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Abstract
We present a novel approach for optimizing real-valued functions based on a wide range of topological criteria. In particular,
we show how to modify a given function in order to remove topological noise and to exhibit prescribed topological features.
Our method is based on using the previously-proposed persistence diagrams associated with real-valued functions, and on
the analysis of the derivatives of these diagrams with respect to changes in the function values. This analysis allows us to
use continuous optimization techniques to modify a given function, while optimizing an energy based purely on the values in
the persistence diagrams. We also present a procedure for aligning persistence diagrams of functions on different domains,
without requiring a mapping between them. Finally, we demonstrate the utility of these constructions in the context of the
functional map framework, by first giving a characterization of functional maps that are associated with continuous point-to-
point correspondences, directly in the functional domain, and then by presenting an optimization scheme that helps to promote
the continuity of functional maps, when expressed in the reduced basis, without imposing any restrictions on metric distortion.
We demonstrate that our approach is efficient and can lead to improvement in the accuracy of maps computed in practice.

1. Introduction

A core problem in geometry processing consists in quantify-
ing similarity between shapes and their parts, as well as detect-
ing detailed region or point-based correspondences [VKZHCO11,
TCL∗13, BCBB16]. A common approach for both shape compari-
son and correspondence consists in computing real-valued (for ex-
ample, descriptor) functions defined on the shapes and comparing
the shapes and their parts by comparing the values of such func-
tions. This includes both computing correspondences by matching
in descriptor space, and also, more recently, by computing linear
transformations between spaces of real-valued functions using the
so-called functional map framework [OBCS∗12, OCB∗17].

Many existing techniques for comparison of functions on the
shapes directly rely on comparing function values, without analyz-
ing the global structure of the functions involved. For example, a
descriptor function computed on one shape can have several promi-
nent maxima, whereas on another shape, it can be uniform or with
low variance. Intuitively, pairs of functions with dissimilar struc-
tural properties can lead to large errors in the correspondence com-
putation. This problem is especially prominent in the context of
functional maps which are linear transformations between spaces
of real-valued functions defined on different shapes. In this case,
one is often interested in formulating an objective which would
promote mapping indicator functions of connected regions to other
such indicator functions without knowing in advance which regions
should match. At a high level, such an objective should promote the

preservation of the topological structure of the functions before and
after the mapping.

In this paper, we show how such problems can be solved by ef-
ficiently optimizing the topological structure of real-valued func-
tions defined on the shapes, either independently (to promote cer-
tain structural properties), or jointly (to enforce similarity between
such properties), without resorting to combinatorial search or point-
to-point maps. The key to our approach is the manipulation of per-
sistence diagrams [CZCG05, Car09]. These diagrams have been
shown to summarize the properties of very general classes of topo-
logical spaces, including, most relevant to us, real-valued func-
tions defined on the surfaces, and also enjoy several key prop-
erties such as being stable under a broad range of perturbations
[CSEH07, CCSG∗09]. Existing methods, however, concentrate on
either efficiently constructing persistence diagrams from a given
signal [CZCG05, MMS11, CK13] or using them as a tool for, e.g.
shape or image comparison [CZCG05,LOC14] or shape segmenta-
tion [SOCG10] among many others.

Our main insight is that it is possible to formulate optimization
objectives on the persistence diagrams of real-valued functions, re-
gardless of their underlying spatial domain, and to optimize a given
function to improve such objectives, via continuous non-linear op-
timization. For this, we first show, how the derivative of a persis-
tence diagram of a function can be computed with respect to the
change in the function values, and then how this computation can
be used to efficiently optimize various energies defined on persis-
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tence diagrams. Crucially, these computations can be performed in
any functional basis, which can significantly improve stability and
computation speed. Moreover, our approach allows us to jointly
optimize the persistence diagrams of multiple functions, without
assuming that they are defined over the same domain.

We apply these insights to first provide a characterization of
functional maps associated with continuous point-to-point maps,
based on the preservation of persistence diagrams. Unlike previ-
ous results, this characterization does not assume that the map is
isometric or area-preserving and holds for any continuous point-
to-point map. We then propose an optimization scheme that helps
to promote continuity of functional maps, even when they are ex-
pressed in a reduced basis.

2. Related Work

Persistent (Co)homology Topology is the study of connectivity
and continuity, and persistent (co)homology is a natural language
for describing it in an applied setting. Persistence has been widely
studied [EH10] and has become a central tool for the rapidly devel-
oping area of topological data analysis. We provide an overview
of persistence in Section 4. Most relevant to our work is the
numerous applications it has found in geometry processing e.g.
[CZCG05, DLL∗10, SOCG10].

In this paper, we are interested in optimizing functions to achieve
certain prescribed topological criteria. Using persistence for mod-
ifying functions has been studied as topological simplification,
which also served as one of the motivations of the original work
on persistence [ELZ00]. The simplification problem has been pri-
marily stated as a denoising problem [AGH∗09, BLW12], chang-
ing the function so that “persistent features" are preserved. Un-
like these works, we approach this problem via continuous opti-
mization, which allows us to explicitly modify the function, ex-
pressed in an arbitrary basis to optimize topological criteria. Our
approach is inspired by Morse theory, which is deeply tied to per-
sistence [EHZ01, CCL03].

Most related to our work is [GHO16]. The main application of
their work was the continuation of point clouds for dynamical sys-
tems and so the authors concentrate on a different class of com-
plexes. They derive a similar chain rule result to ours, although
both their application and perspective are very different. The key
tool in their analysis is the study of the inverse map from the per-
sistence diagram back to the underlying topological space. These
maps have been studied in other contexts in applied topology, in-
cluding persistence vineyards [CSEM06] as well as studying gen-
eralized minimum spanning trees on random complexes [STY17].
Finally, persistence diagrams have recently also been included in
deep network architectures. In [LJY16], the authors use persistence
landscapes as a layer in their network architecture with a similar
optimization step, but limited to one dimensional signals. In other
work [WZWW17, CW17], persistence diagrams are used as fea-
tures with learned weights, whereas we optimize the underlying
filtration, i.e. the diagrams themselves change during optimization.

Continuity for Functional Maps Our main application lies in
using persistence diagrams to provide a characterization of func-
tional maps associated with continuous point-to-point correspon-

dences and then proposing a practical optimization scheme that
helps to improve the accuracy of functional map computations.
The functional map representation and the associated correspo-
dence computation pipeline was first introduced in [OBCS∗12]
and has since then been extended significantly in, e.g., [KBBV15,
HO17, RCB∗17, EBC17] among many others (see [OCB∗17] for
an overview). The key practical advantage of this representa-
tion is that it allows to encode correspondences between shapes
as small-sized matrices that represent linear transformations be-
tween function spaces in some reduced basis. Moreover, comput-
ing functional maps can be done efficiently by leveraging tools
from numerical linear algebra and manifold optimization, as shown
in, e.g., [KBBV15, LRBB17, LRB∗16]. One challenge with this
approach, however, is that the space of linear functional trans-
formations is much larger than that of point-to-point correspon-
dences, which means that in many cases regularization is neces-
sary to compute accurate maps. This has prompted work on char-
acterizing how various properties of pointwise maps are mani-
fested in the functional domain. For example, the original work
showed that area-preserving correspondences lead to orthonormal
functional maps [OBCS∗12] (Theorem 5.1). Other characteriza-
tions have been shown for conformal maps [ROA∗13, HO17],
isometries [OBCS∗12, KBBV15] and for partial correspondences
[RCB∗17, LRBB17]. More recently, some works have exploited
the relation of point-to-point maps to functional maps that pre-
serve pointwise products of functions [NO17,NMR∗18]. One large
missing piece, however, is to characterize continuous point-to-point
maps purely in the functional domain, and without making assump-
tions on the metric preservation. In this work, we fill this gap by
precisely characterizing functional maps that arise from continu-
ous point-to-point maps and propose an optimization scheme that
allows to promote this continuity.

