
Significant Diagnostic Counterexamples in
Probabilistic Model Checking

Miguel E. Andrés1 ?, Pedro D’Argenio2 ?? , Peter van Rossum1

1Institute for Computing and Information Sciences, The Netherlands.
{mandres,petervr}@cs.ru.nl

2FaMAF, Universidad Nacional de Córdoba, CONICET, Argentina.
dargenio@famaf.unc.edu.ar

Abstract. This paper presents a novel technique for counterexample gener-
ation in probabilistic model checking of Markov chains and Markov Decision
Processes. (Finite) paths in counterexamples are grouped together in witnesses
that are likely to provide similar debugging information to the user. We list
five properties that witnesses should satisfy in order to be useful as debugging
aid: similarity, accuracy, originality, significance, and finiteness. Our witnesses
contain paths that behave similarly outside strongly connected components.

Then, we show how to compute these witnesses by reducing the problem of
generating counterexamples for general properties over Markov Decision Pro-
cesses, in several steps, to the easy problem of generating counterexamples for
reachability properties over acyclic Markov chains.

1 Introduction

Model checking is an automated technique that, given a finite-state model of a system
and a property stated in an appropriate logical formalism, systematically checks the
validity of this property. Model checking is a general approach and is applied in areas
like hardware verification and software engineering.

Nowadays, the interaction geometry of distributed systems and network protocols
calls for probabilistic, or more generally, quantitative estimates of, e.g., performance
and cost measures. Randomized algorithms are increasingly utilized to achieve high
performance at the cost of obtaining correct answers only with high probability. For
all this, there is a wide range of models and applications in computer science requiring
quantitative analysis. Probabilistic model checking allows to check whether or not a
probabilistic property is satisfied in a given model, e.g., “Is every message sent success-
fully received with probability greater or equal than 0.99?”.

A major strength of model checking is the possibility of generating diagnostic infor-
mation in case the property is violated. This diagnostic information is provided through
a counterexample showing an execution of the model that invalidates the property under
verification. Besides the immediate feedback in model checking, counterexamples are
also used in abstraction-refinement techniques [CGJ+00], and provide the foundations
for schedule derivation (see, e.g., [BLR05]).

Although counterexample generation was studied from the very beginning in most
model checking techniques, this has not been the case for probabilistic model checking.
Only recently [AHL05,AD06,AL06,HK07a,HK07b,AL07] attention was drawn to this
subject,fifteen years after the first studies on probabilistic model checking. Contrarily
to other model checking techniques, counterexamples in this setting are not given by
a single execution path. Instead, they are sets of executions of the system satisfying
a certain undesired property whose probability mass is higher than a given bound.

? Supported by NWO project 612.000.526
?? Supported by the ANPCyT project PICT 26135 and CONICET project PIP 6391

Since counterexamples are used as a diagnostic tool, previous works on counterexam-
ples have presented them as sets of finite paths with probability large enough. We refer
to these sets as representative counterexamples. Elements of representative counterex-
amples with high probability have been considered the most informative since they
contribute mostly to the property refutation.

A challenge in counterexample generation for probabilistic model checking is that
(1) representative counterexamples are very large (often infinite), (2) many of its el-
ements have very low probability (which implies that are vert distant from the coun-
terexample), and (3) that elements can be extremely similar to each other (consequently
providing similar diagnostic information). Even worse, (4) sometimes the finite paths
with highest probability do not indicate the most likely violation of the property under
consideration.

For example, look at the Markov chain D in Figure 1. The property D |=≤0.5 ♦ψ
stating that execution reaches a state satisfying ψ (i.e., reaches s3 or s4) with proba-
bility lower or equal than 0.5 is violated (since the probability of reaching ψ is 1). The
left hand side of table in Figure 2 lists finite paths reaching ψ ranked according to their
probability. Note that finite paths with highest probability take the left branch in the
system, whereas the right branch in itself has higher probability, illustrating Problem 4.
To adjust the model so that it does satisfy the property (bug fixing), it is not sufficient
to modify the left hand side of the system alone; no matter how one changes the left
hand side, the probability of reaching ψ remains at least 0.6. Furthermore, the first
six finite paths provide similar diagnostic information: they just make extra loops in
s1. This is an example of Problem 3. Additionally, the probability of every single finite
path is far below the bound 0.5, making it unclear if a particular path is important;
see Problem 2 above. Finally, the (unique) counterexample for the property D |=<1 ♦ψ
consists of infinitely many finite paths (namely all finite paths of D); see Problem 1.
To overcome these problems, we partition a representative counterexample into sets of

s0

s1 s2

s3

ψ

s4

ψ

0,5 0,99

0,4 0,6

0,5 0,01

Fig. 1: Markov chain

Single paths Witnesses

Rank F. Path Prob Witness Mass

1 s0(s1)
1s3 0.2 [s0s2s4] 0.6

2 s0(s1)
2s3 0.1 [s0s1s3] 0.4

3 s0(s1)
3s3 0.05

4 s0(s1)
4s3 0.025

5 s0(s1)
5s3 0.0125

6 s0(s1)
6s3 0.00625

7 s0(s2)
1s4 0.006

8 s0(s2)
2s4 0.0059

9 s0(s2)
3s4 0.0058

...
...

...

Fig. 2: Comparison Table

finite paths that follow a similar pattern. We call these sets witnesses. To ensure that
witnesses provide valuable diagnostic information, we desire that the set of witnesses
that form a counterexample satisfies several properties: two different witnesses should
provide different diagnostic information (solving Problem 3) and elements of a single
witness should provide similar diagnostic information, as a consequence witnesses have
a high probability mass (solving Problems 2 and 4), and the number of witnesses of a
representative counterexample should be finite (solving Problem 1).

In our setting, witnesses consist of paths that behave the same outside strongly
connected components. In the example of Figure 1, there are two witnesses: the set of
all finite paths going right, represented by [s0s2s4] whose probability (mass) is 0.6, and
the set of all finite paths going left, represented by [s0s1s3] with probability (mass) 0.4.

In this paper, we show how to obtain such sets of witnesses for bounded probabilistic
LTL properties on Markov Decision Processes (MDP). In fact, we first show how to

2

reduce this problem to finding witnesses for upper bounded probabilistic reachability
properties on discrete time Markov chains (MCs). The major technical matters lie on
this last problem to which most of the paper is devoted.

