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Abstract. We consider the problem of defining the information leakage in in-
teractive systems where secrets and observables can alternate during the com-
putation. We show that the information-theoretic approachwhich interprets such
systems as (simple) noisy channels is not valid anymore. However, the principle
can be recovered if we consider more complicated types of channels, that in Infor-
mation Theory are known as channels with memory and feedback. We show that
there is a complete correspondence between interactive systems and such kind of
channels. Furthermore, we show that the capacity of the channels associated to
such systems is a continuous function of the Kantorovich metric.

1 Introduction

Information leakage refers to the problem that the observable parts of the behavior of
a system may reveal information that we would like to keep secret. In recent years,
there has been a growing interest in the quantitative aspects of this problem, partly
because it is convenient to represent the partial knowledgeof the secrets as a probability
distribution, and partly because the mechanisms to protectthe information may use
randomization to obfuscate the relation between the secrets and the observables.

Among the quantitative approaches, some of the most popularones are based on
Information Theory [5, 12, 4, 16]. The system is interpretedas an information-theoretic
channel, where the secrets are the input and the observables are the output. The channel
matrix is constituted by the conditional probabilitiesp(b | a), defined as the measure
of the executions that give observableb within those which contain the secreta. The
leakage is represented by themutual information, and the worst-case leakage by the
capacityof the channel.

In the above works, the secret value is assumed to be chosen atthe beginning of
the computation. In this paper, we are interested inInteractive systems, i.e. systems
in which secrets and observables can alternate during the computation, and influence
each other. Examples of interactive protocols includeauction protocolslike [21, 18,
17]. Some of these have become very popular thanks to their integration in Internet-
based electronic commerce platforms [9, 10, 14]. As for interactive programs, examples
include web servers, GUI applications, and command-line programs [3].

We investigate the applicability of the information-theoretic approach to interactive
systems. In [8] it was proposed to define the matrix elementsp(b | a) as the measure of
the traces with (secret, observable)-projection(a, b), divided by the measure of the trace
with secret projectiona. This follows the definition of conditional probability in terms
of joint and marginal probability. However, it does not define an information-theoretic



channel. In fact, by definition a channel should be invariantwith respect to the input
distribution, and such construction is not, as shown by the following example.

Example 1.Figure 1 represents a web-based interaction between one seller and two
possible buyers,rich andpoor. The seller offers two different products,cheapandex-
pensive, with given probabilities. Once the product is offered, each buyer may try to
buy the product, with a certain probability. For simplicitywe assume that the buyers
offers are exclusive. We assume that the offers are observables, in the sense that they
are made public in the website, while the identity of the buyer that actually buys the
product should be secret to an external observer. The symbols r, s, t, r, s, t represent
the probabilities, with the convention thatr = 1 − r.

cheap expensive

poor rich
poor rich

r r

s s t t

Fig. 1. Inter. System

Following [8] we can compute the conditional probabili-
ties asp(b|a) = p(a,b)

p(a) , thus obtaining the matrix on Table 1.
However, the matrix is not invariant with respect to the

input distribution. For instance, if we fixr = r = 0.5 and
consider two different input distributions, obtained by vary-
ing the values of (s, t), we get two different matrices of condi-
tional probabilities, which are represented in Table 2. Hence
when the secrets occurafter the observables we cannot con-
sider the conditional probabilities as representing a (classical) channel, and we cannot
apply the standard information-theoretic concepts. In particular, we cannot adopt the
(classical) capacity to represent the worst-case leakage,since the capacity is defined
using a fixed channel matrix over all possible input distributions.

cheap expensive

poor rs
rs+rt

rt
rs+rt

rich rs
rs+rt

rt
rs+rt

Table 1. Cond. proba-
bilities of Example 1

The first contribution of this paper is to consider an exten-
sion of the theory of channels which makes the information-
theoretic approach applicable also the case of interactivesys-
tems. It turns out that a richer notion of channels, known in
Information Theory aschannels with memory and feedback,
serves our purposes. The dependence of inputs on previous
outputs corresponds to feedback, and the dependence of out-
puts on previous inputs and outputs corresponds to memory.
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Table 2.Two different channel matrices induced by two different input distributions

A second contribution of our work is the proof that the
channel capacity is a continuous function of the Kantorovich metric on interactive sys-
tems. This was pointed out also in [8], however their construction does not work in our



case due to the fact that (as far as we understand) it assumes that the probability of a se-
cret action, in any point of the computation, is not0. This assumption is not guaranteed
in our case and therefore we had to proceed differently.

A more complete version of this paper (with proofs) is on line[1].

2 Preliminaries

2.1 Concepts from Information Theory

For more detailed information on this part we refer to [6]. Let A, B denote two random
variables with corresponding probability distributionspA(·), pB(·), respectively. We
shall omit the subscripts when they are clear from the context. LetA = {a1, . . . , an},B =
{b1, . . . , bm} denote, respectively, the sets of possible values forA and forB.

