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Encoding and recovering the discrete 

metric on triangle meshes



What is Geometry Processing

Broad Goals: 
To create mathematical models and practical tools for digital 

representation, manipulation and analysis of 3D shapes.  
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What is a Shape?

Discrete: a graph embedded in 3D (triangle mesh).

Continuous: a surface embedded in 3D.

• Connected.

• Manifold.

• Without Boundary.

Common assumptions:
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Why triangle meshes

Can compute gradients.

Functions are piecewise linear inside triangles.

Piecewise-linear functions
!:# → ℝ

Edge lengths correspond to (2x2) matrices inside triangles
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K. Crane and Botsch et al.



What is a Shape?

5k – 200k triangles

Shapes from the SCAPE, TOSCA and FAUST datasets

Discrete: a graph embedded in 3D (triangle mesh).

Continuous: a surface embedded in 3D.
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Shape Comparison

=
?

Given two 3D shapes, quantify if they are similar.



Shape Matching

Given two 3D shapes, find corresponding points.

M

N



Shape Matching

Given two 3D shapes, find intrinsically isometric 
correspondences.
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Why Shape Matching

Given a correspondence, we also can detect and 
measure the areas of change:

Data from: FunEvol group (CNRS, MNHN)



Today

Encoding shape changes

Recovering the shape from the Laplacian-based

quantities.

Main observation:

Many tasks can be formulated through manipulation of 

linear operators defined on (L2) function spaces.

Can recover the metric even from noisy data.



Sources for the talk

Map-based Exploration of Intrinsic Shape 

Differences and Variability

Rustamov, O., Azencot, Ben-Chen, Chazal, Guibas, 
SIGGRAPH 2013

Functional Characterization of Intrinsic and 

Extrinsic Geometry 

Corman, Solomon, Ben-Chen, Guibas, O. 
Transactions on Graphics 2017



Background: Functional Maps

Rather than comparing points on objects it is often easier 

to compare real-valued functions defined on them. 

2 Functional Maps: A Flexible Representation of Maps Between Shapes,
O., Ben-Chen, Solomon, Butscher. Guibas, SIGGRAPH 2012

3 Computing and Processing Correspondences with Functional Maps,
O. et al., SIGGRAPH Courses 2017



Background: Functional Maps

Rather than comparing points on objects it is often easier 

to compare real-valued functions defined on them. Such 

maps can be represented as matrices.

2 Functional Maps: A Flexible Representation of Maps Between Shapes,
O., Ben-Chen, Solomon, Butscher. Guibas, SIGGRAPH 2012

3 Computing and Processing Correspondences with Functional Maps,
O. et al., SIGGRAPH Courses 2017



Background: Functional Maps

Computing functional maps is often much easier 
(reduces to least squares) than point-to-point maps.

In practice, can think of a functional map as an matrix 
of size .

3 Computing and Processing Correspondences with Functional Maps,
O. et al., SIGGRAPH Courses 2017

nV2 ⇥ nV1



Motivation

Given a pair of shapes and a functional map between them,

detect similarities and differences (distortion) across them.

Do it in a multi-scale way (not be sensitive to local changes).

Accommodate approximate soft (functional) maps

Map-Based Exploration of Intrinsic Shape Differences and Variability, Rustamov, O., Azencot, 
Ben-Chen, Chazal, Guibas, SIGGRAPH 2013



Shape Differences Definition

Given a functional map

and an inner product norm:

Define a shape difference operator as linear operator D, s.t.

kfk2M =< f, f >M

D(f1) D(f2)

CMN : F(M) ! F(N)

hf,D(g)iM = hCMN (f), CMN (g)iN 8f, g

CMN



Given a functional map

and an inner product norm:

Define a shape difference operator as linear operator D, s.t.

kfk2M =< f, f >M

Existence and uniqueness of D is guaranteed by the 

Riesz representation theorem. 