In a nutshell, the process to find witnesses for the violation of D |=≤p
♦ψ, with D

being an MC, is as follows. We first eliminate from the original MC all the “unin-
teresting” parts. This proceeds as the first steps of the model checking process: make
absorbing all states satisfying ψ, and all states that cannot reach ψ, obtaining a new
MC Dψ. Next reduce this last MC to an acyclic MC Ac(Dψ) in which all strongly
connected components have been conveniently abstracted with a single probabilistic
transition. The original and the acyclic MCs are related by a mapping that, to each
finite path in Ac(Dψ) (that we call rail), assigns a set of finite paths behaving similarly
in D (that we call torrent). This map preserves the probability of reaching ψ and hence
relates counterexamples in Ac(Dψ) to counterexamples in D. Finally, counterexamples
in Ac(Dψ) are computed by reducing the problem to a k shortest path problem, as in
[HK07a]. Because Ac(Dψ) is acyclic, the complexity is lower than the corresponding
problem in [HK07a].

It is worth mentioning that our technique can also be applied to pCTL formulas
without nested path quantifiers.

Organization of the paper. Section 2 presents the necessary background on Markov
chains (MC), Markov Decision Processes (MDP), and Linear Temporal Logic (LTL).
Section 3 presents the definition of counterexamples and discusses the reduction from
general LTL formulas to upper bounded probabilistic reachability properties, and the
extraction of the maximizing MC in an MDP. Section 4 discusses desired properties of
counterexamples. In Sections 5 and 6 we introduce the fundamentals on rails and tor-
rents, the reduction of the original MC to the acyclic one, and our notion of significant
diagnostic counterexamples. Section 7 then presents the techniques to actually compute
counterexamples. In Section 8 we discuss related work and give final conclusions.

2 Preliminaries

2.1 Markov Decision Processes

Markov Decision Processes (MDPs) constitute a formalism that combines nondetermin-
istic and probabilistic choices. They are an important model in corporate finance, sup-
ply chain optimization, system verification and optimization. There are many slightly
different variants of this formalism such as action-labeled MDPs [Bel57,FV97], proba-
bilistic automata [SL95,SdV04]; we work with the state-labeled MDPs from [BdA95].

Definition 2.1. Let S be a finite set. A probability distribution on S is a function
p : S → [0, 1] such that

∑
s∈S p(s) = 1. We denote the set of all probability distributions

on S by Distr(S). Additionally, we define the Dirac distribution on an element s ∈ S
as 1s, i.e., 1s(s) = 1 and 1s(t) = 0 for all t ∈ S \ {s}.
Definition 2.2. A Markov Decision Process (MDP) is a quadruple M = (S, s0, L, τ),
where
• S is the finite state space;
• s0 ∈ S is the initial state;
• L is a labeling function that associates to each state s ∈ S a set L(s) of propositional

variables that are valid in s;
• τ : S → ℘(Distr(S)) is a function that associates to each s ∈ S a non-empty and

finite subset of Distr(S) of probability distributions.

Definition 2.3. Let M = (S, s0, τ, L) be an MDP. We define a successor relation
δ ⊆ S×S by δ , {(s, t)|∃π∈τ(s) .π(t) > 0} and for each state s∈S we define the sets

Paths(M, s) , {t0t1t2 . . . ∈ Sω|t0 = s ∧ ∀n ∈ N . δ(tn, tn+1)} and

Paths?(M, s) , {t0t1 . . . tn ∈ S?|t0 = s ∧ ∀ 0 ≤ i < n . δ(tn, tn+1)}

3

of paths of D and finite paths of D respectively beginning at s. We usually omit M
from the notation; we also abbreviate Paths(M, s0) as Paths(M) and Paths?(M, s0) as
Paths?(M). For ω ∈ Paths(s), we write the (n+1)-st state of ω as ωn. As usual, we let
Bs ⊆ ℘(Paths(s)) be the Borel σ-algebra on the cones 〈t0 . . . tn〉 , {ω ∈ Paths(s)|ω0 =
t0 ∧ . . . ∧ ωn = tn}. Additionally, for a set of finite paths Λ ⊆ Paths?(s), we define
〈Λ〉 ,

⋃
σ∈Λ〈σ〉.

s0

{w} s1 s2 {w}

{w} s3
s4 {w} s5

s6

s7 s8

s9 s10 s11

s12

{v}

s13

{v, w}

s14

{v}

π1 π2

1 0,4 0,6

0,3

0,4

0,3

0,2

0,3

0,5

0,6..

0,4.

0,3

.0,5

0,2

1..

1

0,2

0,8

1 1

0, 4

0, 60, 6

0, 4

Fig. 3: Markov Decision Process

Figure 3 shows an MDP. Absorbing states (i.e., states s with τ(s) = {1s}) are
represented by double lines. This MDP features a single nondeterministic decision, to
be made in state s0, namely π1 and π2.

Definition 2.4. Let M = (S, s0, τ, L) be an MDP, s ∈ S and A ⊆ S. We define the
sets of paths and finite paths reaching A from s as

Reach(M, s,A) , {ω ∈ Paths(M, s) | ∃i≥0.ωi ∈ A} and

Reach?(M, s,A) , {σ ∈ Paths?(M, s) | last(σ) ∈ A ∧ ∀i≤|σ|−1.σi 6∈ A}
respectively. Note that Reach?(M, s,A) consists of those finite paths σ starting on s
reaching A exactly once, at the end of the execution. It is easy to check that these sets
are prefix free, i.e. contain finite paths such that none of them is a prefix of another
one.

2.2 Schedulers

Schedulers (also called strategies, adversaries, or policies) resolve the nondeterministic
choices in an MDP [PZ93,Var85,BdA95].

Definition 2.5. Let M = (S, s0, τ, L) be an MDP. A scheduler η on M is a function
from Paths?(M) to Distr(℘(Distr(S))) such that for all σ ∈ Paths?(M) we have η(σ) ∈
Distr(τ(last(σ))). We denote the set of all schedulers on M by Sch(M).

Note that our schedulers are randomized, i.e., in a finite path σ a scheduler chooses
an element of τ(last(σ)) probabilistically. Under a scheduler η, the probability that the
next state reached after the path σ is t, equals

∑
π∈τ(last(σ)) η(σ)(π) · π(t). In this way,

a scheduler induces a probability measure on Bs as usual.

Definition 2.6. Let M = (S, s0, τ, L) be an MDP and η a scheduler on M. We
define the probability measure Prη as the unique measure on Bs0 such that for all
s0s1 . . . sn ∈ Paths?(M)

Prη(〈s0s1 . . . sn〉) =
n−1∏

i=0

∑

π∈τ(si)

η(s0s1 . . . si)(π) · π(si+1).