Theentropyof A is defined asH(A) = −
∑

A p(ai) log p(ai) and it measures the
uncertainty ofA. It takes its minimum valueH(A) = 0 whenpA(·) is a delta of Dirac.
The maximum valueH(A) = log |A| is obtained whenpA(·) is the uniform distribu-
tion. Usually the base of the logarithm is set to be2 and the entropy is measured in
bits. The conditional entropyof A given B is H(A|B) = −

∑

B p(bi)
∑

A p(aj |bi)
log p(aj |bi), and it measures the uncertainty ofA whenB is known. We can prove that
0 ≤ H(A|B) ≤ H(A). The minimum value,0, is obtained whenA is completely de-
termined byB. The maximum valueH(A) is obtained whenA andB are independent.
Themutual informationbetweenA andB is defined asI(A; B) = H(A) − H(A|B),
and it measures the amount of information aboutA that we gain by observingB. It can
be shown thatI(A; B) = I(B; A) and0 ≤ I(A; B) ≤ H(A).

The entropy and mutual information respect thechain laws. Namely, given a se-
quence of random variablesA1, A2, . . . , Ak andB, we have:

H(A1, A2, . . . , Ak) =
k

∑

i=1

H(Ai|A1, . . . , Ai−1) (1)

I(A1, A2, . . . , Ak; B) =

k
∑

i=1

I(Ai; B|A1, . . . , Ai−1) (2)

A (discrete memoryless) channelis a tuple(A,B, p(·|·)), whereA,B are the sets of
input and output symbols, respectively, andp(bj |ai) is the probability of observing
the output symbolbj when the input symbol isai. An input distributionp(ai) overA
determines, together with the channel, the joint distribution p(ai, bj) = p(ai|bj) · p(ai)
and consequentlyI(A; B). The maximumI(A; B) over all possible input distributions
is the channel’scapacity. Shannon’s famous result states that the capacity coincides
with the maximum rate by which information can be transmitted using the channel.

In this paper we consider input and outputsequencesinstead of just symbols.

Convention 1. LetA = {a1, . . . , an} be a finite set ofn different symbols (alphabet).
When we have a sequence of symbols (ordered in time), we use a Greek letterαt to
denote the symbol at timet. The notationαt stands for the sequenceα1α2 . . . αt. For
instance, in the sequencea3a7a5, we haveα2 = a7 andα2 = a3a7.



Convention 2. LetX be a random variable.Xt denotes the sequence oft consecutive
occurrencesX1, . . . , Xt of the random variableX .

When the channel is used repeatedly, the discrete memoryless channel described
above represents the case in which the behavior of the channel at the present time does
not depend upon the past history of inputs and outputs. If this assumption does not hold,
then we have a channelwith memory. Furthermore, if the outputs from the channel can
be fed back to the encoder, thus influencing the generation ofthe next input symbol,
then the channel is said to bewith feedback; otherwise it iswithout feedback.

Equation 3 makes explicit the probabilistic behavior of channels regarding those
classifications. Suppose a general channel fromA toB with the associated random vari-
ablesA for input andB for output. Using the notation introduced in Convention 1, the
channel behavior afterT uses can be fully described by the joint probabilityp(αT , βT ).

Using probability laws we derive:

p(αT , βT ) =
T

∏

t=1

p(αt|α
t−1, βt−1)p(βt|α

t, βt−1) (by the expansion law) (3)

The first termp(αt|α
t−1, βt−1) indicates that the probability ofαt depends not

only onαt−1, but also onβt−1 (feedback). The second termp(βt|α
t, βt−1) indicates

that the probability of eachβt depends on previous history of inputsαt and outputs
βt−1 (memory).

If the channel is without feedback, then we have thatp(αt|α
t−1, βt−1) = p(αt|α

t−1),
and if the channel is without memory, then we have alsop(βt|α

t, βt−1) = p(βt|αt).
From these we derivep(βT |αT ) =

∏T
t=1 p(βt|αt), which is the classic equation for

discrete memoryless channels without feedback.
Let (V ,K) be a Borel space and let(X ,BX ) and(Y,BY) be Polish spaces equipped

with their Borelσ-algebras. Letρ(dx|v) be a family of measures onX givenV . Then
ρ(dx|v) is astochastic kernelif and only if and only ifρ(·|v) is a random variable from
V into the power setP(X ).

2.2 Probabilistic automata

A function µ : S → [0, 1] is adiscrete probability distributionon a countable setS if
∑

s∈S µ(s) = 1 andµ(s) ≥ 0 for all s. The set of all discrete probability distributions
onS isD(S).

