say that a
=q and

20

In order to prove anonymity it is sufficient to prove that the behaviors of
any two ’culprits’ can be exchanged without the adversary noticing. We will
express this in the Theorem 1 by means of the existence of automorphisms that
exchange a given pair of secret s; and s;.

Our proving technique requires Assumption 1. Before presenting the main
theorem of this section we need to introduce one last definition. Let S = (C') ¢1
[|---|| gn be a system and M its corresponding TPA. We define M, as the
automaton obtained after “hiding” all the secret actions of M. The idea is to
replace every occurrence of a secret s in M by the silent action 7. Note that
this can be formalized by replacing the secret choice by a blind choice in the
corresponding component ¢; of the system S.

We can now state the relation between automorphisms and strong anonymity.

Theorem 1. Let S be a system satisfying Assumption 1 and M its tagged
probabilistic automaton. If for every pair of secrets s;,s; € Xg there exists an
automorphism f of M, such that for any state g we have

E,Sj

—u f(d), (2)

L;s;
0
then S is s-strongly-anonymous.

Proof. Assume that for every pair of secrets s;, s; we have an automorphism
f satisfying the hypothesis of the theorem. We have to show that, for every
admissible scheduler ¢ we have:

VoeOs: Pc(o]|s1)=Pc(o] s2).

We start by observing that for s;, by Proposition 2, there exists a unique p;
such that, for all transitions ¢ — pu, if u is a (probabilistic) secret choice, then
w(si, —) = p;. Similarly for s;, there exists a unique p; such that p(sj, —) = p;
for all secret choices .

Let us now recall the definition of P¢ (0| s):

d:ef P< (0/\ S)

Pc(o]9) ™ 5705

where
P:(oAs) dof P. ({meCPaths | ts(m)=0 A secr(n) = s})

with secr(m) being the (either empty or singleton) sequence of secret actions of
m, and

P, (s) & P ({r€CPaths | secr(m) = s}).

Note that, since a secret appears at most once on a complete path, we have:

21

P:(si) = P¢ ({w =%, 5 € CPaths | T, U})

SRR

71'*>q1 cPaths*

:ZPCTF

last () iu
1 secret choice

and analogously

P.(s;) = P <{7r %% & € CPaths |, a})

SEn(r)

71'*>q] cPaths*

Z P ()

last(m) iu
p secret choice

Let us now consider P¢ (0| s;) and P¢ (o] s;). We have:
P:(oNs;)
= P¢ ({w 5% 5 € CPaths | ts(m Ly, o) = 0})
= 2 Pemope) Pelo
last(w)—»u w[—> o€Paths*

t choi 0,55
At ts(m—— o)=oAlast(te(o))#T

again using that a secret appears at most once on a complete path. Moreover,
note that we have overloaded the notation P¢ by using it for different measures
when writing P¢ (o), since o need not start in the initial state §.

Analogously we have:

P¢ (oA sj)
= P, <{7r 5% 5 € CPaths | ts(m L, o) = 0})
2 Pe(mp 3 Pelo

1‘1575(77)"# . 71-‘> a’GPaths
1 secret choice

ts (w; o)=oAlast(te(o))#T

22

Therefore, we derive

) S P (n) P (0)

T
14 £,s;
last(m)—p -3 oc€Paths*

t choi £,s;
secret cholce ts(ﬂ'ja'):o/\last(te(a))#T

> Pc(n)

last () iu
1 secret choice

> 3" Pe(n) P (o)

™

P (0] 1) =

. ‘ 65
ast(m)—p 7—> oE€Paths*
o secret choice s

ts(m—> o)=oAlast(te(0))#T

> Pe(m)

last(m) i#
1 secret choice

Pc(o]s;) =

(4)

Observe that the denominators of both formulae (3) and (4) are the same. Also
note that, since f is an automorphism, for every path m, f(w) obtained by
replacing each state in 7 with its image under f is also a path. Moreover, since
f satisfies (2), for every path 7 L% 5 we have that f(m) R f (o) is also a path.
Furthermore f induces a bijection between the sets

{(m,0) | last(rm) 5 e s.t. u secret choice, L% 5 € Paths*
¢

to(mr 25 0) = o, last(te(0)) #7 }

and

/ 21 .
{(m,0)| last(r) L, js.t. p secret choice, 7 —% o € Paths*
¢

to(m =2 0) = o, last(t(c)) £ 7 }
given by (r,0) < (f(r), f(0)).

