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Voronoi-based Curvature and Feature
Estimation from Point Clouds
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Abstract—We present an efficient and robust method for extracting curvature information, sharp features and normal directions of a
piecewise smooth surface from its point cloud sampling in a unified framework. Our method is integral in nature and uses convolved
covariance matrices of Voronoi cells of the point cloud which makes it provably robust in the presence of noise. We show that these
matrices contain information related to curvature in the smooth parts of the surface, and information about the directions and angles of
sharp edges around the features of a piecewise-smooth surface. Our method is applicable in both two and three dimensions, and can
be easily parallelized, making it possible to process arbitrarily large point clouds, which was a challenge for Voronoi-based methods. In
addition, we describe a Monte-Carlo version of our method, which is applicable in any dimension. We illustrate the correctness of both
principal curvature information and feature extraction in the presence of varying levels of noise and sampling density on a variety of
models. As a sample application, we use our feature detection method to segment point cloud samplings of piecewise-smooth surfaces.

Index Terms—Computational Geometry, Object Modeling
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1 INTRODUCTION

E STIMATING surface normals, principal curvatures
and sharp edges from a noisy point cloud sampling

has many applications in computer graphics, geometry
processing and reverse engineering. Principal curvatures
are rotation-invariant local descriptors, which together
with principal curvature directions have proven useful
in detecting structural regularity [1], global matching [2],
modeling and rendering of point-based surfaces [3], and
anisotropic smoothing [4] to name just a few. In these
applications, various notions of curvature serve as local
descriptors that encode second order variations of the
surface. The location of sharp edges and highly curved
areas of the surface is a precious piece of information
in settings that include feature-aware reconstruction [5],
non photorealistic rendering [6], and industrial metrol-
ogy.

In practice, it is often interesting to recover this infor-
mation when the input is an unstructured collection of
point coordinates, obtained by a range scanner, before
attempting surface reconstruction. These point clouds
can be noisy, and can exhibit strong sampling bias. The
ability to reliably estimate surface normals, principal
curvatures, and curvature directions as well as sharp
features directly on such point clouds can be used in
both geometry processing algorithms and in surface
reconstruction to improve the quality of the resulting
mesh.

Devising robust local descriptors, which can handle
both non-uniform noise, sampling bias and sharp edges
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is a challenging task. This is mainly because we are try-
ing to estimate differential quantities which by nature are
very sensitive to local perturbations. The lack of a natural
parametrization of point cloud data introduces another
challenge by making it difficult to estimate angles and
areas on the surface. Finally, devising a method with
theoretical guarantees on the approximation quality is
not easy in the absence of a definition of curvature and
sharp features that that would incorporate both point
clouds and piecewise-smooth surfaces.

In this paper, we address some of these challenges by
presenting a method for robustly estimating the location
and direction of sharp edges as well as highly curved
area from a possibly noisy point cloud sampling. We
also show that the same method can be used to recover
curvature information of the underlying surface, when
the sampling is dense enough. The sharp edge estimation
technique comes with theoretical guarantees on the qual-
ity of the results as a function of the Hausdorff distance
between the point cloud and the underlying surface. We
also address a certain class of outliers.

Prior work on feature and curvature estimation
The questions of curvature estimation and sharp feature
detection are tightly related: sharp edges and corners can
be thought as parts of the surface with infinite concen-
tration of curvature (mean and Gaussian, respectively).
Surprisingly, however, these research topics have known
very different developments; we review the existing
results separately.

Curvature estimation on meshes
Estimating the curvature of a smooth surface from a
mesh is an important question in discrete differential
geometry has been studied for many years and is now
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Fig. 1. Features (in red) computed by our algorithm from
a point cloud sampling of the surface in yellow.

a well understood topic (see [7] for an extensive com-
parison of methods to estimate Gaussian and mean
curvatures). The approach commonly used is to define
a notion of curvature for meshes, and to study how
well it approximates the real curvature of the underlying
surface. The usual requirement is that (i) the Hausdorff
distance between the mesh and the surface is low, and
(ii) the normals to the mesh do not deviate from those
of the surface too much.

Normal cycle. Cohen-Steiner and Morvan [8] used the
normal cycle from geometric measure theory in order
to define a closed-form second fundamental measure of
a mesh. They also explicitly bound the error between
the second fundamental measure of the mesh and the
underlying surface, supposing (i) and (ii). This typically
applies to the case of a mesh obtained by a Delaunay-
based reconstruction of the surface from an ε-sample.
(It should also be noted that the second fundamental
measure can be used to compute reliably approximate
the curvature of offsets of the underlying surface from a
point cloud approximation [9].

Integral methods. A very different approach estimates
the curvature and sharp features location from a mesh
approximation of a surface S that bounds a domain D,
by considering the volume and covariance matrices of
intersections of small balls with the domain D [10], [11].
This approach can be used both for curvature estimation
and sharp features detection. Another interesting aspect
using an approximation D′ of the domain D yields an
error that depends on the volume of the symmetric dif-
ference D∆D′ only. This makes these integral methods
resilient to noise in the normal directions. However,
they require a knowledge of both the surface and the
interior domain, and cannot be applied to point clouds
straightforwardly.

Curvature estimation from points clouds
Only recently several methods have been proposed for
computing curvature and feature information on the
point cloud directly. One class of methods for com-
puting curvature information from a point cloud sam-
pling work by estimating directional curvatures in the
neighborhood of a point and using them to estimate
the principal curvatures and curvature directions: [4],
[12]. Robust methods such as least squares [12] and local

re-weighting [4] help these methods cope with noise
and irregular sampling. Berkmann et al. [13] propose a
method that rely on computing the covariance matrices
of normal vectors to approximate the shape operator.
More recently, Kalogerakis et al. [14] use robust statistical
methods to fit the curvature tensor of a point cloud by
considering normal variation in a neighborhood of a
given point. Yang and Qian [15] derive analytic expres-
sions for computing principal curvatures based on the
implicit definition of the moving least squares surface
by Amenta and Kil [16].

These algorithms start by estimating normals to the
surface, or assume that they are given. Any error made
in this estimation is therefore only aggravated in the
computation of principal curvatures. A possible way to
compute the normal and the second fundamental form
at the same time is to fit local jets (see Cazals and Pouget
[17]). Least-square jet-fitting is very fast, and its con-
vergence properties are well understood. Unfortunately,
a necessary condition for this method to give correct
estimations is that the point cloud should be uniformly
sampled. This can be a problem for some point clouds
such as laser scans which are virtually never free of noise
and often exhibit oversampled clusters of points along
horizontal lines.

