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Abstract

Joint segmentation of image sets is a challenging prob-

lem, especially when there are multiple objects with vari-

able appearance shared among the images in the collection

and the set of objects present in each particular image is

itself varying and unknown. In this paper, we present a

novel method to jointly segment a set of images containing

objects from multiple classes. We first establish consistent

functional maps across the input images, and introduce a

formulation that explicitly models partial similarity across

images instead of global consistency. Given the optimized

maps between pairs of images, multiple groups of consistent

segmentation functions are found such that they align with

segmentation cues in the images, agree with the functional

maps, and are mutually exclusive. The proposed fully

unsupervised approach exhibits a significant improvement

over the state-of-the-art methods, as shown on the co-

segmentation data sets MSRC, Flickr, and PASCAL.

1. Introduction

Image segmentation is a fundamental problem in com-

puter vision. Traditional methods have focused on single

images and typically utilize segmentation clues, such as

color changes or the presence of sharp edges, to divide a

given image into locally coherent pieces. However, such

techniques do not always obtain satisfactory results [4]

since different parts of the same object may exhibit hetero-

geneous appearance.

Recently, there has been growing interest in

unsupervised image co-segmentation, where the segments

are forced to be consistent across a collection of similar

images, e.g. [14, 6, 19, 15]. This is a common setting, as

many natural image collections contain similar or related

objects. For example, spatial and temporal coherence in

user photo albums leads to shared entities in the images,

photo collections of a particular theme (e.g., “grazing

animals”) invariably contain shared content, etc. In this

multi-image setting, the key idea is to establish relations

across images, and obtain consistent segmentations that

agree with the segmentation clues provided by all the

images together. This formulation turns out to perform

much better than single image segmentation methods [17].

However, existing techniques are generally restricted to

the setting where the input images must all contain exactly

the same set of objects or, in other words, when all input

images are similar with to other in terms of object content.

In this paper, we consider the problem of co-segmenting

a heterogenous image collection, where each input image

may contain an arbitrary subset of the objects of interest.

Such image collections are easy to obtain (e.g., from inter-

net image collections). We show that the advantage of co-

segmentation still applies in this challenging heterogenous

setting, and that a careful formulation yields significant

improvements over segmenting each image in isolation.

Co-segmenting a heterogenous collection poses funda-

mental challenges both in how to establish reliable relations

across the images and in how to identify objects that only

appear in subsets of the input collection. We propose to

address these two issues using the functional maps machin-

ery, which was recently introduced to the vision community

by Wang et al. [20]. Unlike traditional image matching

techniques which establish correspondences between image

pixels/superpixels, functional maps establish maps between

functions defined over the images. Since image segmen-

tation can be considered as computing binary segment

indicator functions on pixels/superpixels, the functional

map framework is particularly suitable for the purpose of

image co-segmentation as it provides a handy platform for

simultaneously expressing image segmentation and image

matching desiderata.

The proposed image co-segmentation framework con-

sists of two stages. The first stage establishes consistent

functional maps across the input images. In this stage,

building upon the framework of [13] and [20], we introduce
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a novel formulation that explicitly models partial similarity

across images. Given the optimized consistent functional

maps between the images, the second stage optimizes mul-

tiple groups of consistent segmentation functions across the

image collection. Our novel two-stage approach exhibits a

significant improvement over existing techniques on several

challenging datasets.

1.1. Related Works

The problem of joint segmentation has attracted a lot of

attention recently, starting with the early work by Rother

et al. [14], who used color histogram matching to find

common objects in a pair of images. Later on, other

kinds of features were also utilized to exploit the rela-

tionship between image foregrounds, such as SIFT [11],

saliency [1], and Gabor features [5]. To address the co-

segmentation of multiple images, Joulin et al. formulated

the co-segmentation task as a discriminative clustering

problem by clustering the image pixels into foreground and

background [6]. Vicente and colleagues [19] proposed

to extract objects from a group of images by using an

object recognition scheme to generate a pool of object-like

segmentations, and then selecting the most likely segmenta-

tions using a learned pairwise consistency term. In contrast,

Chang et al. [1] established an MRF optimization model,

by introducing a co-saliency prior as a hint about possible

consistent foreground locations. The proposed model was

then optimized using graph cut techniques. Rubio et al.

proposed a method based on first establishing correspon-

dences between regions in the images, and then estimating

the appearance distributions of both the foreground and the

background for better joint segmentation [15].