Shape Differences Definition

hf,D(g)iM = hCMN (f), CMN (g)iN 8f, g

CMN : F(M) ! F(N)

Map-Based Exploration of Intrinsic Shape Differences and Variability, Rustamov, O., Azencot, 
Ben-Chen, Chazal, Guibas, SIGGRAPH 2013



Given a functional map

and an inner product norm:

Define a shape difference operator as linear operator D, s.t.

kfk2M =< f, f >M

We let V and R, be operators associated with        and        

inner products:

Shape Differences Definition

hf,D(g)iM = hCMN (f), CMN (g)iN 8f, g

L2 H1

V :< f, g >L2=

Z
f(x)g(x)dµ

R :< f, g >H1=

Z
hrf(x),rg(x)i dµ

CMN : F(M) ! F(N)



Given a functional map

and an inner product norm:

Define a shape difference operator as linear operator D, s.t.

kfk2M =< f, f >M

We let V and R, be operators associated with        and        

inner products:

Shape Differences Definition

hf,D(g)iM = hCMN (f), CMN (g)iN 8f, g

L2 H1

V :< f, g >L2=

Z
f(x)g(x)dµ

R :< f, g >H1=

Z
hrf(x),rg(x)i dµ

CMN : F(M) ! F(N)

=< f,�g >L2



Given a functional map

and an inner product norm:

Define a shape difference operator as linear operator D, s.t.

kfk2M =< f, f >M

We let V and R, be operators associated with        and        

inner products. In the discrete setting, reduces to simply 

matrix transposes and inverses:

Shape Differences Definition

hf,D(g)iM = hCMN (f), CMN (g)iN 8f, g

L2 H1

CMN : F(M) ! F(N)

< f, g >L2 = fTAg

< f, g >H1 = fTLg



Theorem:

If comes from a point to point map, then:  

if and only if the map is area-preserving.V = Id

Shape Differences Properties

if and only if the map is conformal.R = Id

CMN

hf, giL2(M) = hCMN (f), CMN (g)iL2(N) 8f, g

hf, giH1(M) = hCMN (f), CMN (g)iH1(N) 8f, g

1)

2)

1)
2)



Shape Differences in Collections

Map-Based Exploration of Intrinsic Shape Differences and Variability, Rustamov, O., Azencot, 
Ben-Chen, Chazal, Guibas, SIGGRAPH 2013

Since shape differences                            are operators with the 

same domain/range, we can compare distortion on multiple shapes.

DM,N1, DM,N2



Shape Differences in Collections

Since shape differences                            are operators with the 

same domain/range, we can compare distortion on multiple shapes.

DM,N1, DM,N2

Map-Based Exploration of Intrinsic Shape Differences and Variability, Rustamov, O., Azencot, 
Ben-Chen, Chazal, Guibas, SIGGRAPH 2013



Comparing Shape Differences

Find a shape Di, such that the difference between shapes B and 

Di is as close as possible to the difference between A and Ci.

Map-Based Exploration of Intrinsic Shape Differences and Variability, Rustamov, O., Azencot, 
Ben-Chen, Chazal, Guibas, SIGGRAPH 2013



Recap

Shape differences represent the distortion as a pair of linear 

operators, defined via:

< f, D(g) >M=< F (f), F (g) >N 8 f, g

D(f1) D(f2)



Question

How much information is contained in these operators?

Theorem:

If F comes from a point map: 

If and only if the map is an intrinsic isometry.

R = Id, and V = Id

V :

Z

M
fgdµM =

Z

N
fgdµN

R :

Z

M
< rf,rg > µM =

Z

N
< rf,rg > µN



Can we recover the metric?
Theorem:

Given a base shape M and two shape difference 

operators, can we recover the target shape?

Functional Characterization of Intrinsic and Extrinsic Geometry 

Corman, Solomon, Ben-Chen, Guibas, O. TOG 2017

?



Can we recover the metric?
Theorem:

Given a base shape M and two shape difference 

operators, can we recover the target shape?