Sharp features estimation from point clouds
Although extracting sharp edges and corners is closely
related to curvature estimation, research in these areas
has been relatively independent. Fleishman et al. [18]
detect sharp edges and corners by segmenting neigh-
borhoods of points into regions corresponding to the
same part of the surface. They achieve robustness by
using a forward search technique which finds reference
planes, corresponding to each segment. This work is
extended by Daniels et al. [19] to extract feature-curves,
by locally projecting onto feature points, and growing
smooth polylines through the projected cloud. Lipman
and colleagues [20] extract sharp edges within the MLS
projection framework by examining the error of the
MLS surface approximation. Jenke et al. [5] detect sharp
features by robustly fitting local surface patches and
computing intersections of nearby patches with dissimi-
lar normals. In a similar spirit, Oztireli et al. [21] define
a feature-preserving MLS projection operator by noting
that angles between normal vectors, rather than point
coordinates can be used to discard points from unrelated
parts of a piecewise-smooth surface.

To sum things up, there is currently no provably-
correct algorithm for estimating the sharp features of
a piecewise smooth surface from an unoriented point
cloud (i.e. without normals).

Contributions
In this paper, we associate to every point cloud C
(or surface S) its Voronoi covariance measure VC,R (resp.
VS,R), from which one can extract information on the
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feature and curvature of the underlying surface. This
measure is defined, following the Voronoi-based normal
estimation techique of Alliez et al [22], by considering the
covariance matrices of Voronoi cells. However, instead
of intersecting them with a large bounding box of the
point cloud C, we intersect them with an offset CR,
thus obtaining more local information about the variation
in shape and size of the Voronoi cell, which is crucial
for feature estimation. We present two algorithms for
computing the Voronoi covariance measure: a Monte
Carlo method, and a method based on tessellation (§3).

In order to gain robustness to Hausdorff noise, we
have to consider convolved versions of the Voronoi
covariance measure. For any positive convolution radius
r, this defines a function VC,R∗χr that maps points of Rd
to symmetric matrices. The Stability Theorem (Theorem
5.1), asserts that replacing the convolved VCM of a
surface S by the convolved VCM of a discrete approx-
imation C yields an error of O(dH(C, S)1/2). We show
in §6 that the eigenvectors of the convolved VCM of a
smooth surface are the normal to the surface followed by
the principal curvature directions; and experimentally,
this information remains in the VCM of point clouds
that approximate S densely and without noise. Much
more interestingly, it appears that the principal curvature
directions computed this way at highly curved parts of the
surface remain good even when the sampling is very
anisotropic or when Hausdorff noise is added to the
point cloud.

Our main contribution is an algorithm that estimates
the location and direction of sharp edges of a piecewise-
smooth surface S from a point cloud approximation (§7)
from the eigendecompotision of the convolved VCM.
The algorithm requires as input a (rough) lower bound
on the one-sided reach of the surface, a notion defined
in §7.1. The existence of such a lower bound is similar to
the positive local feature size (lfs) assumption needed for
most provable surface reconstruction techniques such as
[23]. The algorithms uses a threshold parameter, which
can be specified by the user and is explicitely related to
the minimum expected dihedral angle between smooth
parts of the surface.

The Stability Theorem ensures that the sharp feature
detection algorithm recovers the correct location of edges
and is robust to Hausdorff noise. We experimentally
check this fact on different models, under various levels
of noise. Finally, as a sample application, we use this fea-
ture detection method to segment point cloud samplings
of piecewise-smooth surfaces.

2 OVERVIEW OF THE METHOD

2.1 Geometric intuition
The method we propose is motivated by the same in-
tuition as Voronoi-based normal estimation techniques
such as the work by Amenta and Bern [23] and Alliez et
al. [22]. Recall that the Voronoi cell of a point p in a point
cloud C is the set of points of the space which are closer

to p than to any other point in C. Denote this Voronoi
cell by VorC(p).

Amenta and Bern remarked in [23] that in the absence
of noise, if a point cloud samples a smooth surface
densely enough, its Voronoi cells will be elongated in
the direction of the normal to the surface 2(a). This
allows to approximate the normal direction at a sample
point p0 by considering the shape of its Voronoi cell,
by either computing its extremal points (poles) [23] or
by performing principal component analysis [22]. Note,
however, that the shapes of Voronoi cells provide more
information than just the normal direction. Intuitively,
the Voronoi cells at points sampled from highly curved
areas will deviate from straight pencil shapes (which
is well-approximated by a skinny cylinder) , and will
be V-shaped with the angle related to the curvature of
the underlying surface. Fig. 2(a) illustrates this effect
on points sampled from a smooth planar curve. The
lengths of the principal directions of each Voronoi cell,
depicted in orange, are drawn proportional to the ratio
λmin/λmax, of the two eigenvalues of the covariance
matrix of the corresponding Voronoi cell, intersected
with a large bounding box. Note that this ratio becomes
larger for points sampled from highly curved areas of
the shape, and therefore, it should not be surprising that
the shape of the Voronoi cells, which can be captured by
its covariance matrix, is related to the curvature of the
underlying surface.

The deviation of Voronoi cells from being pencil
shaped is most pronounced at points sampled from
sharp corners and sharp edges of the surface, as shown
in Fig. 2(b) and Fig. 6. Note that when the underlying
surface is not smooth, some of its points will have
normal cones rather than single normal directions. Nev-
ertheless, even in this case, the shapes of Voronoi cells
accurately reflect the shapes of the underlying normal
cones, that can be characterized by the principal com-
ponents of their covariance matrices. This observation is
the key to allowing us to study both the smooth and
piecewise-smooth surfaces in a unified framework.

One of the principal drawbacks of using Voronoi-
based methods directly, is their sensitivity to noise. As
shown in Fig. 2(c), even moderate noise can change the
shapes of Voronoi cells dramatically. A beautiful insight
made by Alliez et al. [22] is that although individual
Voronoi cells can become ill shaped, by considering the
union of Voronoi cells of a few neighbors, one can re-
cover the correct normal directions. In their work, Alliez
et al. used covariance matrices of the union of Voronoi
cells to combat noisy sampling. One drawback of this
approach is that taking the union unnecessarily produces
more isotropic (fat) cells. A way to overcome this effect
is to take a weighted average of covariance matrices of
a few neighboring Voronoi cells instead of taking the
covariance matrix of their union. In the continuous case,
this average directly translates to convolution. In this
paper we show that these averaged covariance matrices
capture information about the shapes of normal cones of
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(a) Curvature (b) Sharp features (c) Noisy data (d) Non-local influences

Fig. 2. The ratio of the two eigenvalues of the covariance matrix of a Voronoi cell (length of the direction in orange)
contains curvature information (a). In the limit, Voronoi cells of points sampled from sharp corners are close to being
isotropic (b). Noisy data (c) and non-local parts of the surface (d) can perturb the Voronoi cells, thus preventing correct
curvature and sharp features estimations. Our method recovers from these effects using convolution and intersection
with an offset.

the underlying surface.
Because of the global nature of the Voronoi diagram,

points sampled from remote parts of the shape can
influence the shapes of Voronoi cells of points even in
absence of noise, thus leading to erroneous estimations
of the underlying normal cones. Fig. 2(d) illustrates this
effect. Note that the Voronoi cell of the point at the tip of
the sharp corner is “invaded” by Voronoi cells of points
from a different curve, which adversely influences the
computation of the normal direction at the point. Note
that this effect can occur even due to remote points of
the same curve, is very global in nature and therefore
difficult to rule out locally. To overcome this problem,
we compute the covariance matrix of the Voronoi cell of
each point p intersected with a small ball around p. This
allows us to obtain purely local information about the
variation of the surface around p, which is crucial for
curvature and feature estimation.