4

We now recall the notions of deterministic and memoryless schedulers.

Definition 2.7. Let M be an MDP and η a scheduler on M. We say that η is
deterministic if η(σ)(πi) is either 0 or 1 for all πi ∈ τ(last(σ)) and all σ ∈ Paths?(M).
We say that a scheduler is memoryless if for all finite paths σ1, σ2 of M with last(σ1) =
last(σ2) we have η(σ1) = η(σ2)

Definition 2.8. Let M be an MDP and ∆ ∈ Bs0 . Then the maximal probability Pr+

and minimal probability Pr− of ∆ are defined by
Pr+(∆) , sup

η∈Sch(M)

Prη(∆) and Pr−(∆) , inf
η∈Sch(M)

Prη(∆).

A scheduler that attains Pr+(∆) or Pr−(∆) is called a maximizing or minimizing
scheduler respectively.

2.3 Markov chains

A (discrete time) Markov chain is an MDP associating exactly one probability distri-
bution to each state. In this way nondeterministic choices are not longer allowed.

Definition 2.9 (Markov chain). Let M = (S, s0, τ, L) be an MDP. If |τ(s)| = 1 for
all s ∈ S, then we say that M is a Markov chain (MC).

In order to simplify notation we represent probabilistic transitions on MCs by means
of a probabilistic matrix P instead of τ . Additionally, we denote by PrD,s

the prob-
ability measure induced by a MC D with initial state s and we abbreviate PrD,s0

as
PrD .

2.4 Linear Temporal Logic

Linear temporal logic (LTL) [MP91] is a modal temporal logic with modalities referring
to time. In LTL is possible to encode formulas about the future of paths: a condition
will eventually be true, a condition will be true until another fact becomes true, etc.

Definition 2.10. LTL is built up from the set of propositional variables V, the logical
connectives ¬, ∧, and a temporal modal operator by the following grammar:

φ ::= V | ¬φ | φ ∧ φ | φUφ.

Using these operators we define ∨,→, ♦, and ¤ in the standard way.

Definition 2.11. Let M = (S, s0, τ, L) be an MDP. We define satisfiability for paths
ω in M, propositional variables v ∈ V, and LTL formulas φ, γ inductively by

ω |=M v ⇔ v ∈ L(ω0) ω |=M φ ∧ γ ⇔ ω |=M φ and ω |=M γ
ω |=M ¬φ ⇔ not(ω |=M φ) ω |=M φUγ ⇔ ∃i≥0.ω↓i |=M γ and ∀0≤j<i.ω↓j |=M φ

where ω↓i is the i-th suffix of ω. When confusion is unlikely, we omit the subscript M
on the satisfiability relation.

Definition 2.12. LetM be an MDP. We define the language SatM(φ) associated to an
LTL formula φ as the set of paths satisfying φ, i.e. SatM(φ) , {ω ∈ Paths(M) | ω |= φ}.
Here we also generally omit the subscript M.

We now define satisfiability of an LTL formula φ on an MDP M. We say that
M satisfies φ with probability at most p (M |=≤p

φ) if the probability of getting an
execution satisfying φ is at most p.

Definition 2.13. Let M be an MDP, φ an LTL formula and p ∈ [0, 1]. We define
|=≤p

and |=≥p
by

M |=≤p
φ ⇔ Pr+(Sat(φ)) ≤ p,

M |=≥p
φ ⇔ Pr−(Sat(φ)) ≥ p.

We define M |=<p φ and M |=>p φ in a similar way. In case the MDP is fully probabilis-
tic, i.e., an MC, the satisfiability problem is reduced to M |=./p φ ⇔ PrM(Sat(φ)) ./ p,
where ./∈ {<,≤, >,≥}.

5

3 Counterexamples

In this section, we define what counterexamples are and how the problem of finding
counterexamples to a general LTL property over Markov Decision Processes reduces to
finding counterexamples to reachability problems over Markov chains.

Definition 3.1 (Counterexamples). Let M be an MDP and φ an LTL formula. A
counterexample to M |=≤p

φ is a measurable set C ⊆ Sat(φ) such that Pr+(C) > p.
Counterexamples to M |=

<p
φ are defined similarly.

Counterexamples to M |=
>p

φ and M |=≥p
φ cannot be defined straightforwardly as

it is always possible to find a set C ⊆ Sat(φ) such that Pr−(C) ≤ p or Pr−(C) < p, note
that the empty set trivially satisfies it. Therefore, the best way to find counterexam-
ples to lower bounded probabilities is to find counterexamples to the dual properties
M |=

<1−p
¬φ and M |=≤1−p

¬φ. That is, while for upper bounded probabilities, a coun-
terexample is a set of paths satisfying the property with mass probability beyond the
bound, for lower bounded probabilities the counterexample is a set of paths that does
not satisfy the property with sufficient probability.

s0

s1 s2 s3

s4

{v}

s5

{v}

π1 π2

0,6 0,2

0,7

0,5 0,99

0,5 0,01

0,4 0,1

Fig. 4:

Example 1. Consider the MDP M of Figure 4
and the LTL formula ♦v. It is easy to check
that M 6|=<1 ♦v. The set C = Sat(♦v) =
{ρ ∈ Paths(s0)|∃i≥0.ρ = s0(s1)i(s4)ω} ∪ {ρ ∈
Paths(s0)|∃i≥0.ρ=s0(s3)i(s5)ω} is a counterexam-
ple. Note that Prη(C)=1 where η is any determin-
istic scheduler on M satisfying η(s0) = π1.

LTL formulas are actually checked by reduc-
ing the model checking problem to a reachability
problem [dAKM97]. For checking upper bounded
probabilities, the LTL formula is translated into
an equivalent deterministic Rabin automaton and
composed with the MDP under verification. On
the obtained MDP, the set of states forming accepting end components (SCC that
traps accepting conditions with probability 1) are identified. The maximum probabil-
ity of the LTL property on the original MDP is the same as the maximum probability of
reaching a state of an accepting end component in the final MDP. Hence, from now on
we will focus on counterexamples to properties of the form M |=≤p

♦ψ or M |=<p ♦ψ,
where ψ is a propositional formula, i.e., a formula without temporal operators.

In the following, it will be useful to identify the set of states in which a propositional
property is valid.

Definition 3.2. Let M be an MDP. We define the state language SatM(ψ) associated
to a propositional formula ψ as the set of states satisfying ψ, i.e., SatM(ψ) , {s ∈
S | s |= ψ}, where |= has the obvious satisfaction meaning for states. As usual, we
generally omit the subscript M.