Functional Characterization of Intrinsic and Extrinsic Geometry 

Corman, Solomon, Ben-Chen, Guibas, O. TOG 2017

V :< f, g > =

Z
f(x)g(x)dµ(x)

R :< f, g > =

Z
hrf(x),rg(x)i dµ(x)

Possible limitation:

Shape difference operators are blind to isometric 

deformations.



Can we recover the metric?
Theorem:

Given a base shape M and two shape difference 

operators, can we recover the target shape?

Functional Characterization of Intrinsic and Extrinsic Geometry 

Solomon, Corman, Ben-Chen, Guibas, O. Conditionally accepted at TOG 2016

Possible limitation:

Shape difference operators are blind to isometric 

deformations.

V R



Can we recover the metric?
Theorem:

Given a base shape M and two shape difference 

operators, can we recover the target shape?

Functional Characterization of Intrinsic and Extrinsic Geometry 

Corman, Solomon, Ben-Chen, Guibas, O. TOG 2017

Possible limitation:

Shape difference operators are blind to isometric 

deformations.

Best hope:

Recover the metric and solve for the pose.



A metric on the triangle mesh
Theorem:

1Zeng et al. Discrete heat kernel determines discrete Riemannian metric. Graph. Models , 2012
2 De Goes et al. Weighted triangulations for geometry processing, TOG, 2014

From metric to inner products on a triangle mesh:

Given the inner product between every pair of 

functions can we recover the metric?

i

j

↵ij �ij
t1 t2

Probably1,2

When the	information	is exact

< rei,rej >=Lij =

LijA(j) =
1

2

cot(↵ij) +
1

2

cot(�ij)Lij =



A metric on the triangle mesh
Theorem:

From metric to inner products on a triangle mesh:

Given the Laplacian of a shape can we recover the metric?
• What if it is known approximately?
• Using Shape Difference Operators?

< rei,rej >=Lij =

LijA(j) =
1

2

cot(↵ij) +
1

2

cot(�ij)Lij =

i

j

↵ij �ij
t1 t2

Zeng et al. Discrete heat kernel determines discrete Riemannian metric. Graph. Models , 2012
De Goes et al. Weighted triangulations for geometry processing, TOG, 2014



Recovering the metric
Theorem:

Functional Characterization of Intrinsic and Extrinsic Geometry 

Solomon, Corman, Ben-Chen, Guibas, O. TOG 2017

From metric to inner products on a triangle mesh:

Theorem:

Given the two shape difference operators, the 

discrete metric can be recovered by solving 2 

linear systems that are ``almost always” full-rank.



i

j

↵ij �ij
t1 t2

A metric on the triangle mesh
Theorem:

Alternative expression for the cotangent weights:

LijA(j) =
1

2

cot(↵ij) +
1

2

cot(�ij)< rei,rej >=

< ri,rj > =
1

8A1
(d20 � d21 � d22)

+
1

8A1
(d20 � d23 � d24)A2

A1 A2

i

j

d2

d1

d4

d3

d0

Re-write the weights in terms of edge lengths.

Boscaini et al. Shape-from-operator: Recovering shapes from intrinsic operators, CGF, 2015
Corman et al. Functional Characterization of Intrinsic and Extrinsic Geometry, TOG 2017



Recovering the metric
Theorem:

A1 A2

i

j

d2

d1

d4

d3

d0

< ei, ej >=
1

12
(A1 +A2)

< ri,rj > =
1

8A1
(d20 � d21 � d22)

+
1

8A1
(d20 � d23 � d24)

< rei,rej >=

A2

• The areas are linear in the L2 inner product and for fixed areas, 

the squared edge lengths are linear in the H1 inner product.

• The resulting linear systems are generically invertible.



Recovering the metric
Theorem:

Functional Characterization of Intrinsic and Extrinsic Geometry 

Corman, Solomon, Ben-Chen, Guibas, O. TOG 2017

From Laplacian to the metric:

Theorem:

The edge lengths can be recovered via two linear 

systems from two matrices of inner products 

(functions and gradients = cotangent weights), 

Both are generically invertible.