2.2 Voronoi covariance of a point cloud
As described in the previous section, our algorithm
aims to extract information about curvature and sharp
features of the underlying surface from its point cloud
sampling C, by analyzing the shapes of Voronoi cells of
C intersected with small balls around each point. A way
to get information about the shape of a domain E of
Rd with finite volume is through its covariance matrix
with respect to a base point p, denoted by cov(E, p).
Specifically, the eigenvectors of cov(E, p) capture the
principal axes of E while the ratio of the eigenvalues
gives information about the anisotropy of E. The covari-
ance matrix of a domain E can be computed through the
following formula: cov(E, p) :=

∫
E

(x− p)(x− p)Tdx.

2.2.1 Definition
Given a point cloud C, and an offset radius R, we define
the Voronoi covariance measure (VCM) of a point p ∈ C
at scale R to be:

VC,R({p}) := cov(VorC(p) ∩ B(p,R), p) (2.1)

The VCM VC,R({p}) of any point p in C is a symmetric
matrix that captures information about the shape of
the Voronoi cell of p. As mentioned earlier, however,
Voronoi cells and as a result VCM can be unstable under

noisy sampling. Thus, we define the convolved Voronoi
covariance measure at a point x (not necessarily in C) by
summing the covariance matrices defined above among
all points p ∈ C in a neighborhood of x:

VC,R ∗ χr(x) :=
∑

p∈B(x,r)∩C
VC,R({p}) (2.2)

Intuitively, the convolved VCM of a point near the
underlying surface S provides information about the
normals and curvature of S.

2.3 Outline
In this paper, we demonstrate the practical implications
of the Voronoi covariance measure. First, we indicate
how to compute it efficiently from three-dimensional
point clouds (§3). In §4 we give a general definition of
the VCM suitable for any compact set, and prove a sta-
bility theorem of VCM under arbitrary Hausdorff noise
(§5). Using the stability of the VCM, we devise robust
curvature estimation and feature extraction algorithms
(§ 6,7). Finally, we apply our feature extraction method to
segment samplings of piece-wise smooth surfaces. (§8).

3 COMPUTING VCM
In this section, we describe two algorithms for com-
puting the VCM of a point cloud in practice. The first
method is easy to implement and is applicable in any
ambient dimension. The second algorithm is much faster,
and is the one we used for all of our results. We then
describe a straightforward way to convolve the VCM.

Given a point cloud C = {pq, . . . , pn}, computing the
VCM of any point pi at scale R amounts to evaluating
the integral cov(Bi, pi) =

∫
Bi

(x−p)(x−p)Tdx where Bi is
the intersection B(pi, R)∩Vor(pi) between a ball of radius
R centered at pi and the Voronoi cell of pi. No simple
closed-form expression seems to exist for the covariance
matrix of the intersection Bi, and we have to resort to
approximation to compute it.

3.1 Monte-Carlo approximation of the VCM
The Voronoi covariance measure is a modification of
the boundary measure introduced in [24]. In this work,
instead of considering the covariance matrix cov(Bi), the
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authors only considered its volume. The Monte-Carlo
algorithm for computing the boundary measures can be
easily adapted to compute the VCM.

The input of Algorithm 3 is a point cloud C, an offset
radius R and a number of steps N . For every point p
in C it maintains a matrix C(p) which approximates the
covariance matrix cov(Vor(p)∩B(p,R), p) as the number
of steps N grows to infinity. The arguments presented in
[24, p.6] show that the output of this algorithm converge
to the real VCM with high probability: computing an ε-
approximation of the VCM with high probability (e.g.
99%) can be done in N = O(|C| ln(1/ε)/ε2) steps.

This algorithm only uses nearest-neighbor queries and
is easy to implement in any ambient dimension. How-
ever it is too slow in practice for computing the VCM of
point clouds with hundreds of thousands of points. In
the following, we describe a deterministic approach that
can be used to improve the computation speed in low
dimensions.

3.2 Approximating the VCM in 3D by tessellation

We base our second method on the fact that the co-
variance matrix of a tetrahedron can be computed an-
alytically [22]. Therefore, using the additivity of the
integral, in order to compute the covariance matrix of the
intersection of a Voronoi cell with a ball, it is sufficient to
approximate it with a union of tetrahedra. For this, we
triangulate the boundary of this intersection and build
tetrahedra by connecting each of these triangles to the
center of the Voronoi cell — this can be done because
the intersection is convex.

We start with an arbitrary triangulation of the bound-
ary of the Voronoi cell ∂(Vor(pi)). Our goal is to sub-
divide each triangle so that its projection onto the ball
B(pi, R) is a sufficiently good approximation of the
corresponding spherical triangle. For this, we process
each triangle t in the original triangulation according to
three simple rules (Algorithm 4).

The output of this algorithm yields a tetrahedrization
of the intersection of the Voronoi cell with a ball of a
given radius, centered at the same point. We then use the
closed-form formulas of [22] to compute the covariance
matrix of this intersection.

Fig. 3. Monte-Carlo algorithm for VCM
1: For all p ∈ C, set C(p) to the zero matrix, set M ← 0.
2: Repeat N times :

2a: Select a random point p in C and generate a
random point x in the ball B(p,R).
2b: k ← number of points of C in the ball B(x,R).
2c: Find the nearest neighbor p′ of x in C, and set
C(p′)← C(p′) + 1

k (x− p′)(x− p′)T, M ←M + 1
k .

3: For all p ∈ C, set C(p)← C(p)
M .

TABLE 1
Computation times for VCM (in sec., on a 3GHz CPU)

Model Delaunay Tessellation Total

Blade (195k) 23.73 90.82 114.55
Bimba (502k) 79.04 305.42 384.46
Nicolò (947k) 95.08 465.53 560.61

Convolution of VCM

Computing the convolved VCM of a point x simply
amounts to summing the VCM matrices of all points p
of C lying in the ball B(x, r). The points belonging to
this intersection B(x, r) ∩ C are the k nearest neighbors
of x in C for a suitable value of k. The value of k and the
corresponding neighbors can be determined by a binary
search, using a structure adapted to k-NN queries (such
as a kD-tree).

3.3 Implementation

We implemented the two algorithms described above.
The tessellation of the Voronoi cells was done using the
3D Delaunay Triangulation package of CGAL [25]. Its
running times of this algorithm on some standard point
clouds is reported in Table 1. The convolution step is
implemented using the ANN library [26], which includes
a query for finding the set of points of a point cloud
contained in a given ball. The time of the convolution
step depends on the radius of convolution, but stays
within 10 seconds for most models.