We will show now that, in order to find a counterexample to a property in an
MDP with respect to an upper bound, it suffices to find a counterexample for the
MC induced by the maximizing scheduler. The maximizing scheduler turns out to be
deterministic and memoryless [BdA95]; consequently the induced Markov chain can be
easily extracted from the MDP as follows.

Definition 3.3. Let M = (S, s0, τ, L) be an MDP and η a deterministic memoryless
scheduler. Then we define the MC induced by η asMη = (S, s0,Pη, L) where Pη(s, t) =
(η(s))(t) for all s, t ∈ S.

6

Now we state that finding counterexamples to upper bounded probabilistic reach-
ability LTL properties on MDPs can be reduced to finding counterexamples to upper
bounded probabilistic reachability LTL properties on MCs.

Theorem 3.4. Let M be an MDP, ψ a propositional formula and p ∈ [0, 1]. Then,
there is a maximizing (deterministic memoryless) scheduler η such that M |=≤p

♦ψ ⇔
Mη |=≤p

♦ψ. Moreover, if C is a counterexample to Mη |=≤p
♦ψ then C is also a coun-

terexample to M |=≤p
♦ψ.

Note that η can be computed by solving a linear minimization problem [BdA95].
See Section 7.1.

4 Representative Counterexamples, Partitions and Witnesses

The notion of counterexample from Definition 3.1 is very broad: just an arbitrary
(measurable) set of paths with high enough mass probability. To be useful as a debug-
ging tool (and in fact to be able to present the counterexample to a user), we need
counterexamples with specific properties. We will partition counterexamples (or rather,
representative counterexamples) in witnesses and list five informal properties that we
consider valuable in order to increase the quality of witnesses as a debugging tool.

We first note that for reachability properties it is sufficient to consider counterex-
amples that consist of finite paths.

Definition 4.1 (Representative counterexamples). Let M be an MDP, ψ a
propositional formula and p ∈ [0, 1]. A representative counterexample to M |=≤p

♦ψ
is a set C ⊆ Reach?(M,Sat(ψ)) such that Pr+(〈C〉) > p. We denote the set of all
representative counterexamples to M |=≤p

♦ψ by R(M, p, ψ).

Theorem 4.2. Let M be an MDP, ψ a propositional formula and p ∈ [0, 1]. If C
is a representative counterexample to M |=≤p

♦ψ, then 〈C〉 is a counterexample to
M |=≤p

♦ψ. Furthermore, there exists a counterexample to M |=≤p
♦ψ if and only if

there exists a representative counterexample to M |=≤p
♦ψ.

Following [HK07a], we present the notions of minimum counterexample, strongest
evidence and most indicative counterexamples.

Definition 4.3 (Minimum counterexample). Let D be an MC, ψ a propositional
formula and p ∈ [0, 1]. We say that C ∈ R(D, p, ψ) is a minimum counterexample if
|C| ≤ |C′|, for all C′ ∈ R(D, p, ψ).

Definition 4.4 (Strongest evidence). Let D be an MC, ψ a propositional formula
and p ∈ [0, 1]. A strongest evidence to D 6|=≤p

♦ψ is a finite path σ ∈ Reach?(D, Sat(ψ))
such that PrD (〈σ〉) ≥ PrD (〈ρ〉), for all ρ ∈ Reach?(D, Sat(ψ)).

Definition 4.5 (Most indicative counterexample). Let D be an MC, ψ a propo-
sitional formula and p ∈ [0, 1]. We call C ∈ R(D, p, ψ) a most indicative counterex-
ample if it is minimum and PrD (〈C〉) ≥ PrD (〈C′〉), for all minimum counterexamples
C′ ∈ R(D, p, ψ).

Unfortunately, very often most indicative counterexamples are very large (even
infinite), many of its elements have insignificant measure and elements can be extremely
similar to each other (consequently providing the same diagnostic information). Even
worse, sometimes the finite paths with highest probability do not exhibit the way in
which the system accumulates higher probability to reach the undesired property (and
consequently where an error occurs with higher probability). For these reasons, we are
of the opinion that representative counterexamples are still too general in order to be
useful as feedback information. We approach this problem by refining a representative
counterexample into sets of finite paths following a “similarity” criteria (introduced in
Section 5). These sets are called witnesses of the counterexample.

7

Recall that a set Y of nonempty sets is a partition of X if the elements of Y cover
X and are pairwise disjoint. We define counterexample partitions in the following way.

Definition 4.6 (Counterexample partitions and witnesses). LetM be an MDP,
ψ a propositional formula, p ∈ [0, 1], and C a representative counterexample toM |=≤p

♦ψ.
A counterexample partition WC is a partition of C. We call the elements of WC witnesses.

Since not every partition generates useful witnesses (from the debugging perspec-
tive), we now state five informal properties that we consider valuable in order to improve
the diagnostic information provided by witnesses. In Section 7 we show how to parti-
tion the representative counterexample in order to obtain witnesses satisfying most of
these properties.

Similarity: Elements of a witness should provide similar debugging information.
Accuracy: Witnesses with higher probability should exhibit evolutions of the sys-
tem with higher probability of containing errors.
Originality: Different witnesses should provide different debugging information.
Significance: Witnesses should be as closed to the counterexample as possible
(their mass probability should be as closed as possible to the bound p).
Finiteness: The number of witnesses of a counterexample partition should be
finite.

5 Rails and Torrents

As argued before we consider that representative counterexamples are excessively gen-
eral to be useful as feedback information. Therefore, we group finite paths of a repre-
sentative counterexample in witnesses if they are “similar enough”. We will consider
finite paths that behave the same outside SCCs of the system as providing similar
feedback information.

In order to formalize this idea, we first reduce the original MC D to an acyclic
MC preserving reachability probabilities. We do so by removing all SCCs K of D
keeping just input states of K. In this way, we get a new acyclic MC denoted by Ac(D).
The probability matrix of the Markov chain relates input states of each SCC to its
output states with the reachability probability between these states in D. Secondly, we
establish a map between finite paths σ in Ac(D) (rails) and sets of paths Wσ in D
(torrents). Each torrent contains finite paths that are similar, i.e., behave the same
outside SCCs. We conclude the section showing that the probability of σ is equal to
the mass probability of Wσ.

Reduction to Acyclic Markov chains

Consider an MC D = (S, s0,P, L). Recall that a subset K ⊆ S is called strongly
connected if for every s, t ∈ K there is a finite path from s to t. Additionally K is called
a strongly connected component (SCC) if it is a maximally (with respect to ⊆) strongly
connected subset of S.

