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What is Geometry Processing

Broad Goals:

To create mathematical models and practical tools for digital
representation, manipulation and analysis of 3D shapes.
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What is a Shape?

*» Continuous: a surface embedded in 3D.

» Discrete: a graph embedded in 3D (triangle mesh).

Common assumptions:

 Connected.

* Manifold.
* Without Boundary.




Why triangle meshes

¢, Functions are piecewise linear inside triangles.

¢, Can compute gradients.

¢, Edge lengths correspond to (2x2) matrices inside triangles

Piecewise-linear functions
f:V->NR

K. Crane and Botsch et al.



What is a Shape?

a surface embedded in 3D.

. Continuous
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5k — 200k triangles

a graph embedded in 3D (tr
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Shapes from the SCAPE, TOSCA and FAUST datasets



Shape Comparison

Given two 3D shapes, quantify if they are similar.



Shape Matching

Given two 3D shapes, find corresponding points.



Shape Matching

Given two 3D shapes, find intrinsically isometric
correspondences.



Why Shape Matching

Given a correspondence, we also can detect and
measure the areas of change:
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Data from: FunEvol group (CNRS, MNHN)



Today

© Encoding shape changes

©  Recovering the shape from the Laplacian-based
quantities.

Main observation:

o Many tasks can be formulated through manipulation of
linear operators defined on (L2) function spaces.

o Can recover the metric even from noisy data.



Sources for the talk

O
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Map-based Exploration of Intrinsic Shape
Differences and Variability

Rustamov, O., Azencot, Ben-Chen, Chazal, Guibas,
SIGGRAPH 2013

Functional Characterization of Intrinsic and
Extrinsic Geometry

Corman, Solomon, Ben-Chen, Guibas, O.
Transactions on Graphics 2017



Background: Functional Maps

Rather than comparing points on objects it is often easier
to compare real-valued functions defined on them.

2 Functional Maps: A Flexible Representation of Maps Between Shapes,
O., Ben-Chen, Solomon, Butscher. Guibas, SIGGRAPH 2012

3 Computing and Processing Correspondences with Functional Maps,
O. et al., SIGGRAPH Courses 2017



Background: Functional Maps

Rather than comparing points on objects it is often easier
to compare real-valued functions defined on them. Such
maps can be represented as matrices.
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2 Functional Maps: A Flexible Representation of Maps Between Shapes,
O., Ben-Chen, Solomon, Butscher. Guibas, SIGGRAPH 2012

3 Computing and Processing Correspondences with Functional Maps,
O. et al., SIGGRAPH Courses 2017



Background: Functional Maps

Computing functional maps is often much easier
(reduces to least squares) than point-to-point maps.
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In practice, can think of a functional map as an matrix
of size Ny, X ny;.

3 Computing and Processing Correspondences with Functional Maps,
O. et al., SIGGRAPH Courses 2017



Motivation

() Given a pair of shapes and a functional map between them,
detect similarities and differences (distortion) across them.

) Do it in a multi-scale way (not be sensitive to local changes).

() Accommodate approximate soft (functional) maps

Map-Based Exploration of Intrinsic Shape Differences and Variability, Rustamov, O., Azencot,
Ben-Chen, Chazal, Guibas, SIGGRAPH 2013



Shape Differences Definition

Given a functional map Cyy : F(M) — F(N)

and an inner product norm: ||f||3, =< f, f >u

Define a shape difference operator as linear operator D, s.t.

<f7D(g)>M — <CMN(f)7CMN(g)>N Vg
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Shape Differences Definition

Given a functional map Cyn : F(M) — F(N)

and an inner product norm: ||f||3, =< f, f >u

Define a shape difference operator as linear operator D, s.t.

<f7D(g)>M — <CMN(f)7CMN(g)>N Vg

Existence and uniqueness of D is guaranteed by the

Riesz representation theorem.

Map-Based Exploration of Intrinsic Shape Differences and Variability, Rustamov, O., Azencot,
Ben-Chen, Chazal, Guibas, SIGGRAPH 2013



Shape Differences Definition

Given a functional map Cyn : F(M) — F(N)

and an inner product norm: ||f||3, =< f, f >u

Define a shape difference operator as linear operator D, s.t.

<f7D(g)>M — <CMN(f)7CMN(g)>N Vg

We let V and R, be operators associated with Lo and H;
inner products:

Vi< frg >1,— / F(2)g(@)dp

R:< f.q >u— / (V f(2), Vg(z)) du



Shape Differences Definition

Given a functional map Cyn : F(M) — F(N)

and an inner product norm: ||f||3, =< f, f >u

Define a shape difference operator as linear operator D, s.t.

<f7D(g)>M — <CMN(f)7CMN(g)>N Vg

We let V and R, be operators associated with Lo and H;
inner products:

Vi< frg >0, / F(@)g(x)du

Ri< f,g>m— / (Vf(2), V(@) dp =< f,Ag >1.,



Shape Differences Definition

Given a functional map Cyn : F(M) — F(N)

and an inner product norm: ||f||3, =< f, f >u

Define a shape difference operator as linear operator D, s.t.