Image co-segmentation with multiple objects has only

been explored in the last few years. To handle multiple

object classes, Kim et al. [8] model the segmentation

task as temperature maximization on anisotropic heat d-

iffusion. The submodular property of the formulation

guarantees a constant factor approximation to the optimal

solution. Joulin et al. propose an effective energy-based

objective that combines a spectral-clustering term with a

discriminative one, allowing the objective to be optimized

using an efficient expectation-minimization algorithm [7].

Both works can handle multiple object classes; however,

they still assume that all objects appear in each image,

which is not realistic in many applications. To segment

images containing an unknown subset of objects, Kim et

al. proposed to alternate between foreground modeling and

region assignment steps [9]. The foreground modeling step

learns the appearance models of the foregrounds and the

background, and the region assignment step is formulated

as welfare maximization in a combinatorial auction. Fi-

nally, Li et al. generate unknown object-like proposals by

ensemble clustering and solve the cosegmentation problem

by a multi-label energy minimization [10].

Unlike these methods, our technique provides a princi-

pled framework for co-segmenting a heterogenous image

collection. We do not pose any constraints on the associa-

tion between objects and images. Moreover, the segmenta-

tions of all classes are optimized simultaneously, obtaining

significant improvement over state-of-the-art techniques.

1.2. Notations

Throughout this paper, we use the following convention

for linear algebra notations. We use bold face capital

characters (e.g., A,B, · · · ) to denote matrices, and use bold

face lowercase characters (e.g., d, s, · · · ) to denote vectors.

With ‖ · ‖F we denote the matrix Frobienius norm, i.e.,

‖A‖F = (
∑

i,j a
2
ij)

1

2 . In contrast, we use ‖·‖1 to denote the

column-wise 1-norm, i.e., for matrix A = (a1, · · · ,am),
‖A‖1 =

∑m

i=1 ‖ai‖1.

2. Problem Statement and Overview

The input to our algorithm is a collection of N related

images I = {I1, · · · , IN}. The images are related in the

sense that each image contains one or multiple objects from

an unknown set of classes. Nothing is known about these

classes, except their total number M . The output consists

of (i) the classification result: a collection of M image sets

Ck ⊂ {1, · · · , N}, 1 ≤ k ≤ M , collecting the images

that contain one object (or more) of each class, and (ii) the

corresponding segments sik, ∀i ∈ Ck.We represent each sik
as a binary indicator function on image Ii, indicating the

location of object(s) of class k in image i, and call these the

segmentation functions.

2.1. Functional Map Representation

Following the work of Wang et al. [20] we assume that

each image Ii = (Pi, Ei) is represented by the dual graph

of its super-pixel decomposition. We use the normalized cut

algorithm [17] to compute the decomposition and set m =
200 to be the number of superpixels in all the experiments.

Functional Space and Segmentation Functions. The

key concept of the functional map framework is to equip

each image Ii with a linear functional space F i. Here

we consider F i to be the space of functions, which are

piecewise constant on each super-pixel. Thus, for an image

with m super-pixels F i
∼= R

m. Moreover, following [20]

we approximate F i by only considering the subspace Fi

spanned by the first K = 30 eigenvectors of the normalized

cut Laplacian matrix Li. We use these eigenvectors as the

standard basis, and encode each f ∈ Fi as a vector of

coefficients f ∈ R
K . Note that in the remainder of this

paper, we will project any function in the original space

f ∈ F i into this reduced space f ∈ Fi.

Functional Maps. A functional map between images Ii
and Ij is a linear map Xij : Fi → Fj . In the remainder

of this paper, we will use bold face Xij to denote the



(a) Input images (c) Initialization

(d) Continuous optimization

(b) Optimizing consistent maps

(e) Combinatorial optimization

Figure 1. The pipeline of the proposed image co-segmentation framework. Our method begins by computing consistent functional maps

between similar input images. Given the optimized functional maps, it extracts for each class an initial seed set of images and the

corresponding segmentation functions. It then alternates between jointly optimizing the segmentation functions and using the optimized

segmentation functions to refine and extend the image set associated with each class.

matrix representation of Xij in the standard basis associated

with Fi and Fj . As demonstrated in the single-class co-

segmentation work [20], high-quality functional maps can

be computed using linear constraints on Xij that enforce

descriptor preservation across pairs of images, and global

consistency constraints on the entire collection of maps

reflecting the presence of a shared object.