Note that every state is a member of exactly one SCC of D; even those states that
are not involved in cycles, since the trivial finite path s connects s to itself. We call
trivial strongly connected components to the SCCs containing absorbing states or states
not involved in cycles (note that trivial SCCs are composed by one single state). From
now on we let SCC? be the set of non trivial strongly connected components of an MC.

A Markov chain is called acyclic if it contains only trivial SCCs. Note that an
acyclic Markov chain still has absorbing states.

Definition 5.1 (Input and Output states). Let D = (S, s0,P, L) be an MC. Then,
for each SCC? K of D, we define the sets InpK ⊆ S of all states in K that have an
incoming transition from a state outside of K and OutK ⊆ S of all states outside of K
that have an incoming transition from a state of K in the following way

8

InpK , {t ∈ K | ∃ s ∈ S \K .P(s, t) > 0},
OutK , {s ∈ S \K | ∃ t ∈ K .P(t, s) > 0}.

We also define for each SCC? K an MC related to K as DK , (K∪OutK, sK,PK, LK)
where sK is any state in InpK, LK(s) , L(s), and PK(s, t) is equal to P(s, t) if s ∈ K
and equal to 1s otherwise. Additionally, for every state s involved in non trivial SCCs
we define SCC+

s as DK, where K is the SCC? of D such that s ∈ K.

Now we are able to define an acyclic MC Ac(D) related to D.

Definition 5.2. Let D = (S, s0,P, L) be a MC. We define Ac(D) , (S′, s0,P ′, L′)
where

• S′ ,

Scom︷ ︸︸ ︷
S \

⋃

K∈SCC?

K
⋃

Sinp︷ ︸︸ ︷⋃

K∈SCC?

InpK,

• L′ , L|S′ ,

• P ′(s, t) ,





P(s, t) if s ∈ Scom,
PrD,s

(Reach(SCC+
s , s, {t})) if s ∈ Sinp ∧ t ∈ OutSCC+

s
,

1s if s ∈ Sinp ∧OutSCC+
s

= ∅,
0 otherwise.

Note that Ac(D) is indeed acyclic.

Example 2. Consider the MC D of Figure 5(a). The strongly connected components of
D are K1 , {s1, s3, s4, s7}, K2 , {s5, s6, s8} and the singletons {s0}, {s2}, {s9}, {s10},
{s11}, {s12}, {s13}, and {s14}. The input states of K1 are InpK1

= {s1} and its output
states are OutK1 = {s9, s10}. For K2, InpK2

= {s5, s6} and OutK2 = {s11, s14}. The
reduced acyclic MC of D is shown in Figure 5(b).

s0

s1 s2

s3 s4 s5 s6

s7 s8

s9 s10 s11

s12 s13 s14

0,4 0,6

1 0,4 0,6

0,3

0,4

0,3

0,2

0,3

0,5

0,6..

0,4.

0,3

.0,5

0,2

1..

1

0,2

0,8

1 1

(a) Original MC

s0

s1 s2

s5 s6

s9 s10 s11

s12 s13 s14

s3 s4

s7 s8

0,4 0,6

0,4 0,6

0,2

0,8

1 1

2

3

1

3

35

41

6

41

35

41

6

41

(b) Derived Acyclic MC
Fig. 5:

Rails and Torrents

We now relate (finite) paths in Ac(D) (rails) to sets of paths in D (torrents).

Definition 5.3 (Rails). Let D be an MC. A finite path σ ∈ Paths?(Ac(D)) will be
called a rail of D.

Consider a rail σ, i.e., a finite path of Ac(D). We will use σ to represent those paths
ω of D that behave “similar to” σ outside SCCs of D. Naively, this means that σ is a
subsequence of ω. There are two technical subtleties to deal with: every input state in
σ must be the first state in its SCC in ω (freshness) and every SCC visited by ω must
be also visited by σ (inertia) (see Definition 5.5). We need these extra conditions to
make sure that no path ω behaves “similar to” two distinct rails (see Lemma 5.7).

Recall that given a finite sequence σ and a (possible infinite) sequence ω, we say that
σ is a subsequence of ω, denoted by σ v ω, if and only if there exists a strictly increasing

9

function f : {0, 1, . . . , |σ|−1} → {0, 1, . . . , |ω|−1} such that ∀0≤i<|σ|.σi = ωf(i). If ω is
an infinite sequence, we interpret the codomain of f as N. In case f is such a function
we write σ vf ω.

Definition 5.4. Let D = (S, s0,P, L) be an MC. On S we consider the equivalence
relation ∼D satisfying s ∼D t if and only if s and t are in the same strongly connected
component. Again, we usually omit the subscript D from the notation.

The following definition refines the notion of subsequence, taking care of the two
technical subtleties noted above.

Definition 5.5. Let D = (S, s0,P, L) be an MC, ω a (finite) path of D, and σ ∈
Paths?(Ac(D)) a finite path of Ac(D). Then we write σ ¹ ω if there exists f :
{0, 1, . . . , |σ| − 1} → N such that σ vf ω and

∀0≤j<f(i) : ωf(i) 6∼ ωj ; for all i = 0, 1, . . . |σ| − 1, [Freshness property]
∀f(i)<j<f(i+1) : ωf(i) ∼ ωj ; for all i = 0, 1, . . . |σ| − 2. [Inertia property]

In case f is such a function we write σ ¹f ω.

Example 3. Let D = (S, s0,P, L) be the MC of Figure 5(a) and take σ = s0s2s6s14.
Then for all i ∈ N we have σ ¹fi ωi where ωi = s0s2s6(s5s8s6)is14 and fi(0) , 0,
fi(1) , 1, fi(2) , 2, and fi(3) , 3 + 3i. Additionally, σ 6¹ s0s2s5s8s6s14 since for
all f satisfying σ vf s0s2s5s8s6s14 we must have f(2) = 5; this implies that f does
not satisfy the freshness property. Finally, note that σ 6¹ s0s2s6s11s14 since for all f
satisfying σ vf s0s2s6s11s14 we must have f(2) = 2; this implies that f does not satisfy
the inertia property.

We now give the formal definition of torrents.

Definition 5.6 (Torrents). Let D = (S, s0,P, L) be an MC and σ a sequence of
states in S. We define the function Torr by

Torr(D, σ) , {ω ∈ Paths(D) | σ ¹ ω}.
We call Torr(D, σ) the torrent associated to σ.

