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Università della Svizzera Italiana
and
LEONIDAS J. GUIBAS and MAKS OVSJANIKOV
Stanford University

The computer vision and pattern recognition communities have recently witnessed a surge of feature-based methods in object recognition and image retrieval
applications. These methods allow representing images as collections of “visual words” and treat them using text search approaches following the “bag of
features” paradigm. In this article, we explore analogous approaches in the 3D world applied to the problem of nonrigid shape retrieval in large databases.
Using multiscale diffusion heat kernels as “geometric words,” we construct compact and informative shape descriptors by means of the “bag of features”
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1. INTRODUCTION

The availability of large public-domain databases of 3D models
such as the Google 3D Warehouse has created the demand for
shape search and retrieval algorithms capable of finding similar
shapes in the same way a search engine responds to text queries.
However, while text search methods are sufficiently developed to
be ubiquitously used, for example, in a Web application, the search
and retrieval of 3D shapes remains a challenging problem. Shape
retrieval based on text metadata (annotations and tags added by
humans) is often not capable of providing the same experience as a
text search engine [Min et al. 2004].

Content-based shape retrieval using the shape itself as a query and
based on the comparison of the geometric and topological properties
of shapes is complicated by the fact that many 3D objects manifest
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rich variability, and shape retrieval must often be invariant under
different classes of transformations. A particularly challenging set-
ting, which we address in this article, is the case of nonrigid or
deformable shapes, which includes a wide range of shape transfor-
mations such as bending and articulated motion.

An analogous problem in the image domain is image retrieval:
the problem of finding images depicting similar scenes or objects.
Similar to 3D shapes, images may manifest significant variabil-
ity (Figure 1), and the aim of a successful retrieval approach is
to be insensitive to such changes while maintaining high discrim-
inative power. Significant advances have been made in designing
efficient image retrieval techniques (see an overview in Veltkamp
and Hagedoorn [2001]), but the majority of 2D retrieval methods
do not immediately generalize to 3D shape retrieval [Tangelder and
Veltkamp 2008].
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Fig. 1. Examples of invariant image (top) and shape (bottom) retrieval.
Shown on the left is a query, and on the right a few examples of desired
correct matches retrieved from a large database. Transformations shown in
image retrieval are viewpoint variation, different illumination, background
variation, occlusion, and partially missing data; in shape retrieval, different
nonrigid shape deformations are shown.

Recently, feature-based methods have gained popularity in the
computer vision and pattern recognition communities with the in-
troduction of the Scale-Invariant Feature Transform (SIFT) [Lowe
2004] and similar algorithms [Matas et al. 2004; Bay et al. 2006].
The ability of these methods to demonstrate sufficiently good per-
formance in many settings, including object recognition and image
retrieval, and the public availability of the code made SIFT-like ap-
proaches a commodity and a de facto standard in a variety of image
analysis tasks.

One of the strengths of feature-based approaches in image re-
trieval is that they allow one to think of an image as a collection
of primitive elements (visual “words”), and use the well-developed
methods from text search such as the “bag of features” paradigm.
One of the best implementations of these ideas is Video Google, a
Web application for object search in large collections of images and
videos developed at Oxford University by Zisserman and collab-
orators [Sivic and Zisserman 2003; Chum et al. 2007], borrowing
its name through an analogy with the famous text search engine.
Video Google makes use of feature detectors and descriptors to rep-
resent an image as a collection of visual words indexed in a “visual
vocabulary.” Each image is compactly encoded into a vector of fre-
quencies of occurrences of visual words, a representation referred to
as a “bag of features.” Images containing similar visual information
tend to have similar bags of features, and thus comparing bags of
features allows retrieving similar images.

Zisserman et al. showed that employing weighting schemes for
bags of features that take into consideration the average occurrence
of visual words in the whole database allows for very accurate re-
trieval [Sivic and Zisserman 2003; Chum et al. 2007]. Since the com-
parison of bags of features usually boils down to finding weighted
correlation between vectors, such a method is suitable for indexing
and searching very large (Internet-scale) databases of images.