Recovering the metric
Theorem:

A1 A2

i

j

d2

d1

d4

d3

d0

< ei, ej >=
1

12
(A1 +A2)

< ri,rj > =
1

8A1
(d20 � d21 � d22)

+
1

8A1
(d20 � d23 � d24)

< rei,rej >=

A2

• The areas are linear in the L2 inner product and for fixed areas, 

the squared edge lenghts are linear in the H1 inner product.

• The resulting linear systems are generically invertible.

• Can be phrased as a least squares problem even if matrices are 

noisy/functions are in a different basis.



Recovering the metric
Theorem:

• The areas are linear in the L2 inner product and for fixed areas, 

the squared edge lenghts are linear in the H1 inner product.

• The resulting linear systems are generically invertible.

< ri,rj > =
1

8A1
(d20 � d21 � d22)

+
1

8A1
(d20 � d23 � d24)

< rei,rej >=

A2



Enforcing the Triangle Inequality
Theorem:

A1 A2

i

j

d2

d1

d4

d3

d0
< ri,rj > =

1

8A1
(d20 � d21 � d22)

+
1

8A1
(d20 � d23 � d24)

< rei,rej >=

A2

• Regularization, for noisy/incomplete linear systems:

Is positive semi-definite if and only if are non-

negative and their square roots satisfy the triangle inequality.

x1, x2, x3



From Metric to Geometry
Theorem:

Problem: 
Given a triangle mesh with approximate edge lengths

Recover the embedding.

Panozzo et al., Frame Fields: Anisotropic and Non-Orthogonal Cross Fields, SIGGRAPH 2014

Main idea:  deform the triangles to match the target metric.

Iterate between computing        and       .  p0 Qt



Recovering the shape

Theorem:

Functional Characterization of Intrinsic and Extrinsic Geometry 

Solomon, Corman, Ben-Chen, Guibas, O. Conditionally accepted at TOG 2016

With only the edge-lengths, there are multiple near-

isometries. Recovering the exact pose is hard.



Extrinsic Information

Theorem:Can we add additional extrinsic information? Encode 

the second fundamental form?

One Option:
Use dihedral angles to represent encode principal 

curvatures.

Difficulty:
Angle-based values are both unstable and difficult 

to recover in the presence of noise.

Second Fundamental Form is a quadratic form, not an angle.



Extrinsic Information

Theorem:Can we add additional extrinsic information? Encode 

the second fundamental form?

Main idea : offset surfaces.

Edge-lengths change according to 

curvature of the offset surface.

Given a family of immersions, where each 

point follows the outward normal direction:

@g

@t

����
t=0

= 2h|t=0 and
@µ

@t

����
t=0

= Hµ,

Metric (first fundamental form)

Second fundamental form

Local area

Mean curvature

g :

h :

µ :

H :



Shape Differences Based on Offset Surfaces

Theorem:Given two shapes, compute four difference operators: 

two between the shapes, and two between their offsets.

M N

VM,N

RM,N

VMo,No

RMo,No

encode change in metric, 

encode change in curvature

VM,N , RM,N

VMo,No , RMo,No



Exploring shapes with extrinsic information

Theorem:

PCA of various shape difference operators



Reconstruction from shape differences

Theorem:

Consequence:

Given the four shape difference operators, the 

shape can be recovered by solving 4 linear 

systems of equations.

Shape reconstruction can be phrased as reconstruction 

based on lengths of tetrahedra. 



Reconstruction from shape differences

Theorem:

Consequence:

An operator view: 

The shape is fully encoded by two operators for 

the first and two for the second fundamental forms.

A coherent, parallel theory in the continuous 

and discrete case.



Shape Recovery from operators



Shape Recovery from operators

Can use the pipeline for interpolation/extrapolation, 
even with different connectivity. 



Shape Recovery from operators



Conclusion

Laplacian-based methods can be used for both 

similarity and difference (distortion).

Can recover the metric from a Laplacian even in a 

noisy/approximate case.

Shapes can be represented as sets of linear operators 

and recovered via “simple” optimization problems.

Second fundamental form encoded via offsets.



Thank you!

Questions?