Parallelization

Note that both of the algorithms above can be easily par-
allelized. The Monte Carlo method relies on the ability
to answer nearest neighbor queries, and therefore each
of the N iterations of the method can be performed on a
separate processor once a single shared nearest neighbor
data structure is computed. This data structure can also

Fig. 4. Tetrahedrization of VorC(pi) ∩ B(pi, R)
1: T ← triangulation of the boundary of VorC(pi).
T ′ ← ∅

2: For all triangle t ∈ T :

A: If t is completely outside the ball B(pi, R):

A1: Recursively subdivide t into a family of smaller
triangles {tk}.
A2: T ′ ← T ′ ∪ {tk}

B: If t is completely inside the ball: T ′ ← T ′ ∪ {t}
C: If t crosses the sphere ∂B(pi, R):

C1: Subdivide t by adding points along the circular
arc of intersection t ∩ ∂B(pi, R)
C2: Apply A or B to the constructed triangles.

3: Return the tetrahedra joining pi and triangles t ∈ T ′
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C

p−1
C (B ∩ C) ∩ CR

B

pi

Vor(pi) ∩ CR

p−1
S (B ∩ S) ∩ SR

B

S
x

pS(x)

Fig. 5. Voronoi covariance measures VC,R(B) of a 2D
point cloud C and of the underlying curve S, with respect
to the same probing set B.

be used for convolution, which, again relies on nothing
but nearest neighbor computations.

Note also that although the Voronoi diagram is a
global object, whose computation is known to be dif-
ficult to parallelize, our tessellation-based method only
requires local information, and can be parallelized as
follows: when computing the VCM of a point p, rather
than building a global Voronoi diagram, compute the
Voronoi diagram of all points q ∈ C, s.t. d(p, q) ≤ 2R.
Since we are only interested in the intersection of the
Voronoi cell of p with a ball of radius R, this set of
points is sufficient to compute the VCM of p at scale
R (the correctness of this observation follows from the
proof of Lemma 5.2 below.) This means that we can limit
the amount of memory necessary for computation by
only processing batches of the point cloud that sample
contiguous regions of the surface.

4 VORONOI COVARIANCE MEASURE

In this section, we review the mathematical background
necessary for the analysis of our method. We then define
the Voronoi covariance measure of a general compact
set, which will allow us to analyze both the robustness
of the VCM with respect to noise, and its convergence
properties in a single Stability Theorem (Th. 5.1).

4.1 General definition

In order to generalize the definition of VCM to any
compact subset of Rd, we make use of the notion of
projection function. Given a compact set K of Rd, the
projection function maps any point x of Rd to its only1

closest point in K. Denote this function by pK : Rd → Rd.
If C is a finite set of points {p1, . . . , pn}, the projection
on C maps any x ∈ Rd to one of the points pi in C
whose Voronoi cells contain x. In particular, notice that
p−1
C (pi) is exactly the Voronoi cell of pi. By analogy, if
K is any compact set, we will refer to the inverse image
p−1
K (B) of a subset B of K by the projection function pK

as the Voronoi cell of B (see Fig. 5). Likewise, we will call
p−1
K ({p}) the infinitesimal Voronoi cell of the point p in K.

1. In reality, the projection function is uniquely defined everywhere
but on the medial axis. Since the d-volume of the medial axis is zero,
this has no consequences on our definition.

~u

~v

α

Fig. 6. The infinitesimal Voronoi cell p−1
C (x) of a point x

on a cube is pencil, triangle or cone-shaped depending
on the dimension of the normal cone.

4.1.1 Definition
The Voronoi covariance measure of K with respect to
KR is a tensor-valued measure2 denoted by VK,R. It
maps every subset B ⊆ Rd to a positive semi-definite
symmetric matrix VK,R(B) defined by:

VK,R(B) =
∫
KR∩p−1

K
(B∩K)

(x− pK(x))(x− pK(x))Tdx

(4.3)
The domain of integration in the definition of VK,R(B)

is the Voronoi cell p−1
K (B∩K) of the subset B intersected

with the chosen offset of K (see Fig. 5). In general,
the matrix defined by (4.3) can be thought of as the
covariance matrix of the domain of integration with
a varying base point. Note that for a point cloud, this
definition coincides with the definition given in §2.2.

4.1.2 Normal Cones
There is a strong relation between the notion of infinites-
imal Voronoi cells and normal cones as defined in many
fields of geometry, that is captured by the Voronoi covari-
ance measure. For any p in K, let Np,RK be the set of
vectors defined by Np,RK = {x−p; x ∈ p−1

K ({p})∩KR}.
This set consists of all vectors that are normal to K at p,
at a scale defined by the offset parameter R.

Remark that if S is a smooth hypersurface, and
R is small enough, then Np,RS is the segment
[−Rn(p), Rn(p)] (cf Fig. 5). Let B be a small neighbor-
hood of the point p in S such as the ball B(p, r)∩S. Then,
by definition, the matrix VK,R(B) is the integral of all the
covariance matrices of the normal cones Np,RK, with p
in B. Therefore, this matrix captures the variation of the
normals to the surface S around p, which is related to
the curvature at p.

If, on the other hand, K is a convex polyhedron of
R3, the set Np,RK coincides with the normal cone at p
as defined in convex geometry, intersected with the ball
B(p,R). In particular, this set is two-dimensional if the
point p lies on a edge of K and three-dimensional when
p is a vertex of K (cf Fig. 6). The Voronoi covariance
measure of K will reflect this fact, leading to the feature
detection algorithm of presented in §7.

4.2 Convolved Voronoi covariance measure
The Voronoi covariance measure can be convolved by
any convolution kernel χ : Rd → R+, which turns it

2. Measure has to be understood as in Lebesgue measure theory, as
a mass distribution on the space.
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into a function denoted by VK,R ∗ χ. This operation
smoothes the information contained in the covariance
matrices, which is particularly useful when dealing with
point clouds that can be noisy or that are anisotropically
sampled. The value of the convolved VCM at a point p
of Rd is the symmetric matrix defined by the formula:

VK,R∗χ(p) :=
∫
KR

(x−pK(x))(x−pK(x))Tχ(pK(x)−p)dx
(4.4)

If χr is the indicator function of the ball B(0, r) i.e. χr(p) =
1 if x belongs to B(0, r) and χr(p) = 0 otherwise, then:

VK,R ∗ χr(p) = VK,R(B(p, r)) (4.5)

In this work, the convolution kernel is always chosen to
be a Lipschitz approximation of such an indicator func-
tion, like the “hat function” χ(p) = max(0, r− ‖p‖2). We
also often use the indicator function itself for which we
get good results even though the theoretical guarantees
of convergence do not apply directly.