In the case of multiple object classes, it is not reasonable

to expect globally consistent functional maps. Therefore,

we adapt the formulation in [20] to the setting where only

subsets of maps are consistent, which is significantly more

challenging both conceptually and algorithmically. We also

show how the segmentation functions can be optimized for

and diffused to only appropriate subsets of images.

2.2. Approach overview

The proposed joint image co-segmentation technique

consists of two major stages (Fig. 1), as summarized below.

Consistent partial functional maps. We extend the con-

sistent functional map framework of Wang et al. [20] to

handle the case where there exist only partial similarities

between images in terms of shared objects. We introduce

a formulation that utilizes both continuous and discrete

latent variables to model partial similarities and show how

to optimize the induced objective function via two-level

alternating optimizations.

Segmentation function optimization. Given the optimized

functional maps between pairs of images, we proceed to

extract consistent segmentation functions (multiple per im-

age). This stage alternates between a combinatorial phase,

which determines the existence of each object in each im-

age, and a continuous phase to estimate their locations, by

jointly optimizing the segmentation functions. Specifically,

the combinatorial phase begins with initializing a few seed

images for each class, and then gradually augments the

images contained in each class during successive iterations.

The objective function in the continuous phase considers

the saliency of each segmentation function, the mutual ex-

clusiveness of different segmentation functions on the same

image, as well as the consistency between segmentation

functions of the same class and the optimized functional

maps. We show how to effectively optimize the induced

segmentation functions via alternating optimization.

3. Consistent Functional Maps Among a Het-

erogenous Image Collection

In the first stage of our pipeline, we estimate the func-

tional maps Xij between certain pairs of images in our col-

lection, connecting them into a network. Since the number

of input images can be large, computing functional maps

between all pairs of images is computationally expensive.

Furthermore, for dissimilar images, estimated functional

maps can be noisy and may pollute the network. Therefore,

we connect each image with its k-nearest neighbors (we

use k = 30) in terms of the GIST descriptor [12] to form

a similarity graph G, and only compute functional maps

along the edges of G. In the following, we first describe the

formulation, and then show how to solve the optimization



problem.

3.1. Formulation

The objective function consists of a pair-wise term,

which forces functional maps to align image clues, and a

consistency term, which ensures the consistency of func-

tional maps among the network.

Pair-wise objectives. The pair-wise objective is similar to

the one in [20], where we force each functional map to

agrees with image descriptors and to transfer functions of

similar frequencies:

fpair = ‖XijDi −Dj‖1 + λ‖XijΛi − ΛjXij‖
2
F , (1)

where Di ∈ R
K×367 stacks the image descriptors [20]

(e.g., color, BoW) from image Ii; Λi is the diagonal matrix

of eigenvalues of the normalized Laplacian on the super-

pixel graphs of images Ii; in our experiments λ = 100.

Consistency term. To enforce the consistency of functional

maps, we introduce L = 100 latent functions f1, · · · , fL

that are shared by the input images, and formulate the

consistency term so that pair-wise functional maps link cor-

responding latent functions on each image. In the presence

of partial similarity, the technical challenge is to model the

fact that each latent function may only appear in a subset

of images. To address this issue, we introduce for each

image Ii a discrete latent variable zi = {zil ∈ {0, 1}, 1 ≤
l ≤ L} and a continuous variable Y i = (yi1, · · · ,yiL).
The discrete variables encode the association between the

latent functions and input images, i.e., zil = 1 if and only

if f l appears on Ii. The continuous variables encode the

latent functions on each image, i.e., yil is the corresponding

function of fl on image Ii. Note that if zil = 0, then

yil simply corresponds to the zero function 0. It is clear

that that these two latent variables satisfy the following

constraint:

Y iDiag(zi) = Y i. (2)

To model the independence among latent functions, we

introduce a big matrix Y that stacks the Y i in a column

and require that

Y TY = IL. (3)

In other words, the vectors that stack each set of correspond-

ing latent functions are orthogonal with each other.

Using these latent functions, we model the consistency

of pair-wise functional maps Xij as:

XijY i = Y jDiag(zi), (i, j) ∈ E . (4)

Intuitively, each Xij links shared functions between Yi and

Yj and maps the remaining functions in Y i to zero.