Finally, since ¢ is admissible, ¢s(7) = ¢s(f (7)), and f is an automorphism,
it is easy to prove by induction that P¢ (7) = P¢ (f(7)). Similarly, P¢ (o) =
P.(f(0)). Hence the numerators of (3) nd (4) co1nc1de which concludes the
proof. O

Note that, since s-strong anonymity implies ¢-strong anonymity and e-strong
anonymity, the existence of such an automorphism implies all the notions of
strong anonymity presented in this work.

As shown by the following example, the converse does not hold, i.e. strong
anonymity does not imply the existence of automorphisms.

Example 4. Consider the following (single component) system

0.5:51.(05:(p:a+(1—p):b)+05:((1—p):a+p:b))
+
0.5:52.(05:(¢:a+(1—q):b)+05:((1—q):a+q:b))

23

It is easy to see that such system is s-strongly-anonymous, however if p # q and
p # 1 — q there does not exist an automorphism for the pair of secrets (s1, s2).

We now show that the definition of x-strong-anonymity is independent of the
particular distribution over secrets, i.e., if a system is z-strongly-anonymous for
a particular distribution over secrets, then it is x-strongly-anonymous for all
distributions over secrets.

Theorem 2. Consider a system S = (C) q1 || --- || & || -+ || gn- Let q; be the
component which contains the secret choice, and assume that it is of the form
>;pj ¢ 8j.qj. Consider now the system S" = (C) q || =~ | g || -+ || gn,

where q, is identical to q; except for the secret choice, which is replaced by
Ej Pt 8j-qj. Then we have that:

1. For every s;, s; there is an automorphism on S satisfying the assumption
of Theorem 1 if and only if the same holds for S’.

2. S is x-strongly-anonymous if and only if S’ is x-strongly-anonymous.

Note: 1) does not imply 2), because in principle neither S not S’ may have
the automorphism, and still one of the two could be strongly anonymous.

Proof. We note that the PAs generated by S and S’ coincide except for the
probability distribution on the secret choices. Since the definition of automor-
phism and the assumption of Theorem 1 do not depend on these probability
distributions, (1) is immediate. As for (2), we observe that z-strong anonymity
only depends on the conditional probabilities P¢ (o | s). By looking at the proof
of Theorem 1, we can see that in the computation of P, (o | s) the probabilities
on the secret choices (i.e. the p;’s) are eliminated. Namely P¢ (o | s) does not
depend on the p;’s, which means that the value of the p;’s has no influence on
whether the system is xz-strong anonymous or not. O

6.2. An Application: Dining Cryptographers

Now we show how to apply the proving technique presented in this section
to the Dining Cryptographers protocol. Concretely, we show that there exists
an automorphism f exchanging the behavior of the Crypty and Crypti; by
symmetry, the same holds for the other two combinations.

Consider the automorphisms of Master and Coin; indicated in Figure 5.
The states that are not explicitly mapped (by a dotted arrow) are mapped to
themselves.

Also consider the identity automorphism on Crypt; (for ¢ = 0,1,2) and
on Coin; (for ¢ = 0,2). It is easy to check that the product of these seven
automorphisms is an automorphism for Crypty and Crypt;.

24

Master Coin;

Figure 5: Automorphism between Crypto and Crypt;

7. Conclusion and future work

We have defined a class of partial-information schedulers which can only
base their decisions on the information they have available. In particular they
cannot base their decisions on the internal behavior of the components.

We have used admissible schedulers to resolve nondeterminism in a realistic
way, and to tune the definition of strong anonymity proposed in [3].

We have presented a technique to prove the various definitions of strong
anonymity proposed in the paper. This is particularly interesting considering
that many problems related to restricted schedulers have been shown to be
undecidable. In particular we have shown how to use the technique to prove that
the DC protocol is strongly anonymous when considering admissible schedulers,
in contrast to the situation when considering full-information schedulers.

We plan to investigate the decidability problem for the various definitions
of strong anonymity we have proposed. Another interesting direction for fu-
ture work is to extend well known isomorphism-checking algorithms and tools
(see [19] for a survey) to our setting in order to verify automatically strong
anonymity (in case an automorphism exists - recall that this is not a necessary
condition).

Acknowledgement

The authors wish to thank Flavio Garcia, Pedro D’Argenio, Sergio Giro, and
Mariélle Stoelinga for useful comments on an earlier version of this paper, as

25

well as the anonymous reviewers for thoroughly reading the paper and providing
thoughtful recommendations.

References

1]

M. S. Alvim, M. E. Andrés, C. Palamidessi, and P. van Rossum. Safe Equiv-
alences for Security Properties. In Proceedings of the 6th IFIP International
Conference on Theoretical Computer Science (TCS 2010), IFIP Advances
in Information and Communication Technology, 2010. To appear.