5 ROBUSTNESS OF THE CONVOLVED VCM
Throughout our analysis, we will be using the notion of
Hausdorff distance, which can be defined for any two
compact sets, K and K ′:

dH(K,K ′) = inf
ε

s.t. K ⊆ K ′ε and K ′ ⊆ Kε

where Kε = {x ∈ R, d(x,K) < ε}.
For instance, if K is a point cloud sampling of a

smooth surface K ′, then dH(K,K ′) will be small pro-
vided that the sampling is dense enough and that there
are no outliers. Note that this notion of distance is purely
geometric and does not make any assumptions on the
uniformity of the sampling, or on the sample points lying
on the surface.

This section is devoted to the proof of robustness of
the VCM. By robustness we mean that if two compact
sets K and K ′ are very close in the Hausdorff sense, then
their convolved VCM are also close. In applications, K
will be a sampled surface, and K ′ will be a point cloud;
however this result is very general and does not depend
on the nature of these compact sets.

We will suppose that the convolution kernel χ is k-
Lipschitz and bounded by a constant M . This means that
|χ(x)− χ(y)| 6 k ‖x− y‖ for every pair of points x, y of
Rd, and |χ(x)| 6 M for any point x. Under this assump-
tion, it is possible to show that the convolved Voronoi
covariance measure VK,R ∗ χ depends continuously on
the compact set K.

THEOREM 5.1 (Stability Theorem for VCM). Let χ be a
bounded k-Lipschitz kernel. For every compact subset K of
Rd and R > 0, there exists a constant cst(K,R) such that
for every point x of Rd,

‖VK,R ∗ χ(p)− VK′,R ∗ χ(p)‖op 6 cst(K,R)dH(K,K ′)1/2

where the operator norm ‖ · ‖op is the standard matrix norm
induced by the Euclidean metric.

Proof: Let E be the intersection between the offsets
KR and K ′R. Thanks to [24, Corollary 4.4], we know
that the volume of KR \ E behaves as O(dH(K,K ′)).
Hence, letting δ(x) = x− pK(x), it is safe to change the
integration domain in the definition of VCM and make
the approximation,

VK,R ∗ χ(p) '
∫
E

δ(x)δ(x)Tχ(pK(x)− p)dx

The goal is then to bound the operator norm of the
difference: M =

∫
E
P (x) − P ′(x)dx, where P (resp. P ′)

is defined by P (x) = δ(x)δ(x)Tχ(pK(x)− p). We have

P (x)− P ′(x)
= χ(pK(x)− p) (δ(x)δ(x)T − δ′(x)δ′(x)T)
+ (χ(pK(x)− p)− χ(pK′(x)− p)) δ′(x)δ′(x)T

(5.6)

Using the definition of δ, one can factor the first term of
this sum:

χ(pK(x)− p) ((pK(x)− x) (pK(x)− pK′(x))T

+ (pK′(x)− pK(x)) (x− pK′(x))T) (5.7)

Recall that the kernel χ is bounded by M and that
‖pK(x)− x‖ 6 R for every x ∈ E. Using the triangle
inequality and these facts, the operator norm of (5.7) is
bounded by 2RM ‖pK′(x)− pK(x)‖ .

Thanks to the k-Lipschitz property for the kernel χ,
the norm of the second term of the sum in (5.6) can be
bounded by

|χ(pK(x)− p)− χ(pK′(x)− p)| ‖δ′(x)δ′(x)T‖
6 k ‖pK(x)− pK′(x)‖R2

Combining these two bounds in (5.6),

‖P (x)− P ′(x)‖op 6 (2RM + kR2) ‖pK(x)− pK′(x)‖
Integrating this inequality on the set E yields

‖M‖op 6 (2RM + kR2)
∫
E

‖pK(x)− pK′(x)‖ dx

The Projection Stability Theorem [24, Th. 3.2] asserts that∫
E
‖pK(x)− pK′(x)‖ dx 6 C(d,K,E)dH(K,K ′)1/2. This

is enough to conclude.

5.1 Consequences of the Stability Theorem
We now let χr be a Lipschitz approximation of the char-
acteristic function of the ball B(0, r). If S is a piecewise
smooth surface, p a point of S and Cn a sequence of
point clouds converging to S in the Hausdorff sense,
the Stability Theorem asserts that the convolved VCM
VCn,R ∗ χr(p) of the point cloud Cn converges to the
convolved VCM VS,R ∗ χr(p) of S with respect to the
the operator norm. It also quantifies the speed of con-
vergence.

Using the standard results of matrix perturbation the-
ory (see e.g. [27]), one then obtains the convergence
of the eigenvalues and eigenvectors of VCn,R ∗ χr(p) to
those of VS,R ∗χr(p), provided that the eigenvalues have
multiplicity one. The speed of this convergence depends
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on the eigengap. As we will see in §6, at a smooth
point p of the surface S the eigenvalues of VS,R ∗ χr are
proportional to 1, κ2

1(p) r
2

4 and κ2
2(p) r

2

4 where κi(p) is the
ith principal curvature of S at p. One can then expect a
faster convergence rate for the estimated normal, and a
faster convergence of the estimated principal curvature
directions at points where the principal curvatures are
very different (i.e. very non-umbilical points).

5.2 Robustness to some outliers
One limitation of the Hausdorff distance in the bound
above, is its sensitivity to outliers. Indeed, even un-
der controlled noise, outliers can contaminate the point
cloud, and influence the shapes of the Voronoi cells.
Nevertheless, as pointed out earlier, intersecting the
Voronoi cells with an offset allows us to obtain local
information which is unaffected by a certain class of out-
liers. The following Lemma shows that if the outliers are
sufficiently far away from the point cloud, the convolved
VCM will remain the same.

Lemma 5.2. Let C be a point cloud and O a set of outliers
with d(o, C) > 2R for any o in O. Then the convolved VCM
VC,R ∗χ(p) and VC′,R ∗χ(p) (where C ′ = C∪O) agree on C
provided that the support of χ is contained in a ball of radius
smaller than R.

Proof: See [28, Lemma 3.3].

6 VORONOI COVARIANCE AND CURVATURE

Let S be a compact smooth surface in R3 and n an
oriented normal vector field on the surface. As before,
let SR denotes the R-offset of S. The relation between
the Voronoi covariance measure and curvature relies on
the following two facts:

(i) For any point x in the ambient space, x = pS(x)±
dS(x)n(x), where dS(x) is the distance from x to S.

(ii) For any point p on the surface, let κi(p) and Pi(p),
i = 1, 2, denote the two principal curvatures and
principal curvature directions at p. Then the two
eigenpairs of the derivative of the normal map
dn(p) are (κi(p), Pi(p)) for i = 1, 2.