The consistency term is formulated to preserve (3) and

(4) in the least square sense:

fcons =µ
∑

(i,j)∈E

‖XijYi −YjDiag(zi)‖
2

+ γ

N
∑

i=1

‖Yi −YiDiag(zi)‖
2, (5)

where µ = 100 and γ = 10 for all experiments. To ease the

optimization, zil are relaxed so that 0 ≤ zil ≤ 1.

Formulation. Combining fpair and fcons, we write down the

following optimization problem for optimizing consistent

functional maps

{X⋆
ij} = argmin

Xij

fcons +
∑

(i,j)∈E

fpair (6)

3.2. Optimization

Equation 6 is not convex, however, the special structure

in the objective function allows us to effectively optimize

it via alternating optimization. In other words, we alternate

between optimizing each type of parameter so that in each

iteration we solve a much easier sub-optimization problem.

Initializing the variables. We begin by optimizing the

functional maps between pairs of images by dropping the

consistency term. This amounts to estimating a standard

pair-wise functional map, which is convex and can be

solved by CVX:

X⋆
ij = argmin

Xij

‖XijDi−Dj‖1+λ‖XijΛi−ΛjXij‖
2
F .

(7)

The initial value of zi = 1T . After that, we fix Xij and

zi to optimize Y i. As described in [20], this amounts to

compute the top eigenvectors of a sparse matrix.

Optimizing Latent functions Yi, 1 ≤ i ≤ N . We first

fix the indicator vectors zi and functional maps Xij and

optimize the latent functions Y i, 1 ≤ i ≤ N . In this

case, the objective function is quadratic in Y i, and thus

the technical challenge is to enforce the orthornormality

constraint Y TY = IL. To address this issue, we employ

a standard optimization-on-manifold strategy. Specifically,

given the current value of Y , we seek a displacement of

dY to minimize the objective function. dY is forced to lie

within the tangent plane at Y , i.e., it satisfies Y T (dY ) = 0.

Since the objective function is quadratic in the variables,

this leads to solving a linear system. After obtaining the

optimal value of Y ← Y + dY , we project Y back onto

the manifold Y TY = IL. This is done by computing SVD

of Y = UΣV T and set Y ← UV T .

Optimizing indicator vectors zi, 1 ≤ i ≤ N . When

the latent functions Y i, 1 ≤ i ≤ N and the functional

maps Xij , (i, j) ∈ E are fixed, it is easy to see that all

indicator variables (i.e., elements of the indicator vectors)

are decoupled in the objective function As the objective
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Figure 2. Given an input image in (a), we map its ground truth

segmentation function for “apple bucket” to other images in (b).

The mapped results are shown in (c) when the maps are optimized

independently without any consistency enforced; (d) when the

maps are optimized with global consistency as in [20]; (e)when

the consistency term Eq. 5 is included. The maps optimized with

the proposed consistency term are capable of correctly matching

similar parts of other images.

function is quadratic in indicators variables, we can write

the optimal value of each indicator variable analytically as

z⋆il = argmin
0≤zil≤1

µ‖yil − zilyil‖
2 + λ

∑

j∈N (i)

‖Xijyil − zilyjl‖
2

= max
(

0,min
(

1,

µ‖yil‖
2 + λ

∑

j∈N (i)

〈Xijyil,yjl〉

µ‖yil‖2 + λ
∑

j∈N (i)

‖yjl‖2
))

(8)

Optimizing functional maps Xij , (i, j) ∈ E . When the

latent variables Y i, zi, 1 ≤ i ≤ N are fixed, we can

optimize each pair-wise functional map Xij independently

by solving the following convex optimization problem:

X⋆
ij = argmin

Xij

‖XijDi −Dj‖1 + λ‖XijΛi − ΛjXij‖
2
F

+ µ‖XijY i − Y jDiag(zi)‖
2
F . (9)

Convergence detection. The alternating optimization de-

scribed above is guaranteed to converge to a local optimal

of f . We detect the convergence by checking

max
(i,j)∈E

‖Xij −X
prev
ij ‖

‖Xij‖
≤ 10−3.

Typically, the program converges in 8-10 iterations.