M. E. Andrés, C. Palamidessi, P. van Rossum, and A. Sokolova. Informa-
tion hiding in probabilistic concurrent systems. In Proceedings of the 7th
International Conference on Quantitative Evaluation of SysTems (QEST)
2010, 2010. To appear. Available at www.cs.ru.nl/M.Andres/downloads/
SAuN.pdf.

M. Bhargava and C. Palamidessi. Probabilistic anonymity. In M. Abadi
and L. de Alfaro, editors, Proceedings of CONCUR, volume 3653 of Lecture
Notes in Computer Science, pages 171-185. Springer, 2005.

C. Braun, K. Chatzikokolakis, and C. Palamidessi. Compositional methods
for information-hiding. In R. Amadio, editor, Proceedings of FOSSACS, vol-
ume 4962 of Lecture Notes in Computer Science, pages 443-457. Springer,
2008.

C. Braun, K. Chatzikokolakis, and C. Palamidessi. Quantitative notions
of leakage for one-try attacks. In Proceedings of the 25th Conf. on Mathe-
matical Foundations of Programming Semantics, volume 249 of Electronic
Notes in Theoretical Computer Science, pages 75—91. Elsevier B.V., 2009.

R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N. Lynch, O. Pereira, and
R. Segala. Task-structured probabilistic i/o automata. In Proceedings the
8th International Workshop on Discrete Event Systems (WODES’06), Ann
Arbor, Michigan, 2006.

R. Canetti, L. Cheung, D. K. Kaynar, M. Liskov, N. A. Lynch, O. Pereira,
and R. Segala. Time-bounded task-PIOAs: A framework for analyzing
security protocols. In S. Dolev, editor, Proceedings of the 20th International
Symposium in Distributed Computing (DISC ’06), volume 4167 of Lecture
Notes in Computer Science, pages 238-253. Springer, 2006.

K. Chatzikokolakis, G. Norman, and D. Parker. Bisimulation for demonic
schedulers. In L. de Alfaro, editor, Proc. of the Twelfth Int. Conf. on
Foundations of Software Science and Computation Structures (FOSSACS
2009), volume 5504 of Lecture Notes in Computer Science, pages 318-332,
York, UK, March 2009 2009. Springer.

26

[9]

[10]

[11]

[16]

[17]

18]

K. Chatzikokolakis and C. Palamidessi. Making random choices invisible
to the scheduler. In L. Caires and V. T. Vasconcelos, editors, Proceedings
of the 18th International Conference on Concurrency Theory (CONCUR
2007), volume 4703 of Lecture Notes in Computer Science, pages 42-58.
Springer, 2007.

K. Chatzikokolakis, C. Palamidessi, and P. Panangaden. Anonymity pro-
tocols as noisy channels. Inf. and Comp., 206(2—-4):378-401, 2008.

K. Chatzikokolakis, C. Palamidessi, and P. Panangaden. On the Bayes risk
in information-hiding protocols. Journal of Computer Security, 16(5):531—
571, 2008.

D. Chaum. The dining cryptographers problem: Unconditional sender and
recipient untraceability. Journal of Cryptology, 1:65-75, 1988.

D. Clark, S. Hunt, and P. Malacaria. Quantified interference for a while
language. In Proceedings of the Second Workshop on Quantitative Aspects
of Programming Languages (QAPL 2004), volume 112 of Electronic Notes
in Theoretical Computer Science, pages 149-166. Elsevier Science B.V.,
2005.

D. Clark, S. Hunt, and P. Malacaria. Quantitative information flow, rela-
tions and polymorphic types. J. of Logic and Computation, 18(2):181-199,
2005.

I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A dis-
tributed anonymous information storage and retrieval system. In Inter-
national Workshop on Design Issues in Anonymity and Unobservability,
volume 2009 of Lecture Notes in Computer Science, pages 44-66. Springer,
2000.

M. R. Clarkson, A. C. Myers, and F. B. Schneider. Belief in information
flow. Journal of Computer Security, 17(5):655-701, 2009.

T. M. Cover and J. A. Thomas. Elements of Information Theory. John
Wiley & Sons, Inc., second edition, 2006.

L. de Alfaro, T. A. Henzinger, and R. Jhala. Compositional methods for
probabilistic systems. In K. G. Larsen and M. Nielsen, editors, Proceedings
of the 12th International Conference on Concurrency Theory (CONCUR
2001), volume 2154 of Lecture Notes in Computer Science. Springer, 2001.