Combining (i) and the change-of-variable formula, one
can prove the following estimation:

VS,R(B(p, r))

=
∫
SR∩p−1

S
(B(p,r))

[dS(x)n(pS(x))][dS(x)n(pS(x))]Tdx

'
∫
q∈B(p,r)∩S

∫ R

−R
[tn(q)][tn(q)]Tdtdq

' 2
3
R3

∫
q∈B(p,r)∩S

n(q)n(q)Tdq

(6.8)

Putting (ii) in the first-order Taylor expansion of n gives

n(q) ' n(p) + dn(p)[q − p]

' n(p) +
2∑
i=1

κi(p)〈Pi(p)|q − p〉Pi(p)
(6.9)

(a) z = sin(3x) + cos(x) (b) z = exp(−x2)+exp(−y2)

Fig. 7. Parametric surfaces with exact (in blue) and
computed (in red) principal curvature directions. At the
boundary computed directions follow the edges of the
surface.

(a) z = sin(3x) + cos(x) (b) z = exp(−x2)+exp(−y2)

Fig. 8. Average deviation (in degrees) of computed
principal curvature directions from exact ones for different
values of parameters R and r.

Then, using (6.8) and (6.9) one obtains the expansion

VS,R(B(p, r))

' 2π
3
R3r2

[
n(p)n(p)T +

r2

4

2∑
i=1

κ2
i (p)Pi(p)Pi(p)

T

]
(6.10)

More details on these computations are available in [28].
It follows from equation (6.10) that if the offset and
convolution radii R and r are chosen small enough, the
eigenvectors of the VCM near a smooth point are close
to the principal curvature directions at that point.

6.1 Parametric Surfaces

To validate the theoretical guarantees presented above,
we tested our method on parametric surfaces for which
principal curvatures and principal curvature directions
can be computed exactly.

We sampled two functions z = sin(3x) + cos(y), with
(x, y) in [0, 1]2 and z = exp(−x2) + exp(−y2), with (x, y)
in [− 1

2 ,
1
2 ]2. In both examples we used 100, 000 points that

were chosen uniformly at random within the domain.
Fig. 7 shows these two surfaces with the exact and
computed principal curvature directions, using R = 1
and r = 0.055. As expected, away from the boundary the
computed and the exact directions match very closely,
except possibly at umbilical points (tip of the second
surface). Near the boundary of the domain, the principal
directions computed using our method follow the edges
of the surface, which forms the basis of our feature
detection method.
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Fig. 9. Mean absolute curvature plot for the Horse and
Max Planck models.

To measure the dependence of our method on the
offset and convolution radii, we computed the average
deviation (in degrees) of principal directions from ex-
act ones. To minimize the effect of the points close to
the boundary, where the directions are not expected to
match, we only considered 90 percent of the data-set that
is farthest from the boundary of the domain. Fig. 8 shows
the average deviation for these two parametric surfaces.
As can be seen, the results are quite stable for different
choices of the parameters.

To illustrate the performance of our curvature estima-
tion algorithm on complex shapes, we also plotted the
mean absolute curvature: |κ1|+|κ2| for the standard Max
Planck and horse models (Figure 9), where the colors
range from yellow to red and pink to signify low to high
mean absolute curvature.

6.2 Comparison with Polynomial Fitting

6.2.1 Sampling Conditions
As mentioned in the introduction, the most common
method of estimating principal curvatures and principal
curvature directions on point clouds is to locally fit
a polynomial of a given degree, and to analytically
compute principal curvatures of this fitted polynomial
[17].

Although these methods work well on noiseless and
regularly sampled surfaces, polynomial fitting performs
poorly if the data has strong noise and sampling bias.
Our method, however, is oblivious to the sampling den-
sity, as a consequence of Hausdorff-robustness proved in
section 5. To illustrate this, we added 50,000 points in a
small band along the diagonal (in the parameter space)
to the sampling of the surface shown in Fig. 7(a). The
results obtained with our method and with the state of
the art polynomial jet-fitting algorithm implemented in
CGAL [17] are reported in Fig. 10. We used second order
polynomial fitting with different neighborhood sizes k,
which gave satisfactory results for the original sampling.
As can be seen, the extra points do not affect the accuracy
of our method. The results obtained with jet-fitting,
however, become unreliable and strongly biased in the
direction of the oversampling.

(a) Our method (b) Fit with k=100 (c) Fit with k=200

Fig. 10. Principal curvature directions on a biased
dataset. Jet fitting (b-c) produces unreliable directions (in
green) following oversampled areas.

(a) r = 0 (b) r = 0.01 (c) r = 0.04 (d) r = 0.08

Fig. 11. Principal curvature directions computed with
our method (in red) are stable under noise. Directions
computed by jet-fitting (in blue) are unreliable, especially
when points from separate parts of the shape begin to
mix.

6.2.2 Robustness
Other areas that are challenging for polynomial fitting
algorithms include parts of the shape with high curva-
ture, and regions where separate parts of the shape come
in close contact, thus adversely influencing the quality
of the fit. While the first problem can be addressed by
fitting higher order polynomials, both of these settings
are severely aggravated in the presence of noise. To
illustrate this, we sampled a surface made by smoothly
joining a small cylinder lying parallel to the z axis, with
two planes on either side of the x axis. We used 0.1 as the
radius of the cylinder, so the curvature at points along
the z axis equals 10. Fig. 11 shows the principal curvature
directions obtained on this model with varying levels of
noise, using our method and using jet-fitting with 200
nearest neighbors and second order polynomial fitting.
Note that when points from different parts of the shape
mix, even the robust low order polynomial fitting fails,
while our method preserves robustness

7 DETECTING SHARP EDGES USING VCM
As remarked by Dey et al in [29], the shape of the
Voronoi cell of a point p can be used to estimate the
dimension of the part of the underlying shape this point
belongs to. For instance, consider a point p lying on a
sharp edge of a piecewise smooth surface S. As Fig. 6
shows, the infinitesimal Voronoi cell of p is triangle
shaped, and the normal to the triangle is aligned with the
direction of the sharp edge. Under good sampling con-
ditions, the corresponding Voronoi cell will be very thin,
and almost two-dimensional. Here, we show how to use
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the Voronoi covariance measure to translate this remark
into a sharp feature detection algorithm, whose sampling
conditions only involves the Hausdorff distance between
the point cloud and the underlying surface.

Our main ingredient for this is to estimate the dimen-
sion of the infinitesimal Voronoi cell at a point p of the
input point cloud by the number of “small” eigenvalues
s of the convolved VCM of the cloud. This number can
then be used to distinguish between a point lying on a
face (s = 2), on a sharp edge (s = 1) and on a corner
(s = 0). The actual meaning of “small” is made more
precise in Proposition 7.1.

7.1 Theoretical derivation

We assume that the piecewise-smooth surface S we
consider has a one-sided reach at least R, which we
denote by reach1(S) > R. This means the following: for
any point p on the surface S, and any unit vector v in
the normal cone3 to p, the projection of either p+Rv or
p−Rv on the surface S should lie at p.