4. Optimizing Consistent Segmentations

In this section, we describe how to compute the asso-

ciation between each image and each class, i.e., Ck, 1 ≤

k ≤ M , and the segmentation functions sik, i ∈ Ck of

the corresponding objects in each image, by optimizing the

following three objectives:

• The segmentation functions should be consistent with

the optimized functional maps, i.e.,

Xijsik ≈ sjk, (i, j) ∈ G, 1 ≤ k ≤M. (10)

Note that sik = 0, if i /∈ Ck.

• The segmentation functions should align with sharp

edges in each image. As in [20], this is formulated

using the normalized cut Laplacian L as minimizing

sTikLisik, ∀i ∈ Ck, 1 ≤ k ≤M. (11)

• The segmentation functions for different classes

should be mutually exclusive, i.e.,

sTiksik′ ≈ 0, ∀i ∈ Ck, 1 ≤ k 6= k′ ≤M. (12)

Note that the unknowns include both discrete variables,

i.e., Ck, 1 ≤ k ≤ M and continuous ones, i.e., the

segmentation functions sik, i ∈ Ck, 1 ≤ k ≤ K. Thus,

we deploy an iterative and decoupled optimization strategy.

Specifically, we begin by initializing the classes with a

small set of highly confident images, and then alternate

between optimizing the segmentation functions (Fig.4) and

expanding the sets for each object (Fig.3).

4.1. Initialization

To initialize the associations Ck and segmentation func-

tions sik, we solve a relaxed problem, where we only

optimize the mutual exclusiveness of the concatenated seg-

mentation function sk = (sik), i ∈ Ck of each class, i.e.,

siksik′ . In this case, to obtain segmentation functions for

each class we minimize the same quadratic form

fseg =
1

|G|

∑

(i,j)∈G

‖Xijsik − sjk‖
2
F +

γ

N

N
∑

i=1

sTikLisik

= skLsk, (13)

using the combined Laplacian matrix L and setting γ =
10 in this paper. Thus, a reasonable initialization of the

segmentation functions is to set sk, 1 ≤ k ≤ M , to be the

first M smallest eigenvectors of L.

Given these initial segmentation functions sik, 1 ≤ i ≤
N, 1 ≤ k ≤M , we initialize each set Ck as

Ck = {i, s.t. ‖sik‖ ≥ max
i
‖si‖/2}.

This tries to select images for which we have high confi-

dence that the corresponding class is present, as if i /∈ Ck,

then sik must have a small magnitude.



4.2. Continuous Optimization

Given the fixed associations between the classes and the

input images, we optimize the corresponding segmentations

sik via constrained optimization. The objective function

consists of three terms. The first term measures the consis-

tency between sjk and Xijsik, (i, j) ∈ E , i.e., the induced

segmentations from its neighbors:

f cons
ij = ‖Xijsik − sjk‖

2. (14)

The second term evaluates the mutual exclusiveness of the

segmentation functions in different classes on the same

image, i.e., asserting they should be orthogonal to each

other:

f exclu
i =

∑

(k,k′)∈{Ii∈Ck∩Ck′}

(sTiksik′)2. (15)

The final term evaluates the saliency of each segmentation.

In this case, we simply evaluate the normalized cut score in

terms of the normalized cut Laplacian Li:

f cut
i = sTikLisik. (16)

To avoid having all segmenting functions be the zero vector,

we include the regularization constraints
∑

i∈Ck

‖sik‖
2 =

|Ck|, 1 ≤ k ≤ K. Combining these three objective terms,

we arrive at the following optimization problem:

minimize
sik,i∈Ck

M
∑

k=1

∑

(i,j)∈E∩(Ck×Ck)

‖Xijsik − sjk‖
2

+ γ
∑

l 6=k

∑

i∈Ck∩Cl

(sTilsik)
2 + α

M
∑

k=1

∑

i∈Ck

sTikLisik

subject to
∑

i∈Ck

‖sik‖
2 = |Ck|, 1 ≤ k ≤M. (17)

It is hard to optimize Eq. 17 directly because the term

(siksil)
2 is quartic in the segmentation function coeffi-

cients. However, the objective functions becomes quadratic

if we only optimize the segmentation functions associated

with each class. This leads to an alternating optimization

procedure. Specifically, at each step, we optimize the

segmentation functions associated with class Ck, i.e.,

minimize
sik,i∈Ck

∑

(i,j)∈E∩(Ck×Ck)

‖Xijsik − sjk‖
2

+ γ
∑

i∈Cl,l 6=k

(sTilsik)
2 + α

∑

i∈Ck

sTikLisik

subject to
∑

i∈Ck

‖sik‖
2 = |Ck|. (18)

This optimization is performed for each class in order. In

practice, we found that the segmentation functions become

stable after 4-5 complete iterations.

