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Abstract

Feature-based methods have recently gained popularity
in computer vision and pattern recognition communities, in
applications such as object recognition and image retrieval.
In this paper, we explore analogous approaches in the 3D
world applied to the problem of non-rigid shape search and
retrieval in large databases.

1. Introduction

Large databases of 3D models available in the public do-
main have created the demand for shape search and retrieval
algorithms capable of finding similar shapes in the same
way a search engine responds to text queries. Since many
shapes manifest rich variability, shape retrieval is often re-
quired to be invariant to different classes of transformations
and shape variations. One of the most challenging settings
is the case of non-rigid or deformable shapes, in which the
class of transformations may be very wide due to the capa-
bility of such shapes to bend and assume different forms.

An analogous problem in the image domain is image
retrieval, the problem of finding images depicting similar
scenes or objects. Images, as well as three-dimensional
shapes, may manifest significant variability and the big
challenge is to create retrieval techniques that would be in-
sensitive to such changes, at the same time providing suffi-
cient discrimination power to distinguish between different
shapes. In the computer vision and pattern recognition com-
munities, feature-based methods have recently gained pop-
ularity with the introduction of the scale invariant feature
transform (SIFT) [13] and similar algorithms [16, 1]. The
ability of these methods to demonstrate sufficiently good
performance in many problems such as object recognition

and image retrieval and the public availability of code made
SIFT-like approaches a commodity and de facto standard.

One of the advantages of feature-based approaches in
image retrieval problems is that they allow to think of im-
ages as a collection of primitive elements (visual “words”),
and hence use the well-developed methods from text search.
One of the best implementations that manifest the use of
these ideas is Video Google,' a web application for object
search in large collection of images and videos developed in
Oxford university by Zisserman and collaborators [30, 6],
named this way appealing to the analogy with the famous
text search engine. Video Google makes use of feature de-
tectors and descriptors to represent an image as a collection
of visual words indexed in a “visual vocabulary.” Count-
ing the frequency of the visual word occurrence in the im-
age, a representation referred to as “bag of features” is con-
structed. Images containing similar visual information tend
to have similar bags of features, and thus comparing bags
of features allows one to retrieve similar images. Such a
method is suitable for indexing and searching very large
(Internet-scale) databases of images.

While very popular in computer vision, feature-based
approaches are less known and used in the shape analysis
community. The first reason is the lack of efficient and
robust feature descriptors similar to SIFT to be so ubiqui-
tously adopted. One of the important properties of SIFT
is its discriminativity combined with robustness to differ-
ent image transformations. While several works proposed
feature-based approaches for rigid shapes [22, 11, 15,7, 9],
very few are capable of dealing with non-rigid shape defor-
mations [19, 24, 3, 34]. Secondly, shapes are usually poorer
in features compared to images, and thus descriptors are less
discriminative.

IThe Oxford Video Google project is not affiliated with the company
Google, Inc.



In this paper, we bring the spirit of feature-based com-
puter vision approaches to the problem of non-rigid shape
search and retrieval. We employ a multi-scale feature de-
scriptor recently proposed by Sun et al. [32] that is based
on the heat kernel on the shape, which is invariant to iso-
metric deformations, robust under topological changes, and
is provably informative. Heat kernels are intimately related
to diffusion geometry [8] and spectral methods for shape
analysis, notably the works of Reuter et al. [27, 26, 25] and
Rustamov [28]. Secondly, we show that taking into consid-
eration the spatial relations between features in an approach
similar to commute graphs [2] has a greater importance in
shapes than in images and allows one to significantly im-
prove the retrieval performance.

The rest of this paper is organized as follows. In Sec-
tion 2, we start with a brief overview of feature-based
approaches in computer vision, focusing on methods em-
ployed in Video Google. In Section 3, we formulate a simi-
lar approach for shapes. We adapt the method of [32] based
on heat kernels of the Laplace-Beltrami operator to define
robust and informative feature descriptors. Section 4 shows
experimental results. Finally, section 5 concludes the paper.