A probabilistic automaton[15] is a quadrupleM = (S,L, ŝ, ϑ) whereS is a count-
able set ofstates, L a finite set oflabelsor actions, ŝ theinitial state, andϑ a transition
functionϑ : S → ℘f (D(L × S)). Here℘f (X) is the set of all finite subsets ofX . If
ϑ(s) = ∅ thens is a terminalstate. We writes→µ for µ ∈ ϑ(s), s ∈ S. Moreover, we
write s

ℓ
→r for s, r ∈ S whenevers→µ andµ(ℓ, r) > 0. A fully probabilistic automa-

ton is a probabilistic automaton satisfying|ϑ(s)| ≤ 1 for all states. Whenϑ(s) 6= ∅ we
overload the notation and denoteϑ(s) the distribution outgoing froms.

A path in a probabilistic automaton is a sequenceσ = s0
ℓ1→ s1

ℓ2→ · · · where
si ∈ S, ℓi ∈ L andsi

ℓi+1

→ si+1. A path can befinite in which case it ends with a state.



A path iscompleteif it is either infinite or finite ending in a terminal state. Given a
finite pathσ, last(σ) denotes its last state. LetPathss(M) denote the set of all paths,
Paths⋆

s(M) the set of all finite paths, andCPathss(M) the set of all complete paths
of an automatonM , starting from the states. We will omit s if s = ŝ. Paths are ordered
by the prefix relation, which we denote by≤. The trace of a path is the sequence of
actions inL∗ ∪ L∞ obtained by removing the states, hence for the aboveσ we have
trace(σ) = l1l2 . . .. If L′ ⊆ L, thentraceL′(σ) is the projection oftrace(σ) on the
elements ofL′.

Let M = (S,L, ŝ, ϑ) be a (fully) probabilistic automaton,s ∈ S a state, and let
σ ∈ Paths⋆

s(M) be a finite path starting ins. Theconegenerated byσ is the set of
complete paths〈σ〉 = {σ′ ∈ CPathss(M) | σ ≤ σ′}. Given a fully probabilistic
automatonM = (S,L, ŝ, ϑ) and a states, we can calculate theprobability value,

denoted byPs(σ), of any finite pathσ starting ins as follows:Ps(s) = 1 andPs(σ
ℓ
→

s′) = Ps(σ) µ(ℓ, s′), where last(σ) → µ.
Let Ωs , CPathss(M) be the sample space, and letFs be the smallestσ-algebra

generated by the cones. ThenP induces a uniqueprobability measureonFs (which we
will also denote byPs) such thatPs(〈σ〉) = Ps(σ) for every finite pathσ starting in
s. Fors = ŝ we writeP instead ofPŝ.

Given a probability space(Ω,F , P ) and two eventsA, B ∈ F with P (B) > 0, the
conditional probabilityof A givenB, P (A | B), is defined asP (A ∩ B)/P (B).

3 Discrete channels with memory and feedback

We adopt the model proposed in [19] for discrete channels with memory and feedback.
Such model, represented in Figure 2, can be decomposed in sequential components
as follows. At timet the internal channel’s behavior is represented by the conditional
probabilitiesp(βt|α

t, βt−1). The internal channel takes the inputαt and, according to
the history of inputs and outputs up to the momentαt, βt−1, produces an output symbol
βt. The output is then fed back to the encoder with delay one. On the other side, at time
t the encoder takes the message and the past output symbolsβt−1, and produces a
channel input symbolαt. At final timeT the decoder takes all the channel outputsβT

and produces the decoded messageŴ . The order is the following:

MessageW, α1, β1, α2, β2, . . . , αT , βT , Decoded MessagêW

Let us describe such channel in more detail. LetA andB be two finite sets. Let{At}T
t=1

(channel’s input) and{Bt}T
t=1 (channel’s output) be families of random variables inA

andB respectively. Moreover, letAT andBT represent theirT -fold product spaces. A
channelis a family of stochastic kernels{p(βt|α

t, βt−1)}T
t=1.

LetFt be the set of all measurable mapsϕt : Bt−1 → A endowed with a probability
distribution, and letFt be the corresponding random variable. LetFT , FT denote the
Cartesian product on the domain and the random variable, respectively. Achannel code
functionis an elementϕT = (ϕ1, . . . , ϕT ) ∈ FT .

Note that, by probability laws,p(ϕT ) =
∏T

t=1 p(ϕt|ϕ
t−1). Hence the distribution

onFT is uniquely determined by a sequence{p(ϕt|ϕ
t−1)}T

t=1. We will use the notation
ϕt(βt−1) to represent theA-valuedt-tuple(ϕ1, ϕ2(β

1), . . . , ϕt(β
t−1)).
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Fig. 2. Model for discrete channel with memory and feedback

In Information Theory this kind of channels are used to encode and transmit mes-
sages. IfW is a message set of cardinalityM with typical elementw, endowed with
a probability distribution, achannel codeis a set ofM channel code functionsϕT [w],
interpreted as follows: for messagew, if at time t the channel feedback isβt−1, then
the channel encoder outputsϕt[w](βt−1). A channel decoderis a map fromBT to W
which attempts to reconstruct the input message after observing all the output history
βT from the channel.