We also note that another commonly used relaxation for match-
ing problems is based on the formalism of optimal transport, which
has recently been used for finding bijective and continous corre-
spondences [SPKS16,MCSK∗17,VLB∗17]. These techniques have
benefited from the computational advances in solving large-scale
transport problems, especially using the Sinkhorn method under
entropic regularization [Cut13,SDGP∗15]. For example, several re-
cent methods in this category [MCSK∗17,VLR∗17,VLB∗17] have
been proposed to efficiently find bijective maps, while promoting
continuity by iteratively solving optimal transport problems. While
related to our work, in these techniques, continuity is measured
using point-to-point correspondence or via metric distortion, most
commonly by minimizing variance with respect to a previous so-
lution in an iterative scheme. On the other hand, we show that
continuity can be expressed in the functional domain directly. Ul-
timately, we believe that the combination of these techniques, in
the spatial and functional domains, can be especially beneficial in
tackling difficult problems with strong outliers and discontinuities.

3. Overview

The rest of the paper is organized as follows: in Section 4 we give
a brief overview of persistence diagrams and their computation,
while concentrating on the specific case of real-valued functions
defined on surfaces. In Section 5 we describe a simple algorithm
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Figure 1: (a) Two functions ( f in blue and f ′ in red) defined on a 1-d interval. (b) Persistence diagrams of f , f ′. (c) The map from the
persistence diagram back to the underlying space for f .

for computing the derivatives of persistence diagrams with respect
to function values and outline how functions can be optimized for
using various energies based on persistence diagrams. In Section 6
we characterize functional maps associated with continuous point-
to-point maps and describe an approach to promote continuity di-
rectly in the functional domain. Finally, Section 7 is dedicated to
experimental results and practical validation of our methods, while
Section 8 concludes the paper. with a summary, a description of
limitations and future work.

4. Persistence Diagrams of Real-Valued Functions

We begin with a brief overview of persistence diagrams and their
computation [CZCG05, Car09]. We omit a formal introduction as
much as possible, referring the reader to [EH10] for a more com-
plete discussion. In a nutshell, persistent homology takes as in-
put a sequence of topological spaces and tracks topological fea-
tures, specifically homology groups, as they appear and disappear
in the sequence. Homology groups, and likewise persistent homol-
ogy groups are defined for different dimensions, up to the dimen-
sion of the underlying space, representing topological features of
each dimension.

We concentrate on the 0-dimensional homology associated with
real-valued functions defined on surfaces, as this is the setting that
is most directly related to our practical scenarios. Namely, through-
out our discussion we assume that the topological space is a surface
M, represented as an embedded discrete triangle mesh, consist-
ing of N vertices. We also assume that we are given a function
f :M→ R, which is represented as just a N-dimensional vector
of real values. To each such function, it is possible to associate a
persistence diagram of the super-level (resp. sub-level) sets of f ,
which intuitively captures the number and the relative prominence
of all the local maxima (resp. minima) of f . In practice, we define
the function on the vertices and linearly interpolate it to the rest of
the mesh. The resulting super-level set filtration is equivalent (up to
homotopy) to the upper-star filtration (see [EH10, Chapter VI.3]).
Throughout the rest of the paper, for simplicity we only consider
filtrations of this type, although our constructions are not restricted
to this choice.

More formally, we consider the connected components of
f−1[α,∞) at various values of parameter α. To construct the per-
sistence diagram of a function f , we consider the evolution of the

connected components of f−1[α,∞) as α ranges from∞ to −∞.
The number of points in the persistence diagram equals the number
of local maxima of f , i.e., vertices x, such that f (x)≥ f (y) for all y
adjacent (in the triangle mesh) to x. For each such vertex x, we will
construct a point p in the persistence diagram having two coordi-
nates: its birth and its death. The birth of a local maximum x equals
simply to f (x). To death of x equals the smallest real value β such
that f (x)≥ f (y) for all y in the same connected component as x in
f−1[β,∞). Note that unless f (x) is the global maximum of f there
will always exist some value β such that f−1[β,∞) contains a ver-
tex in the same connected component as x such that f (y) > f (x).
Thus, the largest value for which this occurs is called the death of
x. By convention, we also declare the death of the global maximum
of f on a compact surface, to be the global minimum of f .

The persistence diagram is simply the collection of birth and
death times. Each pair defines a point pi with bi and di coordinates,
representing the birth and death time respectively. The persistence
of the point p in the diagram is half of the difference between its
birth and death values which is also the L∞ distance to the diag-
onal. In this paper, it will be convenient to view the persistence
diagram as a map which takes a topological space and a function to
a multi-set of points in R2.

Pf : (M, f )→{(bi,di)}i∈I (1)

We use I to denote the index on the points in persistence diagram.
In our case, this can simply be an index up to the number of max-
ima. We can assume that this number is finite as we deal with “nice"
functions on, especially discrete, surfaces.

Figure 1 illustrates the persistence diagrams of two functions de-
fined on a 1-dimensional interval. A key result in the theory of per-
sistence is the stability of the diagrams under small perturbations
of the function values [CSEH07, CCSG∗09], which holds in great
generality. Intuitively, given two functions f and g, the distance be-
tween their associated persistence diagrams d(Pf ,Pg) is bounded
by the difference between the functions themselves. Numerous dis-
tances between persistence diagrams have been proposed. One of
the most commonly used distances is the p-Wasserstein distance:

dW p(Pf ,Pg) =

 inf
µ:Pf→Pg

µ∈bijections

∑
x∈Pf

‖x−µ(x)‖p
p


1/p

(2)

This distance is based on the optimal transport between the two dia-
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Input: Triangle mesh M, real-valued function f .
Output: Persistence diagram Pf of f .

1 Initialization: sort f in descending order.;
2 for each vertex x, in descending order of f (x) do
3 if x is local maximum of f in M then
4 add new point to Pf with birth value f (x);
5 parent[x] = x.
6 else
7 let y be s.t. f (y) is maximal among all parent[w], w

adjacent to x and f (w)> f (x);
8 update parent[w] = y,∀ w in the same connected

component as x of f−1[ f (x);∞);
9 if parent[w] changed in the previous step then

10 set death of w in Pf to f (x).
11 set death of global max of f in Pf to global min of f .

Algorithm 1: Computing the persistence diagram of a func-
tion f on a triangle mesh.

grams, specifically between the points in the two diagrams. Taking
the limit, p→∞, we recover the bottleneck distance:

dB(Pf ,Pg) = inf
µ:Pf→Pg

µ∈bijections

max
x∈Pf
‖x−µ(x)‖∞ (3)

This is the smallest cost (length of the longest edge) of the per-
fect matching between the points in Pf and Pg, where each point
is also allowed to match with the diagonal. The classical sta-
bility theorem [CSEH07] states that dB(Pf ,Pg) < ‖ f − g‖L∞ =
maxx | f (x)− g(x)|. For the diagrams in Fig. 1, the smallest cost
perfect matching would associate p with p′, and q with q′ while
the remaining two red points would be matched with the nearest
points on the diagonal. The cost (length of the longest edge) of this
matching would be the (relatively small) distance between q and q′,
capturing the proximity of these two functions.

Both the bottleneck and Wasserstein distances are realized by
the matching µ between diagrams. This matching can be computed
using the Hungarian algorithm, or any algorithm for computing the
minimum weight matching of a bipartite graph.