P. Foggia, C. Sansone, and M. Vento. A performance comparison of five
algorithms for graph isomorphism. In Proc. of the IAPR TC-15 Ws. on
Graph-based Representations in Pattern Recognition, pages 188-199, 2001.

F. D. Garcia, I. Hasuo, P. van Rossum, and W. Pieters. Provable
anonymity. In R. Kiisters and J. Mitchell, editors, Proceedings of the 2005
ACM Workshop on Formal Methods in Security Engineering (FMSE ’05),
pages 63-72. ACM, 2005.

27

[21]

[22]

[26]

[27]

28]

[29]

[30]

S. Giro. Undecidability results for distributed probabilistic systems. In
M. V. M. Oliveira and J. Woodcock, editors, 12th Brazilian Symposium on
Foundations and Applications of Formal Methods (SBMF'), volume 5902 of
Lecture Notes in Computer Science, pages 220-235. Springer, 2009.

S. Giro and P. R. D’Argenio. Quantitative model checking revisited: Nei-
ther decidable nor approximable. In J.-F. Raskin and P. S. Thiagarajan,
editors, Proceedings of the 5th International Conference on Formal Model-
ing and Analysis of Timed Systems (FORMATS), volume 4763 of Lecture
Notes in Computer Science, pages 179-194. Springer, 2007.

J. Y. Halpern and K. R. O’Neill. Anonymity and information hiding in
multiagent systems. Journal of Computer Security, 13(3):483-512, 2005.

I. Hasuo and Y. Kawabe. Probabilistic anonymity via coalgebraic simu-
lations. In Proceedings of the European Symposium on Programming, vol-
ume 4421 of Lecture Notes in Computer Science, pages 379-394. Springer,
Berlin, 2007.

M. Z. Kwiatkowska, G. Norman, and D. Parker. Symmetry reduction for
probabilistic model checking. In T. Ball and R. B. Jones, editors, Proceed-
ings of the 18th International Conference on Computer Aided Verification,
CAV 2006, volume 4144 of Lecture Notes in Computer Science, pages 234—
248. Springer, 2006.

P. Malacaria. Assessing security threats of looping constructs. In M. Hof-
mann and M. Felleisen, editors, Proceedings of the 34th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
2007, Nice, France, January 17-19, 2007, pages 225-235. ACM, 2007.

P. Malacaria and H. Chen. Lagrange multipliers and maximum information
leakage in different observational models. In Ulfar Erlingsson and Marco
Pistoia, editor, Proceedings of the 2008 Workshop on Programming Lan-
guages and Analysis for Security (PLAS 2008), pages 135-146, Tucson,
AZ, USA, June 8, 2008 2008. ACM.

S. Mauw, J. Verschuren, and E. de Vink. A formalization of anonymity
and onion routing. In P. Samarati, P. Ryan, D. Gollmann, and R. Molva,
editors, Proceedings of the European Symposium on Research in Computer
Security, volume 3193 of Lecture Notes in Computer Science, pages 109—
124, 2004.

R. Milner. Communication and Concurrency. International Series in Com-
puter Science. Prentice Hall, 1989.

R. Milner. Communicating and mobile systems: the m-calculus. Cambridge
University Press, 1999.

M. K. Reiter and A. D. Rubin. Crowds: anonymity for Web transactions.
ACM Transactions on Information and System Security, 1(1):66-92, 1998.

28

32]

[33]

[34]

37]

J. J. Rutten. Universal coalgebra: A theory of systems. Theoretical Com-
puter Science, 249:3-80, 2000.

R. Segala. Modeling and Verification of Randomized Distributed Real-Time
Systems. PhD thesis, June 1995. Tech. Rep. MIT/LCS/TR-676.

R. Segala and N. Lynch. Probabilistic simulations for probabilistic pro-
cesses. Nordic Journal of Computing, 2(2):250-273, 1995. An extended
abstract appeared in Proceedings of CONCUR ’94, LNCS 836: 481-496.

G. Smith. On the foundations of quantitative information flow. In L. de
Alfaro, editor, Proc. of the 12th Int. Conf. on Foundations of Software
Science and Computation Structures, volume 5504 of LNCS, pages 288—
302, York, UK, 2009. Springer.

P. Syverson, D. Goldschlag, and M. Reed. Anonymous connections and
onion routing. In IEEE Symposium on Security and Privacy, pages 44-54,
Oakland, California, 1997.

Y. Zhu and R. Bettati. Anonymity vs. information leakage in anonymity
systems. In Proc. of ICDCS, pages 514-524. IEEE Computer Society, 2005.

29