3.1 Directed information and capacity of channels with feedback

In classical Information Theory, the channel capacity, which is related to the channel’s
transmission rate by Shannon’s fundamental result, can be obtained as the supremum of
the mutual information over all possible input’s distributions. In presence of feedback,
however, this correspondence does not hold anymore. More specifically, mutual infor-
mation does not represent any longer the information flow from αT to βT . Intuitively,
this is due to the fact that mutual information expresses correlation, and therefore it
is increased by feedback. But the feedback, i.e the way the output influences the next
input, is part of the a priori knowledge, and therefore should not be counted when we
measure the output’s contribution to the reduction of the uncertainty about the input. If
we want to maintain the correspondence with the transmission rate and with information
flow, we need to replace mutual information withdirected information[13].

Definition 1. In a channel with feedback, the directed information from input AT to
output BT is defined asI(AT → BT ) =

∑T
t=1 I(αt; βt|β

t−1). In the other di-
rection, the directed information fromBT to AT is defined as:I(BT → AT ) =
∑T

t=1 I(αt; β
t−1|αt−1).

Note that the directed information defined above are not symmetric: the flow from
AT to BT takes into account the correlation betweenαt andβt, while the flow from
BT to AT is based on the correlation betweenβt−1 andαt . Intuitively, this is because
αt influencesβt, but, in the other direction, it isβt−1 that influencesαt.

It can be proved [19] thatI(AT ; BT ) = I(AT → BT )+I(BT → AT ). If a channel
does not have feedback, thenI(BT → AT ) = 0 andI(AT ; BT ) = I(AT → BT ).

In a channel with feedback the information transmitted is the directed information,
and not the mutual information. The following example should help understanding why.



Example 2.Consider the discrete memoryless channel with input alphabetA = {a1, a2}
and output alphabetB = {b1, b2} whose matrix is represented in Table 3.

b1 b2

a1 0.5 0.5
a2 0.5 0.5

Table 3.Channel ma-
trix for Example 2

Suppose that the channel is used with feedback, in such a
way that, for allt’s, αt+1 = a1 if βt = b1, andαt+1 = a2 if
βt = b2. It is easy to show that ift ≥ 2 thenI(At; Bt) 6= 0.
However, there is no leakage from fromAt to Bt, since the
rows of the matrix are all equal. We have indeed thatI(At →
Bt) = 0, and the mutual informationI(At; Bt) is only due to
the feedback information flowI(Bt → At).

The concept of capacity is generalized for channels with feedback as follows. Let
DT = {{p(αt|α

t−1, βt−1)}T
t=1} be the set of all input distributions. For finiteT , the

capacity of a channel{p(βt|α
t, βt−1)}T

t=1 is:

CT = sup
DT

1

T
I(AT → BT ) (4)

4 Interactive systems as channels with memory and feedback

(General) Interactive Information Hiding Systems ([2]), are a variant of probabilistic
automata in which we separate actions in secret and observable; “interactive” means
that secret and observable actions can interleave and influence each other.

Definition 2. A generalIIHS is a quadrupleI = (M,A,B,Lτ ), whereM is a prob-
abilistic automaton(S,L, ŝ, ϑ), L = A ∪ B ∪ Lτ whereA, B, and Lτ are pair-
wise disjoint sets of secret, observable, and internal actions respectively, andϑ(s) ⊆
D(B ∪ Lτ × S) implies |ϑ(s)| ≤ 1, for all s. The condition onϑ ensures that all
observable transitions are fully probabilistic.

Assumption In this paper we assume that general IIHSs arenormalized, i.e. once un-
folded, all the transitions between two consecutive levelshave either secret labels only,
or observable labels only. Moreover, the occurrences of secret and observable labels
alternate between levels. We will callsecret statesthe states from which only secrets-
labeled transitions are possible, andobservable statesthe others. Finally, we assume
that for everys andℓ there exists a uniquer such thats

ℓ
→ r. Under this assumption we

have that the traces of a computation determine the final state, as expressed by the next
proposition. In the followingtraceA andtraceB indicate the projection of the traces on
secret and observable actions, respectively. Given a general IIHS, it is always possible
to find an equivalent one that satisfies this assumptions. Theinterested reader can find
in [1] the formal definition of the transformation.

Proposition 1. Let I = (M,A,B,Lτ ) be a generalIIHS. Consider two pathsσ and
σ′. Then,traceA(σ) = traceA(σ′) andtraceB(σ) = traceB(σ′) impliesσ = σ′.

In the following, we will consider two particular cases: thefully probabilisticIIHSs,
where there is no nondeterminism, and thesecret -nondeterministicIIHSs, where each
secret choice is fully nondeterministic. The latter will becalled simply IIHSs.