In a follow-up work, Grauman et al. [Jain et al. 2008] showed
that an optimal weighting of bags of features can be learned from
examples of similar and dissimilar images using metric learning
approaches [Torralba et al. 2008]. Shakhnarovich [2005] proposed
the similarity-sensitive hashing, which regards metric learning as a
boosted classification problem. This method appeared very efficient
in learning invariance to transformations in the context of video
retrieval [Bronstein et al. 2010c]. In Bronstein et al. [2010e], an
extension of this approach to the multimodal setting was presented.

In Strecha et al. [2010], similarity-sensitive hashing algorithms were
applied to local SIFT descriptors to improve the performance of
feature matching in wide-baseline stereo reconstruction problems.

Behmo et al. [2008] showed that one of the disadvantages of the
bag of features approaches is that they lose information about the
spatial location of features in the image, and proposed the commute
graph representation, which partially preserves the spatial infor-
mation. An extension of this work based on the construction of
vocabularies of spatial relations between features was proposed in
Bronstein and Bronstein [2010a].

The success of feature-based methods in the computer vision
community is the main inspiration for the current article, where we
present a similar paradigm for 3D shapes.

1.1 Related Works in the Shape Analysis Community

Shape retrieval is an established research area with many approaches
and methods. For a detailed recent review, we refer the reader to
Tangelder and Veltkamp [2008]. In rigid shape retrieval, global
descriptors based on volume and area [Zhang and Chen 2001],
wavelets [Paquet et al. 2000], statistical moments [Kazhdan et al.
2003; Novotni and Klein 2003; Tal et al. 2001], self-similarity (sym-
metry) [Kazhdan et al. 2004], and distance distributions [Osada et al.
2002] were used. Methods reducing the 3D shape retrieval to image
retrieval use 2D views [Funkhouser et al. 2003; Chen et al. 2003],
slices [Jiantao et al. 2004], and silhouette and contour descriptors
[Napoléon et al. 2007]. Graph-based methods based on skeletons
[Sundar et al. 2003] and Reeb graphs [Hilaga et al. 2001; Biasotti
et al. 2003; Tung and Schmitt 2005] are capable of dealing with de-
formations, for example, matching articulated shapes. Lipman and
Funkhouser [2009] proposed the Möbius voting scheme for sparse
shape matching.

Isometric shape deformations were first explicitly addressed by
Elad and Kimmel [2001, 2003]. The authors used MultiDimen-
sional Scaling (MDS) [Borg and Groenen 1997; Bronstein et al.
2006] to construct a representation of the intrinsic geometry of
shapes (captured as a matrix of interpoint geodesic distances and
referred to as canonical forms) in a low-dimensional Euclidean
space. A moment-based shape descriptor [Tal et al. 2001] was
then applied to obtain a shape signature. The method of Elad and
Kimmel was extended in Mémoli and Sapiro [2005] and Bron-
stein et al. [2006b, 2006a] to compare shapes as metric spaces us-
ing the Gromov-Hausdorff distance [Gromov 1981], which tries to
find the minimum-distortion correspondence between two shapes.
Numerically, the Gromov-Hausdorff distance computation can be
carried out using a method similar to MDS [Bronstein et al.
2006b] or graph labeling [Torresani et al. 2008; Wang et al.
2010]. In follow-up works, extensions of the Gromov-Hausdorff
distance used diffusion geometries [Bronstein et al. 2010d], dif-
ferent distortion criteria [Mémoli 2007, 2009], local photometric
[Thorstensen and Keriven 2009] and geometric [Dubrovina and
Kimmel 2010; Wang et al. 2010] data, and third-order [Zeng
et al. 2010] distortion terms. While allowing for very accurate
and theoretically isometry-invariant shape comparison, the main
drawback of the Gromov-Hausdorff framework is that it is based
on computationally expensive optimization. As a result, such meth-
ods are mostly suitable for one-to-one or one-to-few shape retrieval
cases, even though there have been recent attempts to overcome this
difficulty using Gromov-Hausdorff stable invariants [Chazal et al.
2009a], which can be computed efficiently in practice.