4.1. Computation of Diagrams and their Distances

Efficiently computing persistence diagrams has been extensively
studied, in e.g. [BDM15] (see also [OPT∗17] for a recent review
of the state-of-the-art). The scalability and practicality of persistent
homology computation has vastly increased over the last few years.
Computing the 0-dimensional persistence diagram corresponding
to the upper-star filtration of a piecewise-linear, real-valued func-
tion on a triangle mesh is particularly straightforward [ELZ00]
and we include it here for completeness. The main steps of this
computation are summarized in Algorithm 1. Given a function f ,
the persistence diagram is computed by first sorting the values of
f and then processing each vertex x of the mesh in descending
value of f . A new point in the persistence diagram is created when-
ever a new connected component of f−1[α,∞) appears, which oc-
curs precisely when f (x) is a local maximum. Otherwise, when
two components are merged, the one associated with the smaller
value of f dies, and is absorbed into the one associated with the

larger value of f . This association between connected components
and values of f is maintained in the data structure “parent”, which
points, for each vertex of the mesh, to the local maximum of f con-
nected to this vertex and having the highest value. Note that line 8.
of Algorithm 1 can be implemented efficiently by using a Union-
Find data structure, which only requires considering the immediate
neighbors w of x. As a result the complexity of entire algorithm
is O(N logN +Nα(N)), with the former part arising from the sort-
ing of f , while the latter corresponds to processing the vertices and
maintaining the association between them and the local maxima,
and α(N) is the inverse Ackermann function.

A key aspect of this computation is that for a vertex x that is a
local maximum of f , its birth value equals f (x), whereas its death
value equals to the value f (w) of some “paired” vertex w which,
when processed, merges the connected component of x with that
of some other vertex y, where f (y) > f (x). Therefore, when all
values of f are distinct, if f is perturbed infinitesimally, the value
of the point p in the persistence diagram will change by the amount
related to the change at the local maximum and its paired vertex. In
the following section, we describe this intuition in detail.

Let us also note that the persistence diagrams of two functions
can be compared even if the functions are defined on different do-
mains. In other words, when going from the function f to its di-
agram Pf all information about the underlying domain on which
f is defined is removed. This can be useful in our applications,
where we will use persistence diagrams as a way to compare and
align functions defined on different domains. Finally, we note that
persistence diagrams are provably stable under perturbations of the
function values [CSEH07], which has motivated their use in many
settings, including shape analysis, e.g., [SOCG10, LOC14].

5. Derivatives and Optimization of Persistence Diagrams

We now derive how the persistence diagram changes as we change
the underlying functions. Our approach is based on the observation
that persistence diagrams can be thought of, in the simplest case,
as extensions of the max operator. We follow the general com-
mon approach used to compute derivatives of such operators, for
example in the case of max pooling in convolutional neural net-
works [GBCB16]. These derivatives are most often discontinuous,
but we show that generically, they are locally well defined, and,
just like the max operator, can be successfully optimized for within
more complex energies in practice. Finally, we note that all the re-
sults in this section can be applied to persistence diagrams of any
dimension (as well as to any functionals of persistence diagrams).

Our goal is to understand how the diagram changes as we change
the function. Let the filtration function f , depend on a set of pa-
rameters which we denote by α j. To optimize these parameters, we
must derive formulas for

∂bi

∂α j
and

∂di

∂α j
,

for all points in the diagram (bi,di). Our key tool is the existence
of a map π from the points in the diagram to pairs of vertices in the
space, i.e.

π : (bi,di) 7→ (vb,vd)
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We first define a possibly non-unique map from points in the per-
sistence diagram to pairs of simplices

ζ : (bi,di) 7→ (σ,τ)

A finite simplicial filtration can always be extended to a total or-
der. For example, one way is to consider lexographical ordering
of the vertices to order simplices which share the same function
value. In the total ordering, each birth and death time are distinct,
hence there is precisely one simplex which corresponds to any birth
time (and precisely one simplex which corresponds to a death time
respectively). Note that these times refer to the index in the total
order. This correspondence defines ζ, which is simply the pairing
returned by the standard persistence algorithm [CZCG05]. In our
case, each birth time corresponds to the value of a specific vertex,
whereas the death time is associated with the edge of the mesh,
which merges two connected components when it is added.

Since we are considering a super-level set (upper-star) filtration,
edges are added implicitly in the filtration, once both vertices are
included. This allows us to define a map from each simplex to one
of its vertices. In the case of vertices, this is simply the vertex it-
self, whereas in the case of edges, it is given by the vertex with the
smaller function value:

η : σ 7→ vσ, where η(σ) = argmin
v∈σ

f (v)

In general this is not unique, but we can always choose an arbitrary
fixed vertex. Finally, we define

πb = η◦ζ(bi), πd = η◦ζ(di)

π = (πb,πd)

Algorithm 1 implicitly computes this map (see Section 5.2 for de-
tails). This map depends on numerous choices, however as we saw
in the previous section, we can assume that the function values are
unique at each vertex. This can be achieved through an infinitesimal
perturbation of the function, either implicitly or explicitly. Finally,
while π is defined for each point in the diagram, by applying it to
every point, we can induce a map from a diagram to a multi-set of
vertices. We then obtain the following two results.

Lemma 1 If the vertex function values are distinct, then π is unique.

Proof See Appendix.

Note that this does not imply that there is a one-to-one correspon-
dence between points in the diagram and pairs of vertices, as mul-
tiple points can map to the same vertex. However, we do have the
following result.

Lemma 2 If the vertex function values are distinct, there exists a
neighborhood where π is constant.

Proof See Appendix.

To define the neighborhood recall that we can consider the persis-
tence diagram as a map from a pair (X , f ) to a multi-set of points
(Eq. 1). The neighborhood is defined as all the diagrams with the
domain (X ,g) such that || f − g||∞ is sufficiently small. We note
that stability [CSEH07] implies that the corresponding multi-sets
of points are close with respect to the bottleneck distance. The

existence of this neighborhood allows us to derive analytic expres-
sions the derivatives. First, we observe that

f (πb(bi)) = bi f (πd(di)) = di ∀i (4)

Since π is constant, it follows that

∂bi

∂α j
=

∂ f (πb(bi))

∂α j
=

∂ f (vi)

∂α j
=

∂ f
∂α j

(vi) (5)

In other words, the derivative is equivalent to the derivative of the
function evaluated at the image of the map πb. The derivation for
di is analogous.

5.1. Application to optimization

In our application we would like to minimize some functional F of
an input diagram. Using the the chain rule, we obtain

∂F
∂α j

= ∑
i∈I

∂F
∂bi
· ∂bi

∂α j
+

∂F
∂di
· ∂di

∂α j

= ∑
i∈I

∂F
∂bi
· ∂ f

∂α j
(πb(bi))+

∂F
∂di
· ∂ f

∂α j
(πd(di))

∂F
∂xi

and ∂F
∂yi

must be derived for each functional separately. We de-
rive the complete formula for two specific cases. We first consider
the bottleneck distance.

Lemma 3 For almost all persistence diagrams Pf and Pg, the point
x ∈ Pf whose matching achieves the bottleneck distance is unique
and constant in some ε-neighborhood of Pf (in the bottleneck met-
ric).

Proof See Appendix.

The neighborhood here again refers to the space of persistence di-
agrams (here we do not need to restrict the space of diagrams as
in Lemma 2). If Pf and Pg are generic, the matching is unique in a
sufficiently small neighborhood of nearby diagrams. Since nearby
diagrams may have different numbers of points, one needs to be
careful to ensure the lemma holds (see Appendix).