Definition 3. Let I = ((S,L, ŝ, ϑ),A,B,Lτ ) be a generalIIHS. ThenI is:

– fully probabilistic ifϑ(s) ⊆ D(A× S) implies|ϑ(s)| ≤ 1 for eachs ∈ S.
– secret-nondeterministic ifϑ(s) ⊆ D(A×S) implies that for eachs ∈ S there exist

si’ such thatϑ(s) = {δ(ai, si)}n
i=1.

We show now how to construct a channel with memory and feedback from IIHSs.
We will see that an IIHS corresponds precisely to a channel asdetermined by its stochas-
tic kernel, while a fully probabilistic IIHS determines, additionally, the input distribu-
tion. In the following, we consider an IIHSI = ((S,L, ŝ, ϑ),A,B,Lτ ) is in normal-
ized form. Given a pathσ of length2t − 1, we denotetraceA(σ) by αt, andtraceB(σ)
by βt−1.

Definition 4. For eacht, the channel’s stochastic kernel corresponding toI is defined
asp(βt|α

t, βt−1) = ϑ(q)(βt, q
′), whereq is the state reached from the root via the path

σ whose input-trace isαt and output traceβt−1.

Note thatq andq′ in previous definitions are well defined: by Proposition 1,q is
unique, and since the choice ofβt is fully probabilistic,q′ is also unique.

If I is fully probabilistic, then it determines also the input distribution and the de-
pendency ofαt uponβt−1 (feedback) andαt−1.

Definition 5. If I is fully probabilistic, the associated channel has a conditional input
distribution for eacht defined asp(αt|α

t−1, βt−1) = ϑ(q)(αt, q
′), whereq is the state

reached from the root via the pathσ whose input-trace isαt−1 and output trace isβt−1.

4.1 Lifting the channel inputs to reaction functions

Definitions 4 and 5 define the joint probabilitiesp(αt, βt) for a fully probabilistic IIHS.
We still need to show in what sense these define a information-theoretic channel.

The{p(βt|α
t, βt−1)}T

t=1 determined by the IIHS correspond to a channel’s stochas-
tic kernel. The problem resides in the conditional probability of {p(αt|α

t−1, βt−1)}T
t=1.

In an information-theoretic channel, the value ofαt is determined in the encoder by a
deterministic functionϕt(β

t−1). However, inside the encoder there is no possibility for
a probabilistic description ofαt. Furthermore, in our setting the concept of encoder
makes no sense as there is no information to encode. A solution to this problem is to
externalize the probabilistic behavior ofαt: the code functions become simplereaction
functionsϕt that depend only onβt−1 (the messagew does not play a role any more),
and these reaction functions are endowed with a probabilitydistribution that generates
the probabilistic behavior of the values ofαt.

Definition 6. A reactoris a distribution on reaction functions, i.e., a stochasticker-
nel {p(ϕt|ϕ

t−1)}T
t=1. A reactorR is consistent with a fully probabilistic IIHSI if it

induces the compatible distributionQ(ϕT , αT , βT ) such that, for every1 ≤ t ≤ T ,
Q(αt|α

t−1, βt−1) = p(αt|α
t−1, βt−1), where the latter is the probability distribution

induced byI.

The main result of this section states that for any fully probabilistic IIHS there is a
reactor that generates the probabilistic behavior of the IIHS.



Theorem 3. Given a fully probabilisticIIHS I , we can construct a channel with mem-
ory and feedback, and probability distributionQ(ϕT , αT , βT ), which corresponds toI

in the sense that, for everyt, αt andβt, with1 ≤ t ≤ T ,Q(αt, βt)
def
=

∑

ϕT Q(ϕT , αt, βt) =

p(αt, βt) holds, wherep(αt, βt) is the joint probability of input and output traces in-
duced byI.

Corollary 1. Let a I be a fully probabilisticIIHS. Let {p(βt|α
t, βt−1)}T

t=1 be a se-
quence of stochastic kernels and{p(αt|α

t−1, βt−1)}T
t=1 a sequence of input distribu-

tions defined byI according to Definitions 4 and 5. Then the reactorR = {p(ϕt|ϕ
t−1)}T

t=1

compatible with respect to theI is given by:

p(ϕ1) = p(α1|α
0, β0) = p(α1) (5)

p(ϕt|ϕ
t−1) =

∏

βt−1

p(ϕt(β
t−1)|ϕt−1(βt−2), βt−1), 2 ≤ t ≤ T (6)

Figure 3 depicts the model for IIHS. Note that, in relation toFigure 2, there are
some simplifications: (1) no messagew is needed; (2) the decoder is not used. At the
beginning, a reaction function sequenceϕT is chosen and then the channel is used
T times. At each usaget, the encoder decides the next input symbolαt based on the
reaction functionϕt and the output fed backβt−1. Then the channel produces an output
βt based on the stochastic kernelp(βt|α

t, βt−1). The output is then fed back to the
encoder with a delay one.
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Fig. 3. Channel with memory and feedback model for IIHS

We conclude this section by remarking an intriguing coincidence: The notion of
reaction function sequenceϕT , on the IIHSs, corresponds to the notion of deterministic
scheduler. In fact, each reaction functionϕt selects the next step,αt, on the basis of the
βt−1 andαt−1 (generated byϕt−1), andβt−1, αt−1 represent the path until that state.