2. Feature-based methods in computer vision

The construction of a feature-based representation of an
image typically consists of two stages, feature detection and
feature description, often combined into a single algorithm.
The main goal of a feature detector is to find stable points or
regions in an image that carry significant information on one
hand and can be repeatedly found in transformed versions
of the image on the other. Since there is no clear definition
of what is a feature, different approaches can be employed.
For example, in the SIFT method, feature points are located
by looking for local maxima of the discrete image Lapla-
cian at different scales [13]. Maximum stable extremal re-
gion (MSER) algorithm finds level sets in the image which
exhibit the smallest variation of area when traversing the
level-set graph [16]. Finally, it is possible to select all the
points in the image or a regular subsampling thereof as the
set of features (in the latter case, the detector is usually re-
ferred to as dense [33]).

The next stage is feature description. A feature descrip-
tor uses a representation of local image information in the
neighborhood of the feature points. For example, SIFT as-
signs to each feature point a 128-dimensional descriptor
vector constructed as local histograms of image gradient
orientations around the point. The descriptor itself is ori-
ented by the dominant gradient direction, which makes it
rotation-invariant [13]. A similar approach, speeded up ro-
bust feature (SURF) transform [1], uses a 64-dimensional
descriptor, computed efficiently using integral images. At
this stage, the image can be compactly represented by spec-
ifying the spatial coordinates of the detected feature points

together with the corresponding descriptors, which can be
presented as vectors.

In order to reduce the representation size, a vocabulary
is constructed by performing vector quantization in the de-
scriptor space via e.g. k-means [30], approximate k-means
[23] or hierarchical k-means [20]. After the quantization
step, individual descriptors can be replaced by indices in
the vocabulary representing visual “words”. Typical vo-
cabulary size can vary from a few thousand [30] up to one
million words [6]. Aggregating all the indices into a his-
togram counting the frequency of appearance of each visual
word, the bag of features (sometimes also called bag of vi-
sual terms or bag of visterms) is constructed.

Two shapes can be compared this way by comparing
their bags of features. Thus, the shape similarity problem
is reduced to the problem of comparing vectors of feature
frequency. Typically, weighted correlation or weighted Eu-
clidean distance is used to measure similarity of bags of fea-
tures [30, 6]. More recently, Behmo ez al. [2] proposed a
generalization of bags of features that takes into consider-
ation the spatial relations features in the image (which is
otherwise lost in traditional bags of features), represented
as commute time between visually-similar features.

3. Feature-based approaches in shapes

Trying to adapt feature-based approached to 3D shapes,
one needs to have the following in mind. First, the type of
invariance in non-rigid shapes is different from one required
in images. Typically, feature detectors and descriptors in
images are made invariant to affine transformations, which
account for different possible views of an object captured
in the image. In case of non-rigid shapes, many natural
deformations can be approximated by isometries, and thus
basing the shape descriptors on intrinsic properties of the
shape will make it insensitive to such deformations. Sec-
ond, shapes are typically less rich in features than images.
This has a two-fold implication: it is harder to detect a large
number of stable and repeatable feature points, and spatial
relations between features may play a more significant role
than in images.

3.1. Heat kernels

Recent works [28, 21, 17, 14, 5] suggest using the diffu-
sion geometry for shape recognition. This type of geometry
arises from the heat equation,

0
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which governs the conduction of heat u on the surface X
(here, A x denotes the Laplace-Beltrami operator, a gener-
alization of the Laplacian to non-Euclidean domains). The
fundamental solution K(z, y) of the heat equation (1), also



called heat kernel, is the solution of the heat equation with
point heat source at x (see Figure 1). Similarly to the
Laplace-Beltrami operator, the heat kernel is an intrinsic
property of X and is invariant under isometric deformations
of X [8].

For compact manifolds, the Laplace-Beltrami operator
has discrete eigendecomposition of the form

Axd; = Ny, 2

where Ao, A1, ... are eigenvalues and ¢q, ¢1, ... are eigen-
functions. Using these, the heat kernel can be written in the
following form: [10]
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3.2. Feature descriptors: Heat Kernel Signatures

As feature descriptors, we use the heat kernel signatures
(HKS), introduced by Sun et al. [32]. These signatures have
been shown to be robust and multi-scale, and to possess dis-
criminative power to distinguish between different points on
shapes. The HKS of a point can also be compactly repre-
sented as a vector, and signatures of different points are nat-
urally commensurable. For each point x on the shape, its
heat kernel signature is an n-dimensional descriptor vector
p(z) = (p1(2),. .., pn(x))T whose elements are

pi(z) = c(x)Kyi-1g, (2, ). 4)

We select the constant ¢(z) in such a way that ||p(z)|2 = 1
(Figures 1-3).