We now show that torrents are disjoint (Lemma 5.7) and that the probability of a
rail is equal to the probability of its associated torrent (Theorem 5.10). For this last
result, we first show that torrents can be represented as the disjoint union of cones of
finite paths. We call these finite paths generators of the torrent (Definition 5.8).

Lemma 5.7. Let D be an MC. For every σ, ρ ∈ Paths?(Ac(D)) we have

σ 6= ρ ⇒ Torr(D, σ) ∩ Torr(D, ρ) = ∅
Definition 5.8 (Torrent Generators). Let D be an MC. Then we define for every
rail σ ∈ Paths?(Ac(D)) the set

TorrGen(D, σ) , {ρ ∈ Paths?(D) | ∃f : σ ¹f ρ ∧ f(|σ| − 1) = |ρ| − 1}.
In the example from the Introduction (see Figure 1), s0s1s3 and s0s2s4 are rails.

Their associated torrents are, respectively, {s0s
n
1 sω

3 | n ∈ N∗} and {s0s
n
2 sω

4 | n ∈ N∗}
(note that s3 and s4 are absorbing states), i.e. the paths going left and the paths going
right. The generators of the first torrent are {s0s

n
1 s3 | n ∈ N∗} and similarly for the

second torrent.

Lemma 5.9. Let D be an MC and σ ∈ Paths?(Ac(D)) a rail of D. Then we have

Torr(D, σ) =
⊎

ρ∈TorrGen(D,σ)

〈ρ〉.

Theorem 5.10. Let D be an MC. Then for every rail σ ∈ Paths?(Ac(D)) we have

Pr
Ac(D)

(〈σ〉) = PrD (Torr(D, σ)).

10

6 Significant Diagnostic Counterexamples

So far we have formalized the notion of paths behaving similarly (i.e., behaving the same
outside SCCs) in an MC D by removing all SCC of D, obtaining Ac(D). A representa-
tive counterexample to Ac(D) |=≤p

♦ψ gives rise to a representative counterexample to
D |=≤p

♦ψ in the following way: for every finite path σ in the representative counterex-
ample to Ac(D) |=≤p

♦ψ the set TorrGen(D, σ) is a witness, then we obtain the desired
representative counterexample to D |=≤p

♦ψ by taking the union of these witnesses.
Before giving a formal definition, there is still one technical issue to resolve: we need

to be sure that by removing SCCs we are not discarding useful information. Because
torrents are built from rails, we need to make sure that when we discard SCCs, we do
not discard rails that reach ψ.

We achieve this by first making states satisfying ψ absorbing. Additionally, we make
absorbing states from which it is not possible to reach ψ. Note that this does not affect
counterexamples.

Definition 6.1. Let D = (S, s0,P, L) be an MC and ψ a propositional formula. We
define the MC Dψ , (S, s0,Pψ, L), with

Pψ(s, t) ,





1 if s 6∈ Sat♦(ψ) ∧ s = t,
1 if s ∈ Sat(ψ) ∧ s = t,
P(s, t) if s ∈ Sat♦(ψ)− Sat(ψ),
0 otherwise,

where Sat♦(ψ) , {s ∈ S | PrD,s
(Reach(D, s, Sat(ψ))) > 0} is the set of states reaching

ψ in D.

The following theorem shows the relation between paths, finite paths, and probabil-
ities of D, Dψ, and Ac(Dψ). Most importantly, the probability of a rail σ (in Ac(Dψ))
is equal to the probability of its associated torrent (in D) (item 5 below) and the
probability of ♦ψ is not affected by reducing D to Ac(Dψ) (item 6 below).

Note that a rail σ is always a finite path in Ac(Dψ), but that we can talk about
its associated torrent Torr(Dψ, σ) in Dψ and about its associated torrent Torr(D, σ) in
D. The former exists for technical convenience; it is the latter that we are ultimately
interested in. The following theorem also shows that for our purposes, viz. the definition
of the generators of the torrent and the probability of the torrent, there is no difference
(items 3 and 4 below).

Theorem 6.2. Let D = (S, s0,P, L) be an MC and ψ a propositional formula. Then
for every σ ∈ Paths?(Dψ)

1. Reach?(Dψ, s0,Sat(ψ)) = Reach?(D, s0, Sat(ψ)),
2. PrDψ

(〈σ〉) = PrD (〈σ〉),
3. TorrGen(Dψ, σ) = TorrGen(D, σ),
4. PrDψ

(Torr(Dψ, σ)) = PrD (Torr(D, σ)),
5. Pr

Ac(Dψ)
(〈σ〉) = PrD (Torr(D, σ)),

6. Ac(Dψ) |=≤p
♦ψ if and only if D |=≤p

♦ψ, for any p ∈ [0, 1].

Proof. Straightforward

Definition 6.3 (Torrent-Counterexamples). Let D = (S, s0,P, L) be an MC, ψ
a propositional formula, and p ∈ [0, 1] such that D 6|=≤p

♦ψ. Let C be a representative
counterexample to Ac(Dψ) |=≤p

♦ψ. We define the set

TorRepCount(C) , {TorrGen(D, σ) | σ ∈ C}.

11

We call the set TorRepCount(C) a torrent-counterexample of C. Note that this set is
a partition of a representative counterexample to D |=≤p

♦ψ. Additionally, we denote by
Rt(D, p, ψ) to the set of all torrent-counterexamples toD |=≤p

♦ψ, i.e., {TorRepCount(C) |
C ∈ R(Ac(D), p, ψ)}.
Theorem 6.4. Let D = (S, s0,P, L) be an MC, ψ a propositional formula, and p ∈
[0, 1] such that D 6|=≤p

♦ψ. Take C a representative counterexample to Ac(Dψ) |=≤p
♦ψ.

Then the set of finite paths
⊎

W∈TorRepCount(C) W is a representative counterexample to
D |=≤p

♦ψ.

Note that for each σ ∈ C we get a witness TorrGen(D, σ). Also note that the number
of rails is finite, so there are also only finitely many witnesses.

Following [HK07a], we extend the notions of minimum counterexamples and strongest
evidence.

Definition 6.5 (Minimum torrent-counterexample). Let D be an MC, ψ a propo-
sitional formula and p ∈ [0, 1]. We say that Ct ∈ Rt(D, p, ψ) is a minimum torrent-
counterexample if |Ct| ≤ |C′t|, for all C′t ∈ Rt(D, p, ψ).