Reuter et al. [2005, 2009] proposed using Laplace-Beltrami
spectra (eigenvalues) as isometry-invariant shape descriptors. The
authors noted that such descriptors are invariant to isospectral
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Fig. 2. Flow of the ShapeGoogle algorithm.

shape transformations, a family theoretically larger than isometries.
Rustamov [2007] used an isometry-invariant shape embedding sim-
ilar to the eigenmaps proposed in Bérard et al. [1994], Belkin and
Niyogi [2003], and Lafon [2004] to create shape representations in
the Euclidean space similar in spirit to canonical forms. He used
histograms of Euclidean distances (using the approach of Osada
et al. [2002]) in the embedding space to compare the shapes. Shape
similarity based on the comparison of histograms of diffusion dis-
tances were used as by Mahmoudi and Sapiro [2009]. In Bronstein
et al. [2010d] and Bronstein and Bronstein [2009, 2010b], an inti-
mate relation between this method and the methods of Rustamov
[2007] was shown, and Bronstein and Bronstein [2010b] showed
a more general framework of which Mahmoudi and Sapiro [2009]
and Rustamov [2007] are particular cases.

Mémoli [2009] formulated a proper metric between shapes based
on a spectral variant of the Gromov-Wasserstein distance, and
showed that shape similarity measures of Reuter et al. [2005],
Rustamov [2007], and Sun et al. [2009] can be viewed as a hi-
erarchy of lower bounds of this metric.

Local feature-based methods are less common in the shape
analysis community than in computer vision, as there is nothing
equivalent to a robust feature descriptor like SIFT to be univer-
sally adopted. We see a few possible reasons. First, one of the
important properties of SIFT is its discriminativity combined with
robustness to different image transformations. Compared to
images, shapes are usually known to be poorer in features, and thus
descriptors are less informative. Secondly, unlike images where
invariance is usually limited to affine transformations, the degree of
invariance required for shapes is usually much larger and includes
nonrigid and topology-changing deformations.

Feature-based methods have been explored by Pauly et al. [2003]
for nonphotorealistic rendering. The authors detect multiscale ro-
bust contour features (somewhat analogous to edges in images).
A similar approach was proposed in Kolomenkin et al. [2009]. In
Mitra et al. [2010], local features were used to detect shape self-
similarity and grid-like structures. Local moments [Clarenz et al.
2004] and volume descriptors [Gelfand et al. 2005] have been also
proposed for rigid shape retrieval and correspondence. Shilane and
Funkhauser [2006] use a learnable feature detector and descriptor
maximizing the likelihood of correct retrieval, based on spherical
harmonics and surface area relative to the center of mass. Mitra
et al. [2006] proposed a patch-based shape descriptor and showed
its application to shape retrieval and comparison. They also showed
an efficient hashing scheme of such descriptors. An approach sim-
ilar to the one presented in this article was presented in Li et al.
[2006] for rigid shapes.

Relatively few feature-based methods are invariant to isomet-
ric deformations by construction. Raviv et al. [2007] and Bronstein
et al. [2009] used histograms of local geodesic distances to construct
an isometry-invariant local descriptor. In Bronstein et al. [2009],

statistical weighting scheme similar to Sivic and Zisserman [2003]
and Chum et al. [2007] was also used to define point-wise signifi-
cance measure in the problem of partial shape matching. Ben-Chen
et al. [2008] use conformal factors as isometry-invariant local de-
scriptors. Zaharescu et al. [2009] proposed a SIFT-like descriptor
applied to functions defined on manifolds. Sun et al. [2009] in-
troduced deformation-invariant descriptors based on diffusion heat
kernels (referred to as Heat Kernel Signatures or HKS). More re-
cently, a Scale-Invariant modification of these descriptors (SI-HKS)
were constructed in Bronstein and Kokkinos [2010] using local scale
normalization, and a volumetric Heat Kernel Signature (vHKS) was
proposed in Raviv et al. [2010b]. These former two approaches
(HKS and SI-HKS) are adopted here for their discriminativity and
efficient computability.

1.2 Main Contribution

In this article, we bring the spirit of feature-based computer vision
approaches to the problem of nonrigid shape search and retrieval.
By analogy to Zisserman’s group works, we call our method Shape
Google. The present article is an extended version of Ovsjanikov
et al. [2009], where the approach was first introduced. While work-
ing on this article, we discovered that the use of bags of features for
shape representation has been independently developed by Toldo
et al. [2009].