We consider the functional of the bottleneck distance to a fixed
diagram, denoted byFB. Let pmax = (bmax,dmax) be the point in the
diagram whose matching realizes the maximum in the bottleneck
matching µ. If pi = pmax and |bmax−µ(bmax)|> |dmax−µ(dmax)|

∂FB

∂bi
=

{
−1 bi > µ(bi)

1 bi < µ(bi)

and 0 otherwise. A similar expression holds for ∂FB
∂di

if |bmax −
µ(bmax)| < |dmax− µ(dmax)|. Note that if both are equal then the
distance is 0, where the derivative can be defined as 0 (since the
distance cannot be negative). Therefore, the derivative can be writ-
ten as two cases: if |bmax−µ(bmax)|> |dmax−µ(dmax)|, then

∂FB

∂α j
= sgn (µ(bmax)−bmax)

∂ f
∂α j

(πb(bmax)) (6)

and if |bmax−µ(bmax)|< |dmax−µ(dmax)|,
∂FB

∂α j
= sgn (µ(dmax)−dmax)

∂ f
∂α j

(πd(dmax)). (7)

We also derive an equivalent result for the squared 2-Wasserstein
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distance. Again, we assume by genericity that the solution to the
matching is unique and constant in a neighborhood. The squared
2-Wasserstein distance is given by

d2
W 2(Pf ,Pg) = inf

µ:Pf→Pg
µ∈bijections

∑
p∈Pf

‖p−µ(p)‖2
2

= inf
µ:Pf→Pg

µ∈bijections

∑
p∈Pf

(pb−µ(pb))
2 +(pd−µ(pd))

2

Minimizing this distance gives the functional, FW 2 , whose deriva-
tive is

∂FW 2

∂bi
=

∂

∂bi

(
∑
i∈I

(bi−µ(bi))
2 +(di−µ(di))

2

)
= 2(bi−µ(bi))

Putting this together,

∂FW 2

∂α j
= 2 ∑

i∈I
(bi−µ(bi))

∂ f (πb(bi))

∂α j
+(di−µ(di))

∂ f (πd(di))

∂α j

(8)

where bi and di are functions of α j (see Eq. 4). We conclude this
section by noting that most functionals for persistence diagrams
map points in R2 to real valued functions. For most cases, it should
be possible to compute a closed form for the derivative, for example
in the case of persistence landscapes or specific choices of kernels
on the space of persistence diagrams.

5.2. Computing Derivatives

The derivatives derived above can be efficiently computed by ap-
propriately modifying Algorithm 1. We first need to compute π, the
map from the persistence diagram to the vertices. Let p be the point
added to Pf in line 4. When the point is created, we also add the
pair (p,x) to π. Likewise in line 10, we again add the pair (p,x)
to π. Note that these are two different vertices, as the x in Line 4
is a local maxima, while the x in line 10. connects two previously
disjoint components (i.e. in our case a saddle point).

To compute the derivative, we must be able to evaluate the
derivative of the function at a given vertex in the underlying space,
i.e.M. The derivative can be obtained by evaluating the derivative
of the function at the image of π for that point. Therefore, by us-
ing the modified Algorithm 1 and computing the minimum weight
matching µ with respect to the chosen distance, we can evaluate
π and µ for every point in the persistence diagram P. For the bot-
tleneck distance, we can then directly compute the derivative by
evaluating Equations 6 or 7. The derivative for the 2-Wasserstein
distance can likewise be computed by evaluating Equation 8.

In our derivation, we assumed a genericity condition by requir-
ing the vertex function values be unique. While this is true for any
one function (by infinitesemal perturbation), as we optimize the
function, this assumption might be violated. However, in the case
of non-uniqueness, we can make a choice randomly. In our imple-
mentation, the continuous optimization scheme such as L-BFGS
explicitly checks that the energy decreases at every iteration, ensur-
ing that the algorithm converges. Furthermore, in our applications
we optimize over a reduced functional basis consisting of smooth

functions, which significantly improves the robustness with respect
to pathological behavior. In practice, the optimization schemes we
use converge to local minima remarkably consistently. Neverthe-
less, we leave the theoretical study of guarantees of convergence as
interesting future work.

6. Applications: Continuity in Functional Maps

We propose to apply the ideas presented above for improving func-
tional maps. For this, we first provide a novel characterization
of functional maps arising from continuous point-to-point maps,
purely in the functional domain, i.e., without making reference to
point-to-point correspondences. We also prove that our characteri-
zation is complete: i.e., all functional maps (linear transformations
across function spaces) that satisfy our condition exactly must arise
from continuous point-to-point maps. We then present an energy,
which can be optimized using standard non-linear continuous op-
timization techniques, such as L-BFGS, and which promotes con-
tinuity directly in the functional domain, even when maps are ex-
pressed in a reduced basis. In this section, we describe these con-
structions in detail, and present the main experimental results in
Section 7.

Our main observation is that the information encoded in persis-
tence diagrams can be used to improve the computation of cor-
respondences between shapes using the so-called functional map
framework (see [OCB∗17] for an recent overview). Works in this
domain are based on the idea that when looking for a point-to-point
map T :M→N between two shapesM and N , it is often eas-
ier to consider the associated pull-back of real-valued functions
TF : F(N ) → F(M), where F(N ) is the space of real-valued
functions on shape N . For a given map T , TF is defined simply
via composition TF ( f ) = f ◦T , where f is any real valued function
f :N → R. Since TF is a linear operator between function spaces,
whenever both the domain and range can be endowed with a func-
tional basis, this operator can be written as a change of basis matrix
C, also called a functional map matrix, whose size depends on the
size of the chosen basis.

The basic pipeline for computing functional maps introduced in
[OBCS∗12], and extended in follow-up works, aims at recovering
the functional map matrix C directly and then using it to estimate
the underlying map T . The general approach follows the following
steps (see Section 2.4.4 in [OCB∗17]):

1. Construct a set of basis functions, consisting e.g. of the eigen-
functions corresponding to the kM and kN smallest eigenvalues
of the Laplace-Beltrami (LB) operators on the source and target
shapesM andN , stored in matrices Φ

M and Φ
N respectively.

2. Compute some kd descriptor functions on the source and target
shapes, express them in the corresponding bases and store the
coefficients as columns of matrices A and B, of size kM× kd
and kN × kd respectively.

3. Compute the optimal functional map matrix C of size kN ×kM,
that aligns the descriptor functions and commutes with the
Laplace-Beltrami operators on the two shapes. That is: C =
argminX ‖XA−B‖+ε‖ΛNX−XΛ

M‖. Alternatively, one can
use several extensions, such as manifold-constrained optimiza-
tion [KBBV15], robust regularization [LRB∗16] or requiring
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Figure 2: Topological optimization for removing local maxima
from a function: (a) a real-valued function on a surface and its
persistence diagram, (b) function and its diagram after topological
optimization, where we penalize the persistence of all, except the
first most prominent maximum.

the map to commute with multiplicative operators with respect
to descriptor functions [NO17] among others.

4. Convert the functional map C to a point-to-point map.

A key advantage of the functional map representation is that
the optimization step 3. can be solved efficiently using robust nu-
merical linear algebra tools, and in the most basic case reduces to
solving a simple linear system of equations. Unfortunately, without
additional regularization, the computed functional map might not
correspond to any “natural” point-to-point map. Therefore, several
approaches have been proposed to enforce desired properties on
functional maps. For example, it was shown in the original arti-
cle [OBCS∗12] that functional maps arising from area-preserving
point-to-point maps must be orthonormal.

More recently several works have used the fact that functional
maps that correspond to pointwise maps must also preserve point-
wise products between functions [NO17]. In practice, however, we
are often interested in continuous pointwise correspondences and
translating the continuity of the point-to-point map into a constraint
on the functional map has not been straightforward. To this end, we
first establish and then exploit the following theorem.

Theorem 1 An invertible linear functional map TF corresponds to a
continuous bijective point-to-point map if and only if both TF and
its inverse preserve pointwise products of pairs of functions, and
moreover both TF and its inverse preserve the persistence diagrams
of all real-valued functions. In other words:

dB(Pf ,PTF ( f )) = 0, ∀ f . (9)

Note that preservation of products ensures that TF corresponds to
a point-to-point map, whereas preservation of persistence diagrams
guarantees that the underlying map is continuous.

Proof See Appendix.

The key observation in the proof of Theorem 1 is that a func-
tional map associated with a point-to-point bijection will corre-
spond to a pull-back by a continuous point-to-point map if it maps
indicators of functions of connected regions to indicators functions
of connected regions. Moreover, persistence diagrams provide a
very convenient way to test whether an indicator function corre-
sponds to some connected region, by simply checking whether it
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Figure 3: Topological function alignment. Left and middle: initial
functions f1, f2 on two shapes (top), and their persistence diagrams
(bottom). Right: function f opt

2 on the second shape after aligning
its persistence diagram with that of f1, without any cross-shape
correspondence (top) and the resulting aligned diagrams (bottom).
Note the change in values on the hands.

has more than one prominent local maximum. The persistence of
local maxima gives a stable way to test for this criterion for an
arbitrary (not necessarily binary, or even positive) function, since
an indicator function of a connected region, perturbed by noise,
will still have a single prominent local maximum, with other points
close to the diagonal on the persistence diagram. This stability
directly follows from the stability guarantees of persistence dia-
grams, which have been established under very broad conditions
[CSEH07, CCSG∗09].