Definition 6.6 (Strongest torrent-evidence). Let D be an MC, ψ a propositional
formula and p ∈ [0, 1]. A strongest torrent-evidence to D 6|=≤p

♦ψ is a torrent Torr(D, σ)
such that σ ∈ Paths?(Ac(Dψ)) and PrD(Torr(D, σ)) ≥ PrD(Torr(D, ρ)) for all ρ ∈
Paths?(Ac(Dψ)).

Now we define our notion of significant diagnostic counterexamples. It is the gen-
eralization of most indicative counterexample from [HK07a] to our setting.

Definition 6.7 (Most indicative torrent-counterexample). Let D be an MC,
ψ a propositional formula and p ∈ [0, 1]. We call Ct ∈ Rt(D, p, ψ) a most indicative
torrent-counterexample if it is a minimum torrent-counterexample and Pr(

⋃
T∈Ct

〈T 〉)
≥ Pr(

⋃
T∈C′t〈T 〉) for all minimum torrent-counterexamples C′t ∈ Rt(D, p, ψ).

Note that in our setting, as in [HK07a], a minimal torrent-counterexample C consists
of the |C| strongest torrent-evidences.

By Theorem 6.4 it is possible to obtain strongest torrent-evidence and most indica-
tive torrent-counterexamples of an MC D by obtaining strongest evidence and most
indicative counterexamples of Ac(Dψ) respectively.

7 Computing Counterexamples

In this section we show how to compute most indicative torrent-counterexamples. We
also discuss what information to present to the user: how to present witnesses and how
to deal with overly large strongly connected components.

7.1 Maximizing Schedulers

The calculation of the maximal probability on a reachability problem can be performed
by solving a linear minimization problem [BdA95,dA97]. This minimization problem
is defined on a system of inequalities that has a variable xi for each different state si

and an inequality
∑

j π(sj) · xj ≤ xi for each distribution π ∈ τ(si). The maximizing
(deterministic memoryless) scheduler η can be easily extracted out of such system
of inequalities after obtaining the solution. If p0, . . . , pn are the values that minimize∑

i xi in the previous system, then η is such that, for all si, η(si) = π whenever∑
j π(sj) · pj = pi. In the following we denote Psi

[♦ψ] , xi.

7.2 Computing most indicative torrent-counterexamples

We divide the computation of most indicative torrent-counterexamples to M |=≤p
♦ψ

in three stages: pre-processing, SCC analysis, and searching.

12

Pre-processing stage. We first modify the original MC D by making all states in
Sat(ψ)∪S \ Sat♦(ψ) absorbing. In this way we obtain the MC Dψ from Definition 6.1.
Note that we do not have to spend additional computational resources to compute
this set, since Sat♦(ψ) = {s ∈ S | Ps[♦ψ] > 0} and hence all required data is already
available from the LTL model checking phase.

SCC analysis stage. We remove all SCCs K of Dψ keeping just input states of K,
getting the acyclic MC Ac(Dψ) according to Definition 5.2.

To compute this, we first need to find the SCCs of Dψ. There exists several well
known algorithms to achieve this: Kosaraju’s, Tarjan’s, Gabow’s algorithms (among
others). We also have to compute the reachability probability from input states to
output states of every SCC. This can be done by using steady state analysis tech-
niques [Cas93].

Searching stage. To find most indicative torrent-counterexamples in D, we find most
indicative counterexamples in Ac(Dψ). For this we use the same approach as [HK07a],
turning the MC into a weighted digraph to replace the problem of finding the finite
path with highest probability by a shortest path problem. The nodes of the digraph
are the states of the MC and there is an edge between s and t if P(s, t) > 0. The weight
of such an edge is − log(P(s, t)).

Finding the most indicative counterexample in Ac(Dψ) is now reduced to finding
k shortest paths. As explained in [HK07a], our algorithm has to compute k on the
fly. Eppstein’s algorithm [Epp98] produces the k shortest paths in general in O(m +
n log n + k), where m is the number of nodes and n the number of edges. In our case,
since Ac(Dψ) is acyclic, the complexity decreases to O(m + k).

7.3 Debugging issues

Representative finite paths. What we have computed so far is a most indicative
counterexample to Ac(Dψ) |=≤p

♦ψ. This is a finite set of rails, i.e., a finite set of paths
in Ac(Dψ). Each of these paths σ represents a witness TorrGen(D, σ). Note that this
witness itself has usually infinitely many elements.

In practice, one has to display a witness to the user. The obvious way would be to
show the user the rail σ. This, however, may be confusing to the user as σ is not a finite
path of the original Markov Decision Process. Instead of presenting the user with σ,
we therefore show the user the finite path of TorrGen(D, σ) with highest probability.

Definition 7.1. Let D be an MC, and σ ∈ Paths?(Ac(Dψ)) a rail of D. We define the
representant of Torr(D, σ) as

repTorr (D, σ) = repTorr


 ⊎

ρ∈TorrGen(D,σ)

〈ρ〉

 , arg max

ρ∈TorrGen(D,σ)
Pr(〈ρ〉)

Note that given repTorr (D, σ) one can easily recover σ. Therefore, no information
is lost by presenting torrents as one of its generators instead of as a rail.

K

1

s

t

u

Fig. 6:

Expanding SCC. Note that in the Preprocessing stage, we re-
duced the size of many SCCs of the system (and likely even com-
pletely removed some) by making states in Sat(ψ) ∪ S \ Sat♦(ψ)
absorbing. However, It is possible that the system still contains
some very large strongly connected components. In that case, a
single witness could have a very large probability mass and one
could argue that the information presented to the user is not de-
tailed enough. For instance, consider the Markov chain of Figure 6 in which there is a
single large SCC with input state t and output state u.

The most indicative torrent-counterexample to the property D |=≤0.9 ♦ψ is simply
{TorrGen(stu)}, i.e., a single witness with probability mass 1 associated to the rail
stu. Although this may seem uninformative, we argue that it is more informative than

13

listing several paths of the form st · · ·u with probability summing up to, say, 0.91.
Our single witness counterexample suggests that the outgoing transition to a state
not reaching ψ was simply forgotten in the design; the listing of paths still allows the
possibility that one of the probabilities in the whole system is simply wrong.

Nevertheless, if the user needs more information to tackle bugs inside SCCs, note
that there is more information available at this point. In particular, for every strongly
connected component K, every input state s of K (even for every state in K), and every
output state t of K, the probability of reaching t from s is already available from the
computation of Ac(Dψ) during the SCC analysis stage of Section 7.2.