Although in [32] Sun et al. alluded to the possibility of
using the set of heat kernel signatures as shape descriptors,
they did not show how to compare shapes using HKS. In the
following, we carry out this construction in detail, by defin-
ing compact shape descriptors based on HKS and showing
how they can be used for shape retrieval.

3.3. Bags of features

Similarly to feature-based approaches in computer vi-
sion, our next step is to quantize the descriptor space in
order to obtain a compact representation in a vocabulary
of “geometric words”. A vocabulary P = {p;,...,py}
of size V is a set of representative vectors in the descriptor
space, obtained by means of unsupervised learning (vector
quantization) using the k-means algorithm. Larger vocab-
ulary size provides higher discriminative power at the ex-
pense of increase in storage and processing time.

Given a vocabulary P, for each point x € X with the
descriptor p(x), we define the feature distribution 6(x) =
(01(x),...,0v(x))T,aV x 1 vector whose elements are
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Figure 1. Values of K¢ (x, z) mapped on the shape (left) and values
of K¢(x,y) for three different choices of y on man’s side, hand,
and leg (three rightmost figures). The value ¢ = 1024 is used.
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Figure 2. La-normalized three-dimensional projection of the de-
scriptor visualized using RGB color code. The hue at each point
represents the projected descriptor vector.
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isometries topology

Figure 3. An RGB visualization of the Ls-normalized three-
dimensional projection of the descriptor. Four leftmost shapes are
approximately isometric, and the descriptor appears to be invari-
ant to these deformations. The rightmost shape is a topological
deformation of the fourth isometry. Note that though the descrip-
tor changes in the place of the topological change, the discrepancy
is localized.

and the constant c(z) is selected in such a way that
[16(x)][1 = 1. ;(x) can be interpreted as the probability
of the point x to be associated with the descriptor p; from
the vocabulary P.

Equation (5) can be interpreted as a “soft” version of vec-
tor quantization. Hard vector quantization is obtained as a



particular case of (5) by choosing ¢ ~ 0, in which case
0;(x) = 1 (where i is the index of the vocabulary element
p; closest to p in the descriptor space) and zero otherwise.
In our experiments, we found empirically that the best per-
formance is achieved when o is set to twice the median dis-
tance between the cluster centers py, ..., Py-

Integrating the feature distribution over the entire shape

X yieldsa V' x 1 vector
/ 0(z)da(z), (6)
X

which we refer to as a bag of features (or BoF for short).
Using this representation, we can define a distance between
two shapes X and Y as a distance between bags of features
inRY, e.g., the L; distance

dBoF(X, Y) = ||f(X) - f(Y)”l (7)
An example of bags of features using a vocabulary of size
64 is shown in Figure 4.

3.4. Spatially-sensitive bags of features

The disadvantage of bags of features is the fact that they
consider only the distribution of the words and lose the rela-
tions between them. Resorting again to a text search exam-
ple, in a document about matrix decomposition the words
“matrix” and “decomposition” are frequent. Yet, a docu-
ment about the movie Matrix mentioning decomposition of
organic matter will also contain these words, while being
clearly irrelevant. If we search documents about matrix de-
composition based only on word frequency (bags of words),
we may get irrelevant results. In order to overcome this
problem, search engines commonly use vocabularies con-
sisting not only of single words but also of combinations of
words or expressions.

In case of shapes, the phenomenon may be even more
pronounced, as shapes, being poorer in features, tend to
have many similar geometric words. The analogy of expres-
sions in shapes would be spatially-close geometric words.
Instead of looking at the frequency of individual geomet-
ric words, we look at the frequency of word pairs, thus ac-
counting not only for the frequency but also for the spatial
relations between features. For this purpose, we define the
following generalization of a bag of features, referred to as
spatially-sensitive bags of features (SS-BoF):

FOO = [ 0@ () Ki(e)da(w)day). 8)
XxX

The resulting representation F is a V' x V matrix, repre-

senting the frequency of appearance of nearby geometric

words or “geometric expressions” ¢, j. It can be considered

as a bag of features in a vocabulary of size V2 consisting of
pairs of words. When hard quantization is used (the vectors

Figure 5. Examples of shapes from the TOSCA and Sumner
datasets used as positives.