Therefore, we propose to exploit this observation by defining the
following (non-linear) energy on functional maps, expressed in an
arbitrary basis:

Econt(C) = ∑
r

dB(PΩr ,PC(Ωr)), (10)

where r is an index over some set of connected regions defined on
the source shape M, Ωr is the characteristic (indicator) function
of region r, and C(Ωr) is the image of indicator function onto the
target shape N via the functional map C. For simplicity we write
C(Ωr) instead of the expression in the reduced basis, which should
read Φ

NC((ΦM)+Ωr), where + is the pseudo-inverse.

Of course, a symmetric energy can be optimized for using a map
between the target and source shape.

With this energy at hand, Theorem 1 can be restated simply to
say that a bijective point-to-point map T is continuous if and only
if both the pullback TF by T and its inverse satisfy Econt(TF ) = 0,
assuming the sum in Eq. 10 is over all connected regions r.
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(a) Initial correspondence (b) Correspondence after optimization

Figure 4: (a) Noisy input functional map converted to a pointwise
correspondence (b) Same map after topological optimization. Note
the drastic reduction in discontinuities. Colors encode the x coor-
dinate function of the target shape and its pull-back on the source.

Intuitively, Econt measures the uncertainty in converting a func-
tional map to a point-to-point map. For example, the image of an
indicator function of a connected region or even a delta function
via a computed functional map can have multiple prominent local
maxima, which means that during the point-to-point conversion,
the correspondence can oscillate between multiple possible solu-
tions creating a highly discontinuous pointwise map. This can es-
pecially occur when a functional map corresponds to a blending of
multiple pointwise maps, which can arise e.g. due to the symme-
try present in the shapes. On the other hand, when optimizing for
functional map using the energy in Eq. 10 we expect that the image
of an indicator function of a region corresponds to a function with
exactly one prominent maximum, which eventually should lead to
a more continuous point-to-point map.

In practice, we observe that it can be more efficient to replace
Econt with a simplified energy:

Epersist(C) = ∑
r

Pers(PC(Ωr)), (11)

where the sum is again over connected regions r on the source
shape and Pers(P) is defined as the sum of the squares of persis-
tence values (i.e., the distances to the diagonal) of all points in the
diagram P, except for the one with the highest persistence. Intu-
itively, Pers(Pf ) penalizes all but the prominent local maxima of
the function f , with the strength equal to the square of the distance
to the diagonal.

Our main objective therefore is to use the energy Epersist(C) to
optimize a functional map C and especially to use it to infer func-
tional maps that arise from continuous point-to-point maps. For
this, we observe that the ability to differentiate persistence dia-
grams allows us to compute the gradient of Epersist(C) with respect
to the entries of the matrix C. This, in turn, allows us to use quasi-
Newton methods such as BFGS, which, as we show below, provide
an efficient way to improve functional maps. Specifically, we solve
the following continuous optimization problem:

min
C

Epersist(C), (12)

where the functional map is represented in the reduced LB basis.
In general, this is highly non-convex problem, and we use the re-
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Figure 5: Quantitative evaluation of the functional maps before
and after topological optimization, shown in Fig. 4.

computed functional map as an initialization in an iterative quasi-
Newton scheme. For robustness, we also add a constraint that the
functional map C should map the indicator (constant = 1) function
of the source shape to the indicator on the target, and use a projected
L-BFGS solver to optimize Eq. (12).

The derivative in this case is a special case of the 2-Wasserstein
case in Equation 8. If we match to a diagram with only one point
corresponding to a global maximum, all the points map except the
global maximum map to the diagonal so

µ(bi) = µ(di) =
bi +di

2
Substituting into Equation 8, the derivative can be written as

∂Epersist

∂α j
= ∑

i∈J
(di−bi)

(
∂ f
∂α j

(πd(di)−
∂ f
∂α j

(πb(bi))

)
where J represents all the points in the diagram except the most
persistent one.

7. Experimental Results

In this section, we describe some practical aspects of the implemen-
tation of our topological optimization approach and show results in
several applications.

Throughout all of our experiments we assume that shapes are
represented as triangle meshes, and functions are defined on their
vertices. We also use the standard discretization of the Laplace-
Beltrami operator L = A−1W , where A is the lumped area matrix
and W is the matrix of cotangent weights [PP93, MDSB03]. We
use this operator to define a basis for real-valued functions by com-
puting the eigenfunctions corresponding to the k smallest eigenval-
ues, Lϕi = λiϕi. Then we express any real-valued function as a lin-
ear combination f = ∑

k
i=1 aiϕi, where ai are scalar weights. Thus,

when optimizing for a function f , we consider the scalar weights
ai as the unknowns.

7.1. Topological Function Simplification

To illustrate the effect of our topological optimization, we first use
it to “simplify” a real-valued function on a surface, by removing
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(a) Indicator function of a region
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(b) Image before optimization
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(c) Image after optimization

Figure 6: Topological optimization for improving functional maps: (a) indicator function of a region on a source shape and its persistence
diagram, (b) the image of this function via the initial functional map onto the target shape and its persistence. Notice multiple prominent
local maxima. (c) Image of the same function after optimizing the functional map.

all but one most prominent local maxima. Namely, we first con-
struct a real-valued function on one of the shapes from the SCAPE
dataset [ASK∗05] by computing the Heat Kernel Signature (HKS)
[SOG09] for a t = 0.01. This function and its associated persis-
tence diagram are shown in Figure 2a. We then simplify this func-
tion by minimizing an energy, which penalizes the square of the
persistence of all but first most prominent local maxima (which is
equivalent to Pers(Pf ) introduced in Eq. 11 above), using k = 40
eigenfunctions of the Laplace-Beltrami operator as the basis for the
function. The result of the optimization is shown in Figure 2b. Note
that the resulting function has only one prominent local maximum.
Remark also that our optimization does not impose the location of
the final local maximum, but simply promotes its uniqueness. Fi-
nally, we note that our topological optimization does not assume
the manifold structure of triangle meshes, and, once the functional
basis is computed, can be applied to arbitrary graphs. The optimiza-
tion converges after 81 iterations of L-BFGS in 2.26 seconds on a
machine with 2.6 GHz Intel Core i7 CPU using a MATLAB im-
plementation of L-BFGS with the analytic gradient of persistence
diagrams described in Section 5.

7.2. Topological Function Alignment

Next, we illustrate how our topological function optimization can
be used to align the values of two functions defined on different do-
mains without the knowledge of any (functional or point-to-point)
correspondences. For this, we first compute two functions, f1, f2
corresponding to the HKS for the same value t = 0.01 on two dif-
ferent shapes, shown in Figure 3 (top, left and middle). Note that
since the shapes is not fully intrinsically symmetric, the function f2
has two prominent local maxima on the hands that have different
values, while the two most prominent maxima of f1 are closer to-
gether, since since the undeformed shape is closer to being symmet-
ric. We then modify f2 so that the bottleneck distance dB(Pf1 ,Pf2)
is minimized, while keeping f1 fixed. Let us stress that this energy
does not require a map between the two domains, and we can op-
timize f2 so that its persistence diagram aligns with that of f1 by

only considering the diagrams themselves. The result of this opti-
mization, f opt

2 is shown in Figure 3 (right), where both the function
becomes symmetric and the persistence diagrams align nearly per-
fectly. In this case, the optimization is done again, using k = 40
eigenfunctions of the Laplace-Beltrami operator, converges after
29 iterations of L-BFGS and takes 0.84 seconds.