In this article, we first show a feature detector and descriptor
based on heat kernels of the Laplace-Beltrami operator, inspired by
Sun et al. [2009]. Descriptors are used to construct a vocabulary of
geometric words, distributions over which serve as a representation
of a shape. This representation is invariant to isometric deforma-
tions, robust under a wide class of perturbations, and allows one
to compare shapes undergoing different deformations. Second, we
show that taking into consideration the spatial relations between
features in an approach similar to commute graphs [Behmo et al.
2008] allows improving the retrieval performance. Finally, adopt-
ing metric learning techniques widely used in the computer vision
community [Jain et al. 2008], we show how to represent shapes as
compact binary codes that can be efficiently indexed and compared
using the Hamming distance.

Figure 2 depicts a flow diagram of the presented approach. The
shape is represented as a collection of local feature descriptors
(either dense or computed at a set of stable points following an
optional stage of feature detection). The descriptors are then repre-
sented by “geometric words” from a “geometric vocabulary” using
vector quantization, which produces a shape representation as a
bag of geometric words or pairs of words (expressions). Finally,
similarity-sensitive hashing is applied to the bags of features. We
emphasize that the presented approach is generic, and different
descriptor and detectors can be used depending on the application
demands.
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The rest of this article is organized as follows. In Section 2, we
start with a brief overview of feature-based approaches in com-
puter vision, focusing on methods employed in Video Google. In
Section 3, we formulate a similar approach for shapes. We show
how to detect and describe local geometric features. In Section 4, we
describe the construction of bags of geometric words. In Section 5,
we explore metric learning techniques for representing shapes as
short binary codes using Hamming embedding. Section 6 shows
experimental results, and Section 7 concludes.

2. BACKGROUND: FEATURE-BASED METHODS
IN COMPUTER VISION

The construction of a feature-based representation of an image typ-
ically consists of two stages, feature detection and feature descrip-
tion, often combined into a single algorithm. The main goal of a
feature detector is to find stable points or regions in an image that
carry significant information on the one hand and can be repeatedly
found in transformed versions of the image on the other. Since there
is no clear definition of what is a feature, different approaches can
be employed. For example, in the SIFT method, feature points are
located by looking for local maxima of the discrete image Lapla-
cian (approximated as a difference of Gaussians) at different scales.
SIFT uses linear scale-space in order to search for feature points that
appear at multiple resolutions of the image, which also makes the
method scale-invariant [Lowe 2004]. Maximum Stable Extremal
Region (MSER) algorithm finds level sets in the image which ex-
hibit the smallest variation of area when traversing the level-set
graph [Matas et al. 2004; Kimmel et al. 2010]. Finally, it is possi-
ble to select all the points in the image or a regular subsampling
thereof as the set of features (in the latter case, the detector is usually
referred to as dense [Tola et al. 2008]).

The next stage is feature description. A feature descriptor uses a
representation of local image information in the neighborhood of
each feature point. For example, SIFT assigns a 128-dimensional
descriptor vector constructed as local histograms of image gradient
orientations around the point. The descriptor itself is oriented by
the dominant gradient direction, which makes it rotation-invariant
[Lowe 2004]. A similar approach, Speeded Up Robust Feature
(SURF) transform [Bay et al. 2006], uses a 64-dimensional de-
scriptor, computed efficiently using integral images. At this stage,
the image can be compactly represented by specifying the spatial
coordinates of the detected feature points together with the cor-
responding descriptors, which can be presented as vectors. This
information allows, for example, finding correspondence between
images by matching their descriptors [Lowe 2004].

In order to reduce the representation size, a vocabulary is con-
structed by performing vector quantization in the descriptor space.
Descriptors can be replaced by indices in the vocabulary repre-
senting visual “words.” Typical vocabulary size can vary from a
few thousand [Sivic and Zisserman 2003] up to one million words
[Chum et al. 2007]. Aggregating all the indices into a histogram
by counting the frequency of appearance of each visual word, the