<f7D(g)>M — <CMN(f)7CMN(g)>N Vg

We let V and R, be operators associated with Lo and H;
inner products. In the discrete setting, reduces to simply
matrix transposes and inverses:

< f,g>r, = [FAg
< f,g>m, = f'Lg



Shape Differences Properties

If C'pry comes from a point to point map, then:

V = Id if and only if the map is area-preserving.
R = Id if and only if the map is conformal.

<f7.g>L2(M) — <CMN(f)7CMN(g)>L2(N) \v/fvg

<f79>H1(M) - <CMN(f)vCMN<9)>H1(N) Vi, g



Shape Differencesin Collections

() Since shape differences Dy, n1, D v are operators with the
same domain/range, we can compare distortion on multiple shapes.

1st Principal Component (50.6%)

PCA on area-based
shape differences

XX XXX 7 1 N
o000 | gy
. . . . . ..’ g ) .41'.)’1;-;:132';)30.’1.39"—“,45' .
0006066666 ik
0006055521’%':&w
06666666 - *%ﬁ
00606066666 - S
0060600606066

o

0.6

-

0.2

-0.2

-0.4

2nd Principal Component (49.6%)

-0.6

316
of15_e24
614 023 @32
.5 2 22 @31 40
P 21 e300 #3948
o311 020 29 @38 4T  $56
ql‘) 028 @37 o6 ¢55 o064

et _2: 36 o15 o54  o63
.Q%Z'Afm ol ¢33 62
&3 13 52 61
M2 51 460
.Q?P 9

&

-0.8 =
-0.6

-0.4 -0.2 0 02 04 06 08
1st Principal Component (49.8%)

PCA on conformal
shape differences

Variability Variability
localization localization
for area for conformal

Map-Based Exploration of Intrinsic Shape Differences and Variability, Rustamov, O., Azencot,

Ben-Chen, Chazal, Guibas, SIGGRAPH 2013



Shape Differencesin Collections

() Since shape differences Dy, n1, D v are operators with the
same domain/range, we can compare distortion on multiple shapes.
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Comparing Shape Differences

Find a shape D;, such that the difference between shapes B and
D, is as close as possible to the difference between A and C..
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Map-Based Exploration of Intrinsic Shape Differences and Variability, Rustamov, O., Azencot,
Ben-Chen, Chazal, Guibas, SIGGRAPH 2013



Recap

Shape differences represent the distortion as a pair of linear
operators, defined via:
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Question

How much information is contained in these operators?

If F comes from a point map:
R=1Id, and V = Id

If and only if the map is an intrinsic isometry.

1% :/M fgduszNfgduN

R :/ <Vf,Vg>uM:/ <VfVg>u"
M N



Can we recover the metric?

Given a base shape M and two shape ditference
operators, can we recover the target shape?

Functional Characterization of Intrinsic and Extrinsic Geometry
Corman, Solomon, Ben-Chen, Guibas, O. TOG 2017



Can we recover the metric?

Given a base shape M and two shape ditference
operators, can we recover the target shape?

Possible limitation:
Shape difference operators are blind to isometric
deformations.

Vi< fig> = / F(2)g(x)dp(z)
R:< fig>— / V£ (2), V() du(x)

Functional Characterization of Intrinsic and Extrinsic Geometry
Corman, Solomon, Ben-Chen, Guibas, O. TOG 2017



Can we recover the metric?

Given a base shape M and two shape ditference
operators, can we recover the target shape?

Possible limitation:
Shape difference operators are blind to isometric
deformations.
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Can we recover the metric?

Given a base shape M and two shape ditference
operators, can we recover the target shape?

Possible limitation:
Shape difference operators are blind to isometric
deformations.

Best hope:

Recover the metric and solve for the pose.

Functional Characterization of Intrinsic and Extrinsic Geometry
Corman, Solomon, Ben-Chen, Guibas, O. TOG 2017



A metric on the triangle mesh

From metric to inner products on a triangle mesh:

ng = < Vei,Vej >

COt(Oéij) —+ %Cot(ﬁij)

Given the inner product between every pair of
functions can we recover the metric? Probably'?

When the information is exact

1Zeng et al. Discrete heat kernel determines discrete Riemannian metric. Graph. Models, 2012
2De Goes et al. Weighted triangulations for geometry processing, TOG, 2014



A metric on the triangle mesh

From metric to inner products on a triangle mesh:

LZ] = < V@i,VEBj >

1 1
o § COt(Cvij) + 5 COt(ﬁij)

Given the Laplacian of a shape can we recover the metric?

*  What if it is known approximately?
* Using Shape Difference Operators?



Recovering the metric

From metric to inner products on a triangle mesh:

Given the two shape difference operators, the
discrete metric can be recovered by solving 2
linear systems that are " "almost always” full-rank.

Functional Characterization of Intrinsic and Extrinsic Geometry
Solomon, Corman, Ben-Chen, Guibas, O. TOG 2017



A metric on the triangle mesh

Alternative expression for the cotangent weights:

1 1
< Vei, Vej >= 5 COt(aij) + 5 COt(Bij)
1 2 2
1
+ @(CF d% - di)

Re-write the weights in terms of edge lengths.