When a point p belongs to an edge of the surface S,
denote by u±(p) the leftmost and rightmost normals to
the surface S at P . Also let e1(p) be the mean of these
two extreme normals, e1(p) = 1

2 (u+(p) + u−(p)), and
e2(p) be orthogonal to e1(p) in the plane spanned by
u±(p), i.e e2(p) = 1

2 (u+(p) − u−(p)). Finally, let α(p) be
the positive angle between the two normals u±(p) in the
range [0, π], and t(p) be the tangent direction to the edge.

PROPOSITION 7.1. Let S be a polyhedron of R3 whose 1-
reach is lower bounded by R, and let p lie on a sharp edge of
S. Then, the three eigenvalues of VS,R(B(p, r)) are

λ1(p) =
R4r

8
[α(p) + sinα(p) + O(r/R)] ;

λ2(p) =
R4r

8
[α(p)− sinα(p) + O(r/R)] ;

λ3(p) = 0.

The corresponding eigenvectors are e1(p), e2(p) and t(p).

Proof: Suppose that r is small enough so that the
only parts of the surface intersected by the ball B(p, r)
are the edge E containing p and the two adjacent faces
F+ and F−. Thanks to the additivity property of the
VCM, one can write:

VS,R(B(p, r)) = VS,R(B(p, r) ∩ E) + VS,R(B(p, r) ∩ F+)
+ VS,R(B(p, r) ∩ F−)

(7.11)

Using Lemma 7.2 below, we show that the term of (7.11)
involving the edge, VS,R(B(p, r)∩E), yields the constant
parts of the eigenvalues λ1(p) and λ2(p). In order to get
the O(R/r) approximation error, one just needs to bound

3. Recall that a vector v belongs to the normal cone to a point p of
the surface S iff for some λ > 0, the projection of p+ λv onto S is p.

the two terms of equation (7.11) involving the faces F±:

‖VS,R(B(p, r) ∩ F±)‖ 6
∫
F±∩B(p,r)

∫ R

−R
‖(tn±)(tn±)T‖ dtdx

= π
r2R3

3
=
R4r

8
O(r/R)

where n± = u±(p) is the unit normal to the face F±.

Lemma 7.2. Let u± be two unit vectors in the plane, and
Q denote the positive cone spanned by them intersected with
the ball B(0, R), i.e Q = {a~u + b~v; a, b > 0} ∩ B(0, R). The
eigenpairs of the covariance matrix cov(Q, 0) are:

λ1 =
R4

8
(α+ sin(α)) , e1 = u+ + u− and

λ2 =
R4

8
(α− sin(α)) , e2 = u+ − u−

where α is the angle between u− and u+ in the range [0, π].

Proof: Let M = cov(Q, 0), and consider the unit
vector d(β) making an angle β with the vector u−. Then,

dT(β)Md(β) =
∫ α

θ=0

∫ R

r=0

r2 cos2(θ − β)rdrdθ

=
R4

8

∫ α

0

cos(2(θ − β)) + 1dθ

=
R4

8
(sin(2(α− β)) + sin(2β) + α)

(7.12)

By symmetry of Q, the vector d(α/2) is necessarily an
eigenvector of M . The second eigenvector is then d(π/2+
α/2). To compute the eigenvalues associated with these
eigenvectors, we plug in the values into (7.12).

From Proposition 7.1, we deduce that the eigenvector
corresponding to the smallest eigenvalue is the tangent
direction to the feature, with an eigengap of O(R/r).

7.1.1 Sharp corner of a surface
Similar calculations can be done if p is a vertex of the
surface whose normal cone is isotropic. In this case, the
two smallest eigenvalues will be equal, and contained
in the plane orthogonal to the direction of the cone.
The case where the normal cone isn’t isotropic is more
difficult to analyze precisely because the computations
will depend on the sharp edge graph at p.

7.2 Description of our edge-detection method
The method needs three parameters: the offset radius R,
the convolution radius r and a threshold T . It can be
summarized as follows:

1: Compute the Voronoi covariance measure VC,R.
2: For every point p ∈ C:

2a: Compute VC,R(B(p, r)) and diagonalize it.
2b: Sort the eigenpairs (λi(p), ei(p))i∈{1,2,3} by de-
creasing order of eigenvalues.
2c: Compute the ratio r(p) = λ2(p)/(

∑
i λi(p)).

→ The point p is on a sharp edge if r(p) > T
→ The edge direction is given by e3(p).
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VorC(p) ∩ B(p, R)

VorC(p) ∩ B(p, R′)

Fig. 12. Effect of the choice of offset radius on the
anisotropy of the Voronoi of a point lying on a sharp
feature.

7.2.1 Choice of parameters
The choice of the offset radius R should be done by
considering the expected geometry of the underlying set.
As Proposition 7.1 indicates, if the offset radius is less
than the one-sided reach of the object, all of the sharp
edges will be recovered by the method above. A too large
offset parameter R can decrease the anisotropy of the
Voronoi cell of a point that lies on a sharp feature (see
Fig. 12), thus making it invisible to the method. From
Theorem 5.1, one also sees that a higher value of the
offset radius R will make the computations more robust.
In conclusion, the offset radius should be chosen as the
largest possible lower bound on the one-sided reach of
the underlying surface.

The convolution radius r will be chosen depending
on the expected density and amount of noise in the
point cloud: it should be large enough so that every
ball B(p, r) with p in C contains at least a few tens of
points (eg. 50), and should definitely be larger than the
amount of noise in the normal direction to the surface.
However, a compromise should be made: the larger r,
the less localized the detected sharp features are. We
explore the dependence of the results on the choice of
the convolution parameter in section 7.3.

We consider a point as a feature if the ratio of the
second smallest eigenvalue to the sum of the three
eigenvalues of the convolved Voronoi covariance mea-
sure is greater than some threshold parameter. This
ratio provide a way to measures the thickness of the
infinitesimal Voronoi cell. If p belongs to a sharp edge,
Proposition 7.1 shows that

r(p) ' 1
2

(
α− sin(α)

α

)
' α2

12

Thus, given a threshold parameter T , a sharp edge with
external angle α will be selected if α > 2

√
3T 1/2.

Note that sometimes it may be necessary to detect only
sharp edges filtering out corners as well as smooth parts
of the shape. In this case, we use the ratio of the second
smallest to the smallest eigenvalue. This ratio will be
large for points around sharp edges, and close to one for
points in the smooth areas as well as around the corners
of the surface.

7.3 Experimental results
In order to assess the quality of the set of sharp edges
detected by the method, we compare it to the set of sharp

TABLE 2
Distances between the detected features (D) and real

features (R) of an icosahedron, with varying noise radius
and convolution radius. The distances δ∞, δ1 and α1 are
between D and R while δ′∞ and δ′1 are between R and D

Noise r δ∞ δ1 α1 δ′∞ δ1

0.0 0.05 0.35 0.037 3.25 0.076 0.011
0.0 0.1 0.118 0.051 0.33 0.124 0.016

0.02 0.1 0.226 0.049 1.65 0.139 0.020
0.05 0.1 0.220 0.050 2.82 0.155 0.025
0.1 0.15 0.271 0.069 3.12 0.178 0.036

edges of the underlying surface.