0 are binary), the element f;; would be large if the words i
and j are spatially close to each other on X (the heat kernel
between words ¢ and j is large). f;; can also be interpreted
as the proximity of the words ¢, j in the descriptor space and
on the surface X, which is similar to the spirit of Behmo er
al. [2].

We define a distance between two shapes X and Y as a
distance between F(X) and F(Y'), e.g., the L; distance:
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ZZ\Fij(X>—Fij<Y)|. ©)

dss—Bor(X,Y)

4. Results

In order to assess our method, we performed shape re-
trieval experiments. The goal of the experiments was to
retrieve shapes from a large database containing deformed
instances of the query shapes (positives) as well as other
different shapes (negatives).

We used shapes from the TOSCA [4], Sumner [31] and
Princeton [29] datasets. Shapes from TOSCA and Sum-
ner datasets (Figure 5) were used as positives in our experi-
ments, whereas shapes from the Princeton dataset (Figure 6)
were used as negatives. All the shapes were normalized to
have approximately the same scale.
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Figure 6. Examples of shapes from the Princeton dataset used as
negatives.
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Figure 4. Examples of bags of features computed for different deformations of centaur (dotted red), dog (blue), and human (dashed
magenta). Each curve represents the bag of features vector (f1, ..., fv/) with V' = 64. Note the similarity of bags of features of different
transformations and dissimilarity of bags of features of different shapes. Also note the overlap between the centaur and human bags of

features due to partial similarity of these shapes.
wi
\
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Figure 7. Examples of different transformations of shapes in the
positives set.

The TOSCA dataset consisted of 7 shape classes (cen-
taur, horse, two males, female, cat, and dog). In each
class, the shape underwent different types of transforma-
tions. The transformations included null (no transforma-
tion), isometry topology (connectivity change obtained by
welding some of the shape vertices), isometry+topology,
triangulation (different meshing of the same shape), and
partiality (missing information, obtained by making holes
and cutting parts off the shape). Multiple instances of each
transformation were created for each shape class (Figure 7).
Sumner’s dataset consisted of 6 shapes classes (camel, cat,
elephant, flamingo, horse, lion). The same transformations
as in the TOSCA dataset were applied. The total positives
set size was 531 shapes. The Princeton dataset contained

Table 1. Shape retrieval performance under different classes of
transformations using bags of features with vocabulary of size 48.

FPR FPR

Transformation EER  @FNR=1% @FNR=0.1%
Null 0.97% 0.90% 6.47%
Isometry 1.34% 1.56% 11.13%
Topology 1.12% 2.49% 14.41%
Isometry+Topology  1.81% 2.38% 13.90%
Triangulation 2.29% 4.26% 14.66%
Partiality 3.81% 5.68% 17.28%
All 1.44% 1.79% 11.09%

456 shapes; shapes of the classes contained in the positives
set were excluded.

Table 2. Shape retrieval performance under different classes of
transformations using space-sensitive bags of features with vocab-
ulary of size 48.

FPR FPR
Transformation EER  @FNR=1% @FNR=0.1%
Null 0.58% 0.33% 1.98%
Isometry 1.00% 1.07% 6.16%
Topology 1.12% 1.67% 4.77%
Isometry+Topology  1.41% 2.14% 6.80%
Triangulation 2.11% 3.43% 8.57%
Partiality 3.70% 6.19% 8.52%
All 1.12% 1.22% 5.60%

The retrieval quality was quantitatively measured by
using the receiver operating characteristic (ROC) curve,



Table 3. Shape retrieval performance using Reuter’s Shape DNA
[27] with 100 eigenvalues.

FPR FPR
Transformation EER  @FNR=1% @FNR=0.1%
Null 4.63% 13.68% 17.32%
Isometry 4.06% 9.82% 14.87%
Topology 4.13% 5.10% 5.65%
Isometry+topology  4.11% 9.89% 14.63%
Triangulation 7.06% 12.33% 15.26%
Partiality 8.46% 9.97% 12.97%
All 3.98% 9.25% 13.82%

representing a tradeoff between the percentage of similar
shapes correctly identified as similar (true positives rate or
TPR) and the percentage of dissimilar shapes wrongfully
identified as similar (false positive rate or FPR).