Boscaini et al. Shape-from-operator: Recovering shapes from intrinsic operators, CGEF, 2015
Corman et al. Functional Characterization of Intrinsic and Extrinsic Geometry, TOG 2017



Recovering the metric

1
< €;,e; >= —(Al + AQ)
12
1
< Vei,Vej > = @(dg —d% —d%)
1
+8—z42( o —ds —dj)

* The areas are linear in the L2 inner product and for fixed areas,
the squared edge lengths are linear in the H1 inner product.

* The resulting linear systems are generically invertible.



Recovering the metric

From Laplacian to the metric:

The edge lengths can be recovered via two linear
systems from two matrices of inner products

(functions and gradients = cotangent weights),
Both are generically invertible.

Functional Characterization of Intrinsic and Extrinsic Geometry
Corman, Solomon, Ben-Chen, Guibas, O. TOG 2017



Recovering the metric

1
< €;,e; >= —(Al + AQ)
12
1
< Vei,Vej > = @(dg —d% —d%)
1
+8—z42( o —ds —dj)

* The areas are linear in the L2 inner product and for fixed areas,
the squared edge lenghts are linear in the H1 inner product.

* The resulting linear systems are generically invertible.

* Can be phrased as a least squares problem even if matrices are
noisy/functions are in a different basis.



Recovering the metric

< Ve, Ve; > = @ug —d? — d5)
1
+8—A2(d(2)—d§—di)

A mesh for which C'(¢?; 1) is not invertible when 1 = 1.

* The areas are linear in the L2 inner product and for fixed areas,
the squared edge lenghts are linear in the H1 inner product.

* The resulting linear systems are generically invertible.



Enforcing the Triangle Inequality

1

< Ve;,Ve; > = 8—141(d(2) — d% — d%)
1

+ 54, (do — 5 — di)

* Regularization, for noisy/incomplete linear systems:
1 2£U1 Iy — L1 — Lo 9 —T1 — T3
E=—- Tz —T1 —Tq 25172 r1 — o9 — I3
2 rog — X1 — X3 1 — T2 — T3 2.’1?3

Is positive semi-definite if and only if x1,x2, 3 are non-
negative and their square roots satisfy the triangle inequality.



From Metric to Geometry

Problem:
Given a triangle mesh with approximate edge lengths
Recover the embedding.

"} = "'-"-"
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Main idea: deform the triangles to match the target metric.

S(p’)zz min A

~ 2
Ju(p) - QW |
te M Q:teS0O(3) F

[terate between computing p’ and Q;.

Panozzo etal., Frame Fields: Anisotropic and Non-Orthogonal Cross Fields, SIGGRAPH 2014



Recovering the shape

With only the edge-lengths, there are multiple near-
isometries. Recovering the exact pose is hard.
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Source Target Intrinsic

Functional Characterization of Intrinsic and Extrinsic Geometry
Solomon, Corman, Ben-Chen, Guibas, O. Conditionally accepted at TOG 2016



Extrinsic Information

Can we add additional extrinsic information? Encode
the second fundamental form?

One Option:
Use dihedral angles to represent encode principal
curvatures.

Difficulty:
Angle-based values are both unstable and difficult
to recover in the presence of noise.

Second Fundamental Form is a quadratic form, not an angle.



Extrinsic Information

Can we add additional extrinsic information? Encode
the second fundamental form?

Main idea : offset surfaces.

¢increases Given a family of immersions, where each
CCreases . . .
point follows the outward normal direction:
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: Metric (first fundamental form)

. Second fundamental form

Edge-lengths change according to : Local area

curvature of the offset surface.

T = = <«

- Mean curvature



Shape Differences Based on Offset Surfaces

Given two shapes, compute four difference operators:
two between the shapes, and two between their offsets.

£ increases £ increases
£ decreases £ decreases
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Vu,~n, Buv,n encode change in metric,
Ve no, Raro No encode change in curvature



Exploring shapes with extrinsic information
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PCA of various shape difference operators



Reconstruction from shape differences

Consequence:

Given the four shape difference operators, the
shape can be recovered by solving 4 linear
systems of equations.

vy

Shape reconstruction can be phrased as reconstruction
based on lengths of tetrahedra.
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Mesh (blue) and offset (red) Thickening




Reconstruction from shape differences

Consequence:

An operator view:
The shape is fully encoded by two operators for
the first and two for the second fundamental forms.

A coherent, parallel theory in the continuous
and discrete case.



Shape Recovery from operators
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Shape Recovery from operators

Can use the pipeline for interpolation/extrapolation,
even with different connectivity.

Source Target Interpolation Factor



Shape Recovery from operators

1ARAR

dy =0.119 dy =0.069 dy = 0064 dy =0.036 dy = 0.023
Source Target ky = 20 ky = 40 kv = ky = 80 ky = 100




Conclusion

O

O

O

O

Laplacian-based methods can be used for both
similarity and difference (distortion).

Can recover the metric from a Laplacian even in a
noisy/approximate case.

Shapes can be represented as sets of linear operators
and recovered via “simple” optimization problems.

Second fundamental form encoded via offsets.



Thank you!

Questions?