5 Leakage in Interactive Systems

In this section we propose a notion of information flow based on our model. We fol-
low the idea of defining leakage and maximum leakage using theconcepts of mutual
information and capacity (see for instance [4]), making thenecessary adaptations.



Since the directed informationI(AT → BT ) is a measure of how much information
flows from AT to BT in a channel with feedback (cfr. Section 3.1), it is natural to
consider it as a measure of leakage of information by the protocol.

Definition 7. The information leakage of anIIHS is defined as:I(AT → BT ) =
∑T

t=1 H(At|At−1, Bt−1) − H(AT |BT ).

Note that
∑T

t=1 H(At|A
t−1, Bt−1) can be seen as the entropyHR of reactorR.

Compare this definition with the classical Information-theoretic approach to infor-
mation leakage: when there is no feedback, the leakage is defined as:

I(AT ; BT ) = H(AT ) − H(AT |BT ) (7)

The principle behind (7) is that the leakage is equal to the difference between thea
priori uncertaintyH(AT ) and thea posteriori uncertaintyH(AT |BT ) (gain in knowl-
edge about the secret by observing the output). Our definition maintains the same prin-
ciple, with the proviso that the a priori uncertainty is now represented byHR.

5.1 Maximum leakage as capacity

In the case of secret-nondeterministic IIHS, we have a stochastic kernel but no distri-
bution on the code functions. In this case it seems natural toconsider the worst leakage
over all possible distributions on code functions. This is exactly the concept of capacity.

Definition 8. Themaximum leakageof an IIHS is defined as the capacityCT of the
associated channel with memory and feedback.

6 Modeling IIHSs as channels: An example

In this section we show the application of our approach to theCocaine Auction Proto-
col [17]. Let us imagine a situation where several mob individuals are gathered around
a table. An auction is about to be held in which one of them offers his next shipment
of cocaine to the highest bidder. The seller describes the merchandise and proposes a
starting price. The others then bid increasing amounts until there are no bids for 30
consecutive seconds. At that point the seller declares the auction closed and arranges a
secret appointment with the winner to deliver the goods.

The basic protocol is fairly simple and is organized as a succession of rounds of
bidding. Roundi starts with the seller announcing the bid pricebi for that round. Buyers
havet seconds to make an offer (i.e. to say yes, meaning “I’m willing to buy at the
current bid pricebi”). As soon as one buyer anonymously says yes, he becomes the
winnerwi of that round and a new round begins. If nobody says anything for t seconds,
round i is concluded by timeout and the auction is won by the winnerwi−1 of the
previous round, if one exists. If the timeout occurs during round0, this means that
nobody made any offers at the initial priceb0, so there is no sale.

Although our framework allows the forrmalization of this protocol for an arbitrary
number of bidders and bidding rounds, for illustration purposes, we will consider the



case of two bidders (CandlemakerandScarface) and two rounds of bids. Furthermore,
we assume that the initial bid is always1 dollar, so the first bid does not need to be
announced by the seller. In each turn the seller can choose how much he wants to
increase the actual bid. This is done by adding an increment to the last bid. There
are two options of increments, namelyinc1 (1 dollar) andinc2 (2 dollars). In that way,
bi+1 is eitherbi + inc1 or bi + inc2. We can describe this protocol as anormalized
IIHS I = (M,A,B,Lτ ), whereA = {Candlemaker, Scarface, a∗} is the set of secret
actions,B = {inc1, inc2, b∗} is the set of observable actions,Lτ = ∅ is the set of
hidden actions, and the probabilistic automatonM is represented in Figure 4. For clarity
reasons, we omit transitions with probability0 in the automaton. Note that the special
secret actiona∗ represents the situation where neitherCandlemakernor Scarfacebid.
The special observable actionb∗ is only possible after no one has bidden, and signalizes
the end of the auction and, therefore, no bid is allowed anymore.
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Fig. 4. Cocaine Auction example

Table 4 shows all the stochastic kernels for this example. The formalization of this
protocol in terms of IIHSs using our framework makes it possible to prove the claim
in[17] suggesting that if the seller knows the identity of the bidders then the (strong)
anonymity guaranties are not provided anymore.

7 Topological properties ofIIHSs and their Capacity

In this section we show how to extend to IIHSs the notion of pseudometric defined
in [8] for Concurrent Labelled Markov Chains, and we prove that the capacity of the
corresponding channels is a continuous function on this pseudometric. The metric con-
struction is sound for general IIHSs, but the result on capacity is only valid for secret-
nondeterministic IIHSs.