8 Final Discussion

We have presented a novel technique for representing and computing counterexam-
ples for nondeterministic and probabilistic systems. We partition a counterexample
in witnesses and state five properties that we consider valuable in order to increase
the utility of witnesses as a debugging tool: (similarity) elements of a witness should
provide similar debugging information; (originality) different witnesses should provide
different debugging information; (accuracy) witnesses with higher probability should
indicate system behavior more likely to contain errors; (significance) probability of a
witness should be relatively high; (finiteness) there should be finitely many witnesses.
We achieve this by grouping finite paths in a counterexample together in a witness if
they behave the same outside the strongly connected components.

Presently, some work has been done on counterexample generation techniques for
different variants of probabilistic models (Discrete Markov chains and Continues Markov
chains) [AHL05,AL06,HK07a,HK07b]. In our terminology, these works consider wit-
nesses consisting of a single finite path. We have already discussed in the Introduction
that the single path approach does not meet the properties of accuracy, originality,
significance, and finiteness.

Instead, our witness/torrent approach provides a high level of abstraction of a coun-
terexample. By grouping together finite paths that behave the same outside strongly
connected components in a single witness, we can achieve these properties to a higher
extent. Behaving the same outside strongly connected components is a reasonable way
of formalizing the concept of providing similar debugging information. This grouping
also makes witnesses significantly different from each other: each witness comes from
a different rail and each rail provides a different way to reach the undesired property.
Then each witness provides original information. Of course, our witnesses are more sig-
nificant than single finite paths, because they are sets of finite paths. This also gives us
more accuracy than the approach with single finite paths, as a collection of finite paths
behaving the same and reaching an undesired condition with high probability is more
likely to show how the system reaches this condition than just a single path. Finally,
because there is a finite number of rails, there is also a finite number of witnesses.

Another key difference of our work with previous ones is that our technique allows
to generate counterexamples for probabilistic systems with nondeterminism. However,
a recent report [AL07] also considers counterexample generation for MDPs. Their ap-
proach only extends to upper bounded pCTL formulas without nested temporal oper-
ators. We would like to remark that our technique to approach counterexample gener-
ation for MDPs completely differs from theirs.

Finally, we are not aware of any other work in the literature considering counterex-
amples for probabilistic LTL model checking.

The authors would like to stress the important result of [HK07a], which provides
a systematic characterization of counterexample generation in terms of shortest paths
problems. We use this result to generate counterexamples for the acyclic Markov chains.

In the future we intend to implement a tool to generate our significant diagnostic
counterexamples; a very preliminary version has already been implemented. There is
still work to be done on improving the visualization of the witnesses, in particular,

14

when a witness captures a large strongly connected component. Another direction is
to investigate how this work can be extended to timed systems, either modeled with
continuous time Markov chains or with probabilistic timed automata.

Acknowledgement. The authors thank David Jansen for helpful comments on an
earlier version of this paper.

References

[AD06] Miguel E. Andrés and Pedro D’Argenio. Derivation of counterexamples for quan-
titative model checking. Master’s thesis, Universidad Nacional de Córdoba, 2006.

[AHL05] Husain Aljazzar, Holger Hermanns, and Stefan Leue. Counterexamples for timed
probabilistic reachability. In Formal Modeling and Analysis of Timed Systems
(FORMATS ’05), volume 3829, pages 177–195, 2005.

[AL06] Husain Aljazzar and Stefan Leue. Extended directed search for probabilistic timed
reachability. In Formal Modeling and Analysis of Timed Systems (FORMATS ’06),
pages 33–51, 2006.

[AL07] Husain Aljazzar and Stefan Leue. Counterexamples for model checking of markov
decision processes. Computer Science Technical Report soft-08-01, University of
Konstanz, December 2007.

[BdA95] Andrea Bianco and Luca de Alfaro. Model checking of probabilistic and non-
deterministic systems. In G. Goos, J. Hartmanis, and J. van Leeuwen, editors,
Foundations of Software Technology and Theoretical Computer Science (FSTTCS
’95), volume 1026, pages 499–513, 1995.

[Bel57] Richard E. Bellman. A Markovian decision process. J. Math. Mech., 6:679–684,
1957.

[BLR05] Gerd Behrmann, Kim G. Larsen, and Jacob I. Rasmussen. Optimal scheduling
using priced timed automata. SIGMETRICS Perform. Eval. Rev., 32(4):34–40,
2005.

[Cas93] Christos G. Cassandras. Discrete Event Systems: Modeling and Performance Anal-
ysis. Richard D. Irwin, Inc., and Aksen Associates, Inc., 1993.

[CGJ+00] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. In Computer Aided Verification,
pages 154–169, 2000.

[dA97] Luca de Alfaro. Formal Verification of Probabilistic Systems. PhD thesis, Stanford
University, 1997.

[dAKM97] Luca de Alfaro, Arjun Kapur, and Zohar Manna. Hybrid diagrams: A deductive-
algorithmic approach to hybrid system verification. In Symposium on Theoretical
Aspects of Computer Science, pages 153–164, 1997.

[Epp98] David Eppstein. Finding the k shortest paths. In SIAM Journal of Computing,
pages 652–673, 1998.

[FV97] J. Filar and K. Vrieze. Competitive Markov Decision Processes. 1997.
[HK07a] Tingting Han and Joost-Pieter Katoen. Counterexamples in probabilistic model

checking. In Tools and Algorithms for the Construction and Analysis of Systems:
13th International Conference (TACAS ’07), volume 4424, pages 60–75, 2007.

[HK07b] Tingting Han and Joost-Pieter Katoen. Providing evidence of likely being on time
counterexample generation for ctmc model checking. In International Symposium
on Automated Technology for Verification and Analysis (ATVA ’07), volume 4762,
pages 331–346, 2007.

[MP91] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer, 1991.

[PZ93] Amir Pnueli and Lenore D. Zuck. Probabilistic verification. Information and
Computation, 103(1):1–29, 1993.

[SdV04] Ana Sokolova and Erik P. de Vink. Probabilistic automata: System types, parallel
composition and comparison. In Christel Baier, Boudewijn R. Haverkort, Holger
Hermans, Joost-Pieter Katoen, and Markus Siegle, editors, Validation of Stochastic
Systems: A Guide to Current Research, volume 2925, pages 1–43. 2004.

[SL95] Roberto Segala and Nancy Lynch. Probabilistic simulations for probabilistic pro-
cesses. Nordic Journal of Computing, 2(2):250–273, 1995.

[Var85] M.Y. Vardi. Automatic verification of probabilistic concurrent finite-state systems.
In Proc. 26th IEEE Symp. Found. Comp. Sci., pages 327–338, 1985.

15