7.3.1 Resilience to noise
We evaluated the sharp edge estimation method and its
resilience to noise on a unit icosahedron. We sampled
100k points randomly on it, ran the computations with
R = 20 and various convolution parameters r. In order
to test the resilience of our method to noise, the original
100k point cloud on the icosahedron is perturbed by
adding to each point a random vector uniformly chosen
in a ball of given radius (the radius of the noise).
Fig. 13 shows the estimated feature directions on the
icosahedron, for different noise and convolution radii.

We call oriented set a finite subset C of Rd, each of
whose points is endowed with a tangent direction t(p).
We assess the similarity of two such sets C and C ′

using the following metrics. The Half-Hausdorff distance
δ∞(C,C ′) (resp. average distance δ1(C,C ′)) is the maxi-
mum (resp. average) distance between a point in C and
its nearest neighbor in C ′. Finally, the average angular
deviation: α1(C,C ′) is the average angle (in degrees)
between the direction t(p) of a point p in C and the
direction t(p′) of its nearest neighbor p′ in C ′.

Table 2 summarizes the values of the distances be-
tween the oriented set D of detected features, and the
set R of real features, for various noise and convolution
radii. The distance δ∞ := δ∞(D,R) measures the pres-
ence of isolated outliers, while δ1 := δ1(D,R) measures
the spread of the estimated features. One can see that
increasing the convolution radius removes isolated out-
liers, but increases the spread of feature. The distances
with primes (δ′∞ and δ′1) correspond to the same metrics
when swapping the role of D and R. Both δ′∞ and δ′1
measure how “complete” the set of features is, i.e. how
far points lying on actual sharp features are to the set of
detected feature D. Most of the error here comes from the
corners, that are discarded based on the ratio between
the second and third eigenvalues.

7.3.2 Sharp edges with low external angle
In order to understand the effect of sharpness of the edge
on the quality of the feature detection, we sampled a
surface made of two planar rectangular patches joined
by a common edge and whose normals differ by an
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(a) no noise, r = 0.05 (b) noise 0.02, r = 0.1 (c) noise 0.05, r = 0.1 (d) noise 0.1, r = 0.15

Fig. 13. Estimated feature directions on a unit icosahedron, with various convolution radii r and noise values.

(a) α = 45◦ (b) α = 13◦ (c) α = 1.8◦

Fig. 15. Estimated feature directions on a folded rectan-
gle, for different values of the external angle α.

angle of 2α. As shown in Fig. 15, the feature estimation
method described above is able to reliably detect sharp
edges whose external dihedral angle is as small as 2◦; all
the results were produced using the same convolution
radius and threshold.

7.3.3 Results on more complex point clouds
On larger range scan point clouds, we were able to
decrease both the offset and the convolution radii while
keeping the detected features almost noiseless. This en-
ables the algorithm to capture very small and non-sharp
features, like the hair of Caesar or the braiding of Bimba,
as shown in Fig. 14(a),14(b),14(c).

8 SURFACE SEGMENTATION

As a sample application to our feature detection method,
we use it to segment point cloud samplings of piecewise
smooth surfaces. Here, given a point cloud, our goal is
to segment it into components sampled from contiguous
regions of the surface separated by sharp edges and
highly curved areas (see Fig. 16). The use of our feature
detection method for point cloud segmentation was
suggested by Frederic Chazal and Steve Oudot, who also
contributed to the work presented in this section.

Shape segmentation has applications in reverse engi-
neering and CAD model generation as well as surface
reconstruction [5], rendering of point clouds [18], [20],
and object recognition and matching [30]. As in the case
of curvature and feature estimation, most existing meth-
ods rely on meshes (see [31] for a survey). Nevertheless,
a rich body of work also exists in the context of point
cloud segmentation with various targeted applications
(e.g. [32], [33]). Unfortunately most existing methods
lack a sound theoretical foundation. In this section, we
demonstrate that our provably correct feature detection

method can be used in shape segmentation. Note that
rather than opposing existing techniques, our objective
is to illustrate the performance of our feature detection
method for shape segmentation and to make a step
towards a provably correct segmentation technique.

A recent method for segmenting point clouds with
theoretical guarantees on the number of components was
proposed by Chazal and colleagues [34], using ideas
from topological persistence. Given a scalar function
f defined over a point cloud C, and a neighborhood
parameter µ, their method starts by building a Rips
graph of C by introducing an edge between any two
points of C whose Euclidean distance is less than µ.
Then, each point is associated to a local minima of the
function f through a simple gradient descent on the Rips
graph. The corresponding attraction basins are merged
according to a persistence threshold parameter α. Using
methods from the theory of topological persistence, the
authors are able to prove that the number of compo-
nents thus obtained is stable under perturbations of
the function and irregular point cloud sampling of the
underlying space.

We apply the method of Chazal et al. [34] to segment
point clouds into smooth regions. To define a function
on the point cloud, we use a two step process: first
we identify sharp edges and corners using the method
described above. Then, we build a Rips graph on the
point cloud using the same µ parameter as defined
earlier. For each point p in the cloud, define g(p) as
the geodesic distance in the Rips graph from p to the
closest feature point. Since the method of Chazal et al.
identifies local minima rather than maxima, we apply
their algorithm to the function f(p) = −g(p).

This process is illustrated in Fig. 16. The input point
cloud is a 200k sampling of the Fandisk model 16(a). The
feature points identified by our method are shown in
Fig. 16(b); the negative distance function to the features
in Fig. 16(c), and the final point cloud segmentation in
Fig. 16(d). In Fig. 17, we show the results of this segmen-
tation method on point cloud samplings of several other
models. Note that one of the advantages of persistence-
based clustering [34] is that this method is very global in
nature. Therefore, even if spurious features are detected,
e.g. due to a very noisy sampling, introducing additional
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(a) Caesar (b) Bimba (c) Bimba (d) Nicolo

Fig. 14. Results of the feature detection algorithm on the Julius Caesar (a), Bimba (b-c) and Nicolò (d) point clouds.

local minima of the negative distance function, the seg-
ments associated with these minima will be merged with
more persistent “true” local minima.

CONCLUSION AND FUTURE WORK

In this paper, we have described a method for detecting
sharp features and feature directions on point cloud data
in a unified fashion. We have provided theoretical guar-
antees on its robustness, and implemented it and tested
it on various point cloud data with varying amounts of
sampling bias and noise.

In the future, it would be interesting to combine
the theoretical stability properties of persistence-based
clustering [34] with our feature detection method to give
explicit guarantees on the quality of the segmentation
method for point cloud samplings of piecewise-smooth
surfaces described in §8.

One drawback of the Voronoi covariance measure is
its sensitivity to outliers that are at intermediate distance
from the point cloud. A possible way to overcome this
limitation would be to use the recently introduced notion
of distance-to-measure [35].
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