Iteration 3Iteration 1

Figure 4. The generated segmentations are updated when more

images are included in this object class. This figure shows how

the image segmentations are improved as iterations go on.

4.3. Combinatorial Optimization

Given the current segmentation functions

sik, Ii ∈ Ck, 1 ≤ k ≤ M , we proceed to expand Ck by

propagating segmentation functions to other images using

the functional maps, and detecting salient segmentations.

Specifically, for each class Ck and for each image Ii /∈ Ck,

such that there exists an image Ij ∈ Ck and (i, j) ∈ E ,

we compute the induced segmentation sik by solving the

following constrainted optimization problem

maximize
sik

1

|N (i) ∩ Ck|

∑

j∈N (i)∩Ck

(sTikXjisjk)
2

− γ
∑

l 6=k,i∈Cl

(sTiksil)
2 − αsTikLisik (19)

subject to ‖sik‖
2 = 1. (20)

The first term in Eq. 19 prioritizes the agreement of sik
with the induced segmentation functions Xjisjk from its

neighboring images. The second term ensures that sik
is orthogonal to existing segmentation functions of other

classes on image i. The third term measures the saliency

of sik, with respect to the normalized Laplacian matrix

Li. Since the objective function in quadratic in sik, its

optimal value can be obtained using the standard eigen-

decomposition procedure.

After computing the segmentation function sik, we com-

pute the saliency score sTikLisik (agreement with normal-

ized cuts). We then include Ii into Ck if

sTikLisik < ǫmax
j∈Ck

sTjkLjsjk

sTjksjk
,

where we choose a conservative value ǫ = 1/2 to ensure

that we only include the most salient images.



Apple bucket

Baby

Figure 3. The segmentation propagation process on Flickr dataset. As iteration goes on, more images are included with the same foreground

object (“apple bucket” or “baby” in this example).

5. Experiments

5.1. Experiments on MSRC Dataset

We first evaluate our proposed method on the co-

segmentation dataset MSRC [18]. It includes 591 pixelwise

labeled images in 23 object classes with one object per

class. Images in each class contain a common object

with the similar appearance, e.g., cow, dog, etc. This is

a standard binary segmentation setting, therefore, many

existing single-class co-segmentation algorithms are

applicable. Table 1 gives a quantitative comparison with

[7, 8, 11], and the same classes are selected as reported

in [7]. [7] is designed for multi-class segmentation and

[8] and [11] are state-of-the-art foreground-background

cosegmentation methods. All methods are unsupervised

except for knowing the total number of objects. The

performance is measured by the intersection-over-union

score which is standard in PASCAL challenges.

Our method is significantly better than the state-of-the-

art methods in most of the cases. It is interesting to note

that our method works best for natural objects, such as

“Cat”, “Cow”, and “Sheep” despite their high appearance

variability. Our algorithm performs worse for images with

very cluttered background (“Face”). The lower accuracy for

“Bike” and “Chair” is caused by the coarse superpixels.

5.2. Experiments on FLickr Dataset

We then evaluated our proposed method on the public

multi-class image dataset Flickr [9]. This dataset consists

of 14 groups, where each group contains between 10 and 20

images along with groundtruth pixel-level annotations. We

compare our method with other state-of-the-art methods,

including [9, 8, 6, 16] and summarize the comparison in

Table 2. For [9], an unsupervised version is applied for a fair

comparison. [8], [6] and [16] are applied to each subgroup

of images which share the same foregrounds. On the other

hand, our algorithm is applied to the entire dataset in a

class N [7] [8] [11] Ours

Bike 30 43.3 29.9 42.8 51.2

Bird 30 47.7 29.9 - 55.7

Car 30 59.7 37.1 52.5 72.9

Cat 24 31.9 24.4 5.6 65.9

Chair 30 39.6 28.7 39.4 46.5

Cow 30 52.7 33.5 26.1 68.4

Dog 30 41.8 33.0 - 55.8

Face 30 70.0 33.2 40.8 60.9

Flower 30 51.9 40.2 - 67.2

House 30 51.0 32.2 66.4 56.6

Plane 30 21.6 25.1 33.4 52.2

Sheep 30 66.3 60.8 45.7 72.2

Sign 30 58.9 43.2 - 59.1

Tree 30 67.0 61.2 55.9 62.0

Table 1. Performance of binary segmentation on MSRC.