Related terms are the false negative rate (FNR) — the per-
centage of similar shapes wrongfully identified as dissimilar
and equal error rate (EER) — the value of FPR at which it
equals FNR. In order to quantify the recognition accuracy
by a single number, we used the following three criteria:
EER, FPR at 1% FNR, and FPR at 0.1% FNR.

In the first experiment, we selected the positive shapes
in one of the six transformation categories as the query set,
and left the remaining transformation categories from the
positives set (with the query transformation type excluded)
together with the negatives as the database® This allowed to
quantify the retrieval accuracy for each category of transfor-
mations. To evaluate the overall performance, all the posi-
tives were used to query the database comprising all posi-
tives and negatives (with the query shape excluded).

We used bags of features and spatially-sensitive bags of
features. In both cases, for the computation of heat kernel
signatures, we used o) = 1024 and o = 1.32. A vocabu-
lary of size 48 was used. The soft quantization parameter
o was set to twice the median size of the clusters in the ge-
ometric vocabulary. The L; distance was used to compare
between bags of features and spatially-sensitive bags of fea-
tures. Heat kernels were approximated taking the sum over
the first 200 eigenfunctions in formula (3). Eigenfunctions
and eigenvalues were computed by solving a generalized
eigendecomposition problem as in [12]. Dirichlet bound-
ary conditions were used. Cotangent weights [18] were
used to discretize the Laplace-Beltrami operator on trian-
gular meshes.

EER, FPR at 1% FNR, and FPR at 0.1% FNR for both

2For example, for transformation class “Isometry”, all the isometric
deformations of a cat are included in the query set and all the rest of the
transformations are part of the database. Correct matches are considered
between any instances of the cat, e.g. a match between a deformed and
partially missing cat is considered correct.
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Figure 8. ROC curves (true positives vs false positives rate) for
different classes of shape transformations using bags of features.
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Figure 9. ROC curves (true positives vs false positives rate) for
different classes of shape transformations using spatially-sensitive
bags of features.

methods are summarized in Tables | and 2. Figures 8 and
9 depict the ROC curves of both methods for each class of
transformations. Spatially-sensitive bags of features show
superior performance.

Figure 11 visualizes a few examples of retrieved shapes,
ordered by relevance, which is inversely proportional to the
distance from the query shape. Observe that the first five
closest matches all belong to the same shape class. Less
relevant matches (above 35th) while being most of the time
irrelevant in the strict sense, still exhibit meaningful similar-
ity. For example, a centaur is matched to a horse (first row),
a man to a woman (second row), and a camel to a horse
(sixth row). Less meaningful matches are also present in



some cases, e.g., a dog is matched to a man (third row), and
a flamingo to a cat (seventh row).

As a reference, we compared our method to Reuter’s
Shape DNA [27, 26, 25], in which shapes were described
by the vector of the first 100 eigenvalues of the Laplace-
Beltrami operator,3 and the Euclidean distance were used to
compare between the vectors. Retrieval performance of this
method in terms of EER, FPR at 1% FNR, and FPR at 0.1%
FNR is summarized in Table 3. Figure 10 depicts the EER
of bags of features, spatially-sensitive bags of features, and
Shape DNA for different classes of transformations. Our
method outperforms the Shape DNA in all cases.
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Figure 10. Shape retrieval performance (in terms of EER) of bags
of features (BoF), spatially-sensitive bags of features (SS-BoF),
and Reuter’s Shape DNA for different classes of transformations.

5. Conclusions

We presented an approach to non-rigid shape retrieval
similar in its spirit to text retrieval methods used in search
engines. We drew analogies with feature-based image rep-
resentations used in the computer vision community to con-
struct shape descriptors that are invariant to a wide class
of transformations on one hand and are discriminative on
the other. Our experiments showed very high accuracy of
recognition in a large database of shapes. In future works,
we intend to explore in depth the analogy of our descriptors
with scale-invariant feature transform (SIFT) in computer
vision. Other applications possible using our approach are
dense correspondence between non-rigid shapes.
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Figure 11. Examples of shape matches obtained using bags of features. Leftmost column: query shapes; five following columns represent
the closest five matches; three following columns represent looser matches. Numbers under each match denote the shape number and the
distance from the query.
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