7.3. Functional Map Improvement

In our next experiment, we show how topological function opti-
mization can be used to improve functional maps and to promote
the continuity of the recovered point-to-point maps directly in the
functional space, without enforcing conditions on area preserva-
tion or conformality. For this, we first consider a noisy point-to-
point map, which is obtained by a strong perturbation of the sym-
metric correspondence (i.e., mapping left to right) between a pair
of shapes from the FAUST dataset [BRLB14]. The initial corre-
spondence is shown in Figure 4a. We then convert this map to a
functional map representation using k = 80 eigenfunctions of the
Laplace-Beltrami operator, resulting in a matrix C of size 80×80.
We then optimize this functional map using L-BFGS on the energy
Epersist described in Eq. 11. To construct the connected regions, re-
quired in the sum in Eq. 11, we randomly sample n points on the
source shape and construct their intrinsic Voronoi diagram. We then
use an iterative scheme, where we optimize a functional map with
an increasing number of regions n = 5,15, ...,45. Between itera-
tions we project a functional map to a point-to-point one to remain
close to the desired solution space. This procedure is reminiscent
to the ICP refinement approach proposed in the original functional
maps work [OBCS∗12], but instead of promoting area preserving
maps, it aims to promote continuous maps, without enforcing any
constraints on the metric distortion.

The final functional map, converted to a point-to-point map, is
shown in Figure 4b. Note that the resulting map does not have the
large patch discontinuities present in the original one. We also eval-
uated the quality of the initial and optimized maps with respect to
the ground truth map. Figure 5 shows the percent of point-to-point
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Figure 7: Quantitative evaluation of correspondences computed on
100 random pairs of shapes from FAUST dataset [BRLB14], using
the basic functional maps pipeline in [NO17] before and after our
topological functional map optimization.

correspondences below a certain threshold, following the evalua-
tion protocol introduced in [KLF11]. We also plot the errors of in
the ground truth map, which are caused by its representation as a
reduced-size functional map. Note the significant improvement of
the map after topological optimization, especially with respect to
large errors, which are eliminated by the topological optimization.

Finally, to illustrate the effect of the optimization, we consider
the indicator function of a connected region on the source shape,
and its associated persistence diagram, shown in Figure 6a. We then
show its image on the target shape via the initial functional map in
Figure 6b, which contains multiple significant local maxima. Fi-
nally, we show the image of the same function onto the target but
via the functional map after our optimization in Figure 6c. Note the
intuitive “connectivity” of this function and its unique prominent
local maximum.

7.4. Improvement of Computed Functional Maps

We also use our topological optimization procedure to improve
functional maps computed using descriptor preservation con-
straints, as described in [NO17].

For this, we consider 100 pairs of shapes, taken at random from
the FAUST dataset [BRLB14], and for each shape pair introduce
one landmark point (in the middle of the right leg). We then com-
pute descriptor functions, which consist of Wave Kernel Signa-
tures [ASC11] and Wave Kernel Map (to enforce the landmark)
sampled at 20 different times. Finally, we compute the functional
map using a linear system of equations based on multipliciative op-
erators described in [NO17]. We then optimize the resulting func-
tional maps using our topological optimization approach by min-
imizing Eq. 11. During topological optimization, we again use an
iterative procedure where we sample 5 points and compute their in-
trinsic Voronoi diagram. We then optimize Eq. 11 for 12 iterations
of L-BFGS and convert the optimized functional map to a point-to-

Figure 8: Texture transfer from a target shape (left) onto the source
using a functional map converted to a point-to-point one before
(middle) and after (right) topological functional map optimization.

Figure 9: Texture transfer from a target shape (left) onto the source
using a functional map converted to a point-to-point one before
(middle) and after (right) topological functional map optimization.

point one. We found that the last step helps to improve the quality
of the map, as it restricts the optimization from drifting too far from
point-wise maps. An alternative would be, e.g., to enforce preser-
vation of pointwise products of functions, as suggested in [NO17].

Figure 7 shows the quantitative evaluation of the functional maps
converted to a point-to-point maps (using the basic procedure in-
troduced in [OBCS∗12]) on 100 shape pairs before and after topo-
logical optimization. Note the significant improvement in quality
across all categories in the dataset.

We also illustrate the quality of the computed functional maps
converted to point-to-point maps in Figures 8, 9 and 10 via texture
transfer. Note the improvement in the continuity in the maps af-
ter topological optimization. We stress that unlike previous works,
such as [MCSK∗17, VLR∗17], we never enforce continuity of
point-to-point maps. Instead, the optimization is done purely in the
“functional domain” by minimizing Eq. 11 directly. Moreover, we
do not enforce any prior on the metric distortion, such as requesting
the maps to be isometric, conformal or area-preserving, but instead
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Figure 10: Texture transfer from a target shape (left) onto the
source using a functional map converted to a point-to-point one
before (middle) and after (right) topological optimization.

only promote continuity, while operating with functional maps in a
reduced basis. Since we use a basic approach for converting func-
tional maps to point-to-point ones, some high-frequency noise can
still be present in the resulting correspondence. Nevertheless, post-
processing of these maps using techniques such as [MCSK∗17] can
certainly improve the results further.

8. Conclusion, Limitations & Future Work

In this paper we presented an approach for optimizing real-valued
functions defined on shapes, based on a wide variety of topological
criteria. Our main observation is that previously proposed persis-
tence diagrams can be differentiated with respect to the changes in
function values, and as such optimized for using continuous opti-
mization techniques. We use this procedure for both aligning di-
agrams of functions defined on possibly different domains, i.e.,
reducing their bottleneck or Wasserstein distances, and also for
simplifying a given function to remove undesired topological fea-
tures. Finally, we show how this analysis can be used in the context
of functional map computations, first by characterizing continuous
point-to-point maps directly in the functional domain and then pre-
senting an optimization scheme that helps to promote continuity of
functional maps in the reduced basis.

In the future, it would be very interesting to provide rigorous sta-
bility guarantees and bounds on how our characterization behaves
for approximately continuous maps, especially when expressed as
functional maps in the reduced basis. It would also be interesting
to explore other functionals on persistence diagrams both in shape
analysis and in the more broad data analysis applications, for ex-
ample on images or graphs. Moreover, our functional map improve-
ment procedure is not well-adapted to partial shapes and it would be
interesting to see how it can be used jointly with objectives such as
promoting bijectivity or partiality, or with existing approaches that
promote continuity of pointwise maps, e.g. [MCSK∗17, VLR∗17].
In addition, it would be interesting to study questions of conver-
gence of our optimization problems, depending on the choice and
size of the basis, as well as stability with respect to changes in the
shape, taking advantage of the theoretical stability guarantees avail-
able for persistence diagrams.

Finally, we believe that the interaction between topological data
analysis techniques, including persistence diagrams, with function-
based approaches, including the functional maps framework, is a
very fruitful and largely unexplored area for future work in general.

Acknowledgements The authors would like to thank Frederic
Chazal for helpful discussions. Parts of this work were supported
by the Jean Marjoulet chair from Ecole Polytechnique, a Google
Focused Research Award, ERC Starting Grant No. 758800 (EX-
PROTEA), ARRS project N1-0058 (TOPREP) and H2020-MSCA-
RISE-2015-6911 (RENOIR).