Given a set of statesS, a pseudometric (or distance) is a functiond that yields a
non-negative real number for each pair of states and satisfies the following:d(s, s) = 0;
d(s, t) = d(t, s), andd(s, t) ≤ d(s, u) + d(u, t). We say that a pseudometricd is c-
bounded if∀s, t : d(s, t) ≤ c, wherec is a positive real number. We now define a
complete lattice on pseudometrics, and define the distance between IIHSs as the greatest
fixpoint of a distance transformation, in line with the coinductive theory of bisimilarity.



α1 → β1 inc1 inc2 b
∗

Candlemaker q4 q5 0
Scarface q6 q7 0
a∗ 0 0 1

(a) t=1, p(β1|α
1, β0)

α1, β1, α2 → β2 CheapExpensiveb
∗

Candlemaker,inc1 ,Candlemaker q22 q23 0
Candlemaker,inc1 ,Scarface q24 q25 0
Candlemaker,inc1 ,a

∗
0 0 1

Candlemaker,inc2 ,Candlemaker q27 q28 0
Candlemaker,inc2 ,Scarface q29 q30 0
Candlemaker,inc2 ,a

∗
0 0 1

Scarface,inc1,Candlemaker q32 q33 0
Scarface,inc1,Scarface q34 q35 0
Scarface,inc1,a

∗
0 0 1

Scarface,inc2,Candlemaker q37 q38 0
Scarface,inc2,Scarface q39 q40 0
Scarface,inc2,a

∗
0 0 1

a
∗
,b

∗
,a

∗
0 0 1

All other lines 0 0 1

(b) t = 2, p(β2|α
2, β1)

Table 4.Stochastic kernels for the Cocaine Auction example.

Definition 9. M is the class of1-bounded pseudometrics on states with the ordering
d � d′ if ∀s, s′ ∈ S : d(s, s′) ≥ d′(s, s′).

It is easy to see that(M,�) is a complete lattice. In order to define pseudometrics
on IIHSs, we now need to lift the pseudometrics on states to pseudometrics on distribu-
tions inD(L× S). Following standard lines [20, 8, 7], we apply the construction based
on the Kantorovich metric [11].

Definition 10. For d ∈ M, andµ, µ′ ∈ D(L × S), we defined(µ, µ′) (overloading
the notationd) asd(µ, µ′) = max

∑

(ℓi,si)∈L×S(µ(ℓi, si) − µ′(ℓi, si))xi where the
maximization is on all possible values of thexi’s, subject to the constraints0 ≤ xi ≤ 1
and xi − xj ≤ d̂((ℓi, si), (ℓj , sj)), where d̂((ℓi, si), (ℓj , sj)) = 1 if ℓi 6= ℓj, and
d̂((ℓi, si), (ℓj , sj)) = d(si, sj) otherwise.

It can be shown that with this definitionm is a pseudometric onD(L × S).

Definition 11. d ∈ M is abisimulation metricif, for all ǫ ∈ [0, 1), d(s, s′) ≤ ǫ implies
that if s → µ, then there exists someµ′ such thats′ → µ′ andd(µ, µ′) ≤ ǫ.

The greatest bisimulation metric isdmax =
⊔

{d ∈ M | d is a bisimulation metric}.
We now characterizedmax as a fixed point of a monotonic functionΦ onM. For sim-
plicity, from now on we consider only the distance between states belonging to different
IIHSs with disjoint sets of states.



Definition 12. Given twoIIHSs with transition relationsθ andθ′ respectively, and a
preudometricd on states, defineΦ : M → M as:

Φ(d)(s, s′) =



































maxi d(si, s
′
i) if ϑ(s) = {δ(a1,s1), . . . , δ(am,sm)}

and ϑ′(s′) = {δ(a1,s′

1
), . . . , δ(am,s′

m
)}

d(µ, µ′) if ϑ(s) = {µ} andϑ′(s′) = {µ′}

0 if ϑ(s) = ϑ′(s′) = ∅

1 otherwise

It is easy to see that the definition ofΦ is a particular case of the functionF defined
in [8, 7]. Hence it can be proved, by adapting the proofs of theanalogous results in [8,
7], thatF (d) is a pseudometric, and thatd is a bisimulation metric iffd � Φ(d). This
implies thatdmax =

⊔

{d ∈ M | d � Φ(d)}, and still as a particular case ofF in [8, 7],
we have thatΦ is monotonic onM. By Tarski’s fixed point theorem,dmax is the greatest
fixed point ofΦ. Furthermore, in [1] we show thatdmax is indeed a bisimulation metric,
and that it is the greatest bisimulation metric. In addition, the finite branchingness of
IIHSs ensures that the closure ordinal ofΦ is ω (cf. Lemma 3.10 in the full version of
[8]). Therefore one can show thatdmax = {Φi(⊤) | i ∈ N}, where⊤ is the greatest
pseudometric (i.e.⊤(s, s′) = 0 for everys, s′), andΦ0(⊤) = ⊤.