completely unsupervised way. In the unsupervised setting,

after obtaining the segmentation functions for M different

clusters, we need to find the correspondences between each

cluster and each ground truth object. We pick the one-to-

one matching which maximizes the average accuracy. As

can be seen in Table 2, for image collections with irregularly

appearing objects, our algorithm can significantly improve

the performance in most of the classes.

5.3. Experiments on PASCAL-multi Dataset

Besides the standard benchmark datasets, we create a

more challenging multi-class dataset (“PASCAL-multi”)

based on PASCAL VOC 2012 dataset [3]. Given a pre-

selected set of class labels, a group of images is retrieved

from the PASCAL dataset such that each image only con-

tains a subset of the pre-selected labels. This can ensure the

pre-selected classes are the only re-occurring object classes

in the images. Images with foreground object smaller than

0.5% of the total image area are discarded as these objects

are not salient. This dataset is much more challenging than

the Flickr dataset in §5.2 due to its larger size and the larger



class N M [9] [8] [6] [16] Ours

Apple 20 6 40.9 32.6 24.8 25.6 46.6

baseball 18 5 31.0 31.3 19.2 16.1 50.3

Butterfly 18 8 29.8 32.4 29.5 10.7 54.7

Cheetah 20 5 32.1 40.1 50.9 41.9 62.1

Cow 20 5 35.6 43.8 25.0 27.2 38.5

Dog 20 4 34.5 35.0 32.0 30.6 53.8

Dolphin 18 3 34.0 47.4 37.2 30.1 61.2

Fishing 18 5 20.3 27.2 19.8 18.3 46.8

Gorilla 18 4 41.0 38.8 41.1 28.1 47.8

Liberty 18 4 31.5 41.2 44.6 32.1 58.2

Parrot 18 5 29.9 36.5 35.0 26.6 54.1

Stonehenge 20 5 35.3 49.3 47.0 32.6 54.6

Swan 20 3 17.1 18.4 14.3 16.3 46.5

Thinker 17 4 25.6 34.4 27.6 15.7 68.6

Average - - 31.3 36.3 32.0 25.1 53.1

Table 2. Performance comparison on the Flickr data set.

class imgNum Ncut [17] [2] Ours

Bike + person 248 27.3 30.5 40.1

Boat + person 260 29.3 32.6 44.6

bottle + dining table 90 37.8 39.5 47.6

bus + car 195 36.3 39.4 49.2

bus + person 243 38.9 41.3 55.5

chair + dining table 134 32.3 30.8 40.3

chair + potted plant 115 19.7 19.7 22.3

cow + person 263 30.5 33.5 45.0

dog + sofa 217 44.6 42.2 49.6

horse + person 276 27.3 30.8 42.1

potted plant + sofa 119 37.4 37.5 40.7

Table 3. Performance comparison on the PASCAL-multi data set.

object appearance variability.

We compare our framework with baseline methods [17]

and [2]. The number of foreground objects in each image

is provided as a prior for these two baseline methods. The

results are shown in Table 3; we can see that our method is

very robust when dealing with larger dataset and when the

foreground objects are not quite similar.

6. Conclusion

In this paper we have proposed a framework for multi-

class joint image segmentation. Unlike the traditional

image co-segmentation task which only has one foreground

object, we deal with images containing a large number of

objects, with a variable number of objects from multiple

classes appearing in each image. We have shown an

approach to this problem using the framework of functional

maps and demonstrated how it can be adapted to reflect

partial similarity between images. Based on the optimized

maps, segmentation functions for multiple groups emerge

from the image network, and the group assignment is

updated through a combination of continuous and discrete

optimization steps.

This framework is completely unsupervised, and the

object existence and segmentation are obtained simultane-

ously. It is straightforward to add supervision information,

such as image labels or ground truth segmentations of a few

images, but we leave that as future work.
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