References

[AGH∗09] ATTALI D., GLISSE M., HORNUS S., LAZARUS F., MORO-
ZOV D.: Persistence-sensitive simplification of functions on surfaces in
linear time. Presented at TOPOINVIS 9 (2009), 23–24. 2

[ASC11] AUBRY M., SCHLICKEWEI U., CREMERS D.: The Wave Ker-
nel Signature: A Quantum Mechanical Approach to Shape Analysis. In
Proc. ICCV Workshops (2011), IEEE, pp. 1626–1633. 10

[ASK∗05] ANGUELOV D., SRINIVASAN P., KOLLER D., THRUN S.,
RODGERS J., DAVIS J.: SCAPE: Shape Completion and Animation of
People. In ACM Transactions on Graphics (TOG) (2005), vol. 24, ACM,
pp. 408–416. 9

[BCBB16] BIASOTTI S., CERRI A., BRONSTEIN A., BRONSTEIN M.:
Recent trends, applications, and perspectives in 3d shape similarity as-
sessment. In Comp. Graph. Forum (2016), vol. 35, pp. 87–119. 1

[BDM15] BOISSONNAT J.-D., DEY T. K., MARIA C.: The compressed
annotation matrix: An efficient data structure for computing persistent
cohomology. Algorithmica 73, 3 (2015), 607–619. 4

[BLW12] BAUER U., LANGE C., WARDETZKY M.: Optimal topologi-
cal simplification of discrete functions on surfaces. Discrete & Compu-
tational Geometry 47, 2 (2012), 347–377. 2

[BRLB14] BOGO F., ROMERO J., LOPER M., BLACK M. J.: FAUST:
Dataset and Evaluation for 3d Mesh Registration. In Proc. CVPR (2014),
pp. 3794–3801. 9, 10

[Car09] CARLSSON G.: Topology and data. Bulletin of the AMS 46, 2
(2009), 255–308. 1, 3

[CCL03] CAZALS F., CHAZAL F., LEWINER T.: Molecular shape anal-
ysis based upon the morse-smale complex and the connolly function. In
Proceedings of the nineteenth annual symposium on Computational ge-
ometry (2003), ACM, pp. 351–360. 2

[CCSG∗09] CHAZAL F., COHEN-STEINER D., GLISSE M., GUIBAS
L. J., OUDOT S. Y.: Proximity of persistence modules and their dia-
grams. In Proceedings of the twenty-fifth annual symposium on Compu-
tational geometry (2009), ACM, pp. 237–246. 1, 3, 7

[CK13] CHEN C., KERBER M.: An output-sensitive algorithm for per-
sistent homology. Computational Geometry 46, 4 (2013), 435–447. 1

[CSEH07] COHEN-STEINER D., EDELSBRUNNER H., HARER J.: Sta-
bility of persistence diagrams. Discrete & Computational Geometry 37,
1 (2007), 103–120. 1, 3, 4, 5, 7

[CSEM06] COHEN-STEINER D., EDELSBRUNNER H., MOROZOV D.:
Vines and vineyards by updating persistence in linear time. In Proceed-
ings of the twenty-second annual symposium on Computational geometry
(2006), ACM, pp. 119–126. 2

[Cut13] CUTURI M.: Sinkhorn distances: Lightspeed computation of op-
timal transport. In Advances in neural information processing systems
(2013), pp. 2292–2300. 2

[CW17] CANG Z., WEI G.: Topologynet: Topology based deep convolu-
tional and multi-task neural networks for biomolecular property predic-
tions. PLOS Computational Biology 13, 7 (2017), e1005690. 2

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



A. Poulenard, P. Skraba, M. Ovsjanikov / Topological Function Optimization

[CZCG05] CARLSSON G., ZOMORODIAN A., COLLINS A., GUIBAS
L. J.: Persistence barcodes for shapes. International Journal of Shape
Modeling 11, 02 (2005), 149–187. 1, 2, 3, 5

[DLL∗10] DEY T. K., LI K., LUO C., RANJAN P., SAFA I., WANG
Y.: Persistent heat signature for pose-oblivious matching of incomplete
models. In Computer Graphics Forum (2010), vol. 29, Wiley Online
Library, pp. 1545–1554. 2

[EBC17] EZUZ D., BEN-CHEN M.: Deblurring and denoising of maps
between shapes. In Computer Graphics Forum (2017), vol. 36, Wiley
Online Library, pp. 165–174. 2

[EH10] EDELSBRUNNER H., HARER J.: Computational topology: an
introduction. American Mathematical Soc., 2010. 2, 3

[EHZ01] EDELSBRUNNER H., HARER J., ZOMORODIAN A.: Hierarchi-
cal morse complexes for piecewise linear 2-manifolds. In Proceedings of
the seventeenth annual symposium on Computational geometry (2001),
ACM, pp. 70–79. 2

[ELZ00] EDELSBRUNNER H., LETSCHER D., ZOMORODIAN A.: Topo-
logical persistence and simplification. In Foundations of Computer
Science, 2000. Proceedings. 41st Annual Symposium on (2000), IEEE,
pp. 454–463. 2, 4

[GBCB16] GOODFELLOW I., BENGIO Y., COURVILLE A., BENGIO Y.:
Deep learning, vol. 1. MIT press Cambridge, 2016. 4

[GHO16] GAMEIRO M., HIRAOKA Y., OBAYASHI I.: Continuation of
point clouds via persistence diagrams. Physica D: Nonlinear Phenomena
334 (2016), 118–132. 2

[HO17] HUANG R., OVSJANIKOV M.: Adjoint map representation for
shape analysis and matching. In Computer Graphics Forum (2017),
vol. 36, Wiley Online Library, pp. 151–163. 2

[KBBV15] KOVNATSKY A., BRONSTEIN M. M., BRESSON X., VAN-
DERGHEYNST P.: Functional correspondence by matrix completion. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (2015), pp. 905–914. 2, 6

[KLF11] KIM V. G., LIPMAN Y., FUNKHOUSER T.: Blended Intrinsic
Maps. In ACM Transactions on Graphics (TOG) (2011), vol. 30, ACM,
p. 79. 10

[LJY16] LIU J.-Y., JENG S.-K., YANG Y.-H.: Applying topological per-
sistence in convolutional neural network for music audio signals. arXiv
preprint arXiv:1608.07373 (2016). 2

[LOC14] LI C., OVSJANIKOV M., CHAZAL F.: Persistence-based struc-
tural recognition. In Proc. CVPR (2014), pp. 1995–2002. 1, 4

[LRB∗16] LITANY O., RODOLÀ E., BRONSTEIN A. M., BRONSTEIN
M. M., CREMERS D.: Non-rigid puzzles. In Computer Graphics Forum
(2016), vol. 35, pp. 135–143. 2, 6

[LRBB17] LITANY O., RODOLÀ E., BRONSTEIN A. M., BRONSTEIN
M. M.: Fully spectral partial shape matching. Computer Graphics Fo-
rum 36, 2 (2017), 247–258. 2

[MCSK∗17] MANDAD M., COHEN-STEINER D., KOBBELT L., AL-
LIEZ P., DESBRUN M.: Variance-minimizing transport plans for inter-
surface mapping. ACM Trans. on Graph. 36 (2017), 14. 2, 10, 11

[MDSB03] MEYER M., DESBRUN M., SCHRÖDER P., BARR A. H.:
Discrete Differential-Geometry Operators for Triangulated 2-Manifolds.
In Visualization and mathematics III. Springer, 2003, pp. 35–57. 8

[MMS11] MILOSAVLJEVIĆ N., MOROZOV D., SKRABA P.: Zigzag per-
sistent homology in matrix multiplication time. In Proceedings of the
twenty-seventh annual symposium on Computational geometry (2011),
ACM, pp. 216–225. 1

[NMR∗18] NOGNENG D., MELZI S., RODOLÀ E., CASTELLANI U.,
BRONSTEIN M., OVSJANIKOV M.: Improved functional mappings via
product preservation. In Computer Graphics Forum (2018), vol. 37. 2

[NO17] NOGNENG D., OVSJANIKOV M.: Informative descriptor preser-
vation via commutativity for shape matching. Computer Graphics Forum
36, 2 (2017), 259–267. 2, 7, 10

[OBCS∗12] OVSJANIKOV M., BEN-CHEN M., SOLOMON J.,
BUTSCHER A., GUIBAS L.: Functional Maps: A Flexible Repre-
sentation of Maps Between Shapes. ACM Transactions on Graphics
(TOG) 31, 4 (2012), 30. 1, 2, 6, 7, 9, 10