Given two IIHSsI andI
′, with initial statess ands′ respectively, we define the dis-

tance betweenI andI
′ asd(I, I′) = dmax (s, s′). Next theorem states the continuity of

the capacity w.r.t. the metric on IIHSs. It is crucial that they are secret-nondeterministic
(while the definition of the metric holds in general).

Theorem 4. Consider two normalizedIIHSsI andI
′, and fix aT > 0. For everyǫ > 0

there existsν > 0 such that if d(I, I′) < ν then |CT (I) − CT (I′)| < ǫ.

We conclude this section with an example showing that the continuity result for the
capacity does not hold if the construction of the channel is done starting from a system
in which the secrets are endowed with a probability distribution. This is also the reason
why we could not simply adopt the proof technique of the continuity result in [8] and
we had to come up with a different reasoning.

Example 3.Consider the two following programs, wherea1, a2 are secrets,b1, b2 are
observable,‖ is the parallel operator, and+p is a binary probabilistic choice that assigns
probabilityp to the left branch, and probability1 − p to the right one.

s) (send(a1) +p send(a2)) ‖ receive(x).output(b2)
t) (send(a1)+q send(a2)) ‖ receive(x).if x = a1 then output(b1) else output(b2).

Table 5 shows the fully probabilistic IIHSs corresponding to these programs, and
their associated channels, which in this case (since the secret actions are all at the top-
level) are classic channels, i.e. memoryless and without feedback. As usual for classic
channels, they do not depend onp and q. It is easy to see that the capacity of the
first channel is0 and the capacity of the second one is1. Hence their difference is1,
independently fromp andq.

Let nowp = 0 andq = ǫ. It is easy to see that the distance betweens andt is ǫ.
Therefore (when the automata have probabilities on the secrets), the capacity is not a
continuous function of the distance.



s t

p 1−p

0 1 0 1

a1 a2

b1 b2 b1 b2

q 1−q

1 0 0 1

a1 a2

b1 b2 b1 b2

s b1 b2

a1 0 1

a2 0 1

(a)

t b1 b2

a1 1 0

a2 0 1

(b)

Table 5.The IIHSs of Example 3 and their corresponding channels

8 Conclusion and future work

In this paper we have investigated the problem of information leakage in interactive sys-
tems, and we have proved that these systems can be modeled as channels with memory
and feedback. The situation is summarized in Table 6(a). Thecomparison with the clas-
sical situation of non-interactive systems is representedin (b). Furthermore, we have
proved that the channel capacity is a continuous function ofthe kantorovich metric.

IIHSsas automata IIHSsas channels Notion of leakage

Normalized IIHSs with nondeterministicSequence of stochastic kernelsLeakage as capacity
inputs and probabilistic outputs {p(βt|α

t, βt−1)}T

t=1

Normalized IIHSs with a deterministic Sequence of stochastic kernels
scheduler solving the nondeterminism{p(βt|α

t, βt−1)}T

t=1 +
reaction function seq.ϕT

Fully probabilistic normalized IIHSs Sequence of stochastic kernelsLeakage as directed
{p(βt|α

t, βt−1)}T

t=1 + informationI(AT → BT )
reactor{p(ϕt|ϕ

t−1)}T

t=1

(a)

Classical channels Channels with memory and feedback

The protocol is modeled in independent uses ofThe protocol is modeled in several
the channel, often a unique use. consecutive uses of the channel.

The channel is fromAT → BT , i.e., its input The channel is fromF → B, i.e. its
is a single stringαT = α1 . . . αT of secret input is a reaction functionϕt and its
symbols and its output is a single stringβT = output is an observableβt.
β1 . . . βT of observable symbols.
The channel is memoryless and in general The channel has memory. Despite the fact that the
implicitly it is assumed the absence of channel fromF → B does not have
feedback. feedback, the internal stochastic kernels

do.
The capacity is calculated using information The capacity is calculated using mutual
I(AT ; BT ). directed informationI(AT → BT ).

(b)

Table 6.



For future work we would like to provide algorithms to compute the leakage and
maximum leakage of interactive systems. These problems result very challenging given
the exponential growth of reaction functions (needed to compute the leakage) and the
quantification over infinitely many reactors (given by the definition of maximum leak-
age in terms of capacity). One possible solution is to study the relation between deter-
ministic schedulers and sequence of reaction functions. Inparticular, we believe that
for each sequence of reaction functions and distribution over it there exists a proba-
bilistic scheduler for the automata representation of the secret-nondeterministic IIHS.
In this way, the problem of computing the leakage and maximumleakage would reduce
to a standard probabilistic model checking problem (where the challenge is to compute
probabilities ranging over infinitely many schedulers).

In addition, we plan to investigate measures of leakage for interactive systems other
than mutual information and capacity.
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