[OCB∗17] OVSJANIKOV M., CORMAN E., BRONSTEIN M., RODOLÀ
E., BEN-CHEN M., GUIBAS L., CHAZAL F., BRONSTEIN A.: Com-
puting and processing correspondences with functional maps. In ACM
SIGGRAPH 2017 Courses (2017), pp. 5:1–5:62. 1, 2, 6

[OPT∗17] OTTER N., PORTER M. A., TILLMANN U., GRINDROD P.,
HARRINGTON H. A.: A roadmap for the computation of persistent ho-
mology. EPJ Data Science 6, 1 (2017), 17. 4

[PP93] PINKALL U., POLTHIER K.: Computing Discrete Minimal Sur-
faces and their Conjugates. Experimental mathematics 2, 1 (1993), 15–
36. 8

[RCB∗17] RODOLÀ E., COSMO L., BRONSTEIN M. M., TORSELLO
A., CREMERS D.: Partial functional correspondence. In Computer
Graphics Forum (2017), vol. 36, pp. 222–236. 2

[ROA∗13] RUSTAMOV R. M., OVSJANIKOV M., AZENCOT O., BEN-
CHEN M., CHAZAL F., GUIBAS L.: Map-based exploration of intrinsic
shape differences and variability. ACM Transactions on Graphics (TOG)
32, 4 (2013), 72. 2

[SDGP∗15] SOLOMON J., DE GOES F., PEYRÉ G., CUTURI M.,
BUTSCHER A., NGUYEN A., DU T., GUIBAS L.: Convolutional
wasserstein distances: Efficient optimal transportation on geometric do-
mains. ACM Transactions on Graphics (TOG) 34, 4 (2015), 66. 2

[SM93] SINGH R. K., MANHAS J. S.: Composition Operators on Func-
tion Spaces, vol. 179. Elsevier, 1993. 13

[SOCG10] SKRABA P., OVSJANIKOV M., CHAZAL F., GUIBAS L.:
Persistence-based segmentation of deformable shapes. In Computer Vi-
sion and Pattern Recognition Workshops (CVPRW), 2010 IEEE Com-
puter Society Conference on (2010), IEEE, pp. 45–52. 1, 2, 4

[SOG09] SUN J., OVSJANIKOV M., GUIBAS L.: A Concise and Prov-
ably Informative Multi-Scale Signature Based on Heat Diffusion. In
Computer graphics forum (2009), vol. 28, pp. 1383–1392. 9

[SPKS16] SOLOMON J., PEYRÉ G., KIM V. G., SRA S.: Entropic metric
alignment for correspondence problems. ACM Transactions on Graphics
(TOG) 35, 4 (2016), 72. 2

[STY17] SKRABA P., THOPPE G., YOGESHWARAN D.: Randomly
weighted d− complexes: Minimal spanning acycles and persistence di-
agrams. arXiv preprint arXiv:1701.00239 (2017). 2

[Tan55] TANAKA T.: On the family of connected subsets and the topol-
ogy of spaces. Journal of the Mathematical Society of Japan 7, 4 (1955),
389–393. 13

[TCL∗13] TAM G. K., CHENG Z.-Q., LAI Y.-K., LANGBEIN F. C., LIU
Y., MARSHALL D., MARTIN R. R., SUN X.-F., ROSIN P. L.: Regis-
tration of 3D point clouds and meshes: a survey from rigid to nonrigid.
IEEE TVCG 19, 7 (2013), 1199–1217. 1

[VKZHCO11] VAN KAICK O., ZHANG H., HAMARNEH G., COHEN-
OR D.: A survey on shape correspondence. In Computer Graphics
Forum (2011), vol. 30, pp. 1681–1707. 1

[VLB∗17] VESTNER M., LÄHNER Z., BOYARSKI A., LITANY O.,
SLOSSBERG R., REMEZ T., RODOLA E., BRONSTEIN A., BRONSTEIN
M., KIMMEL R., CREMERS D.: Efficient deformable shape correspon-
dence via kernel matching. In Proc. 3DV (2017). 2

[VLR∗17] VESTNER M., LITMAN R., RODOLÀ E., BRONSTEIN A.,
CREMERS D.: Product manifold filter: Non-rigid shape correspondence
via kernel density estimation in the product space. In Proc. CVPR (2017),
pp. 6681–6690. 2, 10, 11

[WZWW17] WU K., ZHAO Z., WANG R., WEI G.-W.: Topp-s: Persis-
tent homology based multi-task deep neural networks for simultaneous
predictions of partition coefficient and aqueous solubility. arXiv preprint
arXiv:1801.01558 (2017). 2

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



A. Poulenard, P. Skraba, M. Ovsjanikov / Topological Function Optimization

Appendix A: Proof of Lemma 1

As all critical points in a super-level set filtration occur at vertex
values, there must be a unique vertex v corresponding to each ho-
mological critical value (i.e. any function value where the topology
changes). Since the coordinates of each point in the persistence di-
agram correspond to a critical value the map π(bi,di) = (vb,vd) is
unique.

Appendix B: Proof of Lemma 2

Let ε denote the minimum separation between vertex function val-
ues. First note that by the assumption of distinct function values,
there is a total ordering on the vertices. For any function within a
ε/2 ball, i.e.

| f (x)− f ′(x)|< ε/2 ∀x ∈M

this ordering remains the unchanged. This immediately implies that
the map η from each simplex to a vertex is constant in this neigh-
borhood.

We first formally define the δ-neighborhood of a persistence di-
agram Pf . Recall that by Eq.1, a persistence diagram is a map from
a topological space endowed with a real valued function (X , f ) to a
multi-set of points. Note that the map is completely determined by
the space and the function. Therefore, we define a δ-neighborhood
of Pf as all Pg of the form (X ,g) such that || f −g||∞.

We next show that ζ is constant in a small enough neighborhood.
Although ζ is defined per point in the diagram, this induces a map
from a diagram to some collection of simplicies in the space. If the
map is constant per point, it is constant in the neighborhood defined
above.

In an upper-star filtration, the total ordering on the vertices can
also be extended to the remaining simplices. Each vertex v has a set
of simplices for which it determines the function value when the
simplex enters the filtration. This is given by the preimage η

−1(v).
Generically, the preimages are disjoint sets of simplices, i.e. no sim-
plex maps to two vertices. As η is constant in some neighborhood,
this implies that the map ζ can also be chosen so that it is constant in
this neighborhood. Each preimage can be extended to a total order
independently. As the sets of preimages do not change, this exten-
sion can be kept constant. Finally, we note that the composition of
two constant maps is again constant completing the proof.

Appendix C: Proof of Lemma 3

Assuming generic Pf and Pg all pairwise distances between points
in Pf and Pg are unique. This implies that the maximum of any
matching is unique. This proves the first part of the lemma. As the
values are distinct, it follows that there exists a neighborhood such
that the pair of points achieving the maximum is constant. Finally,
the continuity of persistence diagrams implies that any point which
is sufficiently close to to the diagonal cannot achieve the bottleneck
distance and so cannot change the matching.

Appendix D: Proof of Theorem 1

Given a continuous bijection between two topological spaces, the
induced pull-back of real-valued functions must clearly preserve

products of functions. Similarly it must preserve persistence dia-
grams of real-valued functions since both the topological structure
of the space and function values are preserved.

Conversely, consider any invertible linear functional map TF . It
is well-known that if TF preserves pointwise products of functions,
then it must correspond to a pull-back by a point-to-point map (e.g.
corollary 2.1.14 in [SM93]). Moreover, since TF is invertible, its
inverse must also satisfy this property, meaning that the underlying
point-to-point map is a bijection.

Finally, by assumption both TF and its inverse preserve persis-
tence diagrams of real-valued functions. Now, consider an indicator
function of a region. By definition, its persistence diagram will have
a unique local maximum, if and only if the region is connected.
Thus preservation of persistence diagrams implies that the underly-
ing point-to-point correspondence (and its inverse) maps connected
regions to connected regions. Finally, a bijective map between two
topological spaces is continuous if and only if both it and its inverse
map connected sets to connected sets (see e.g. [Tan55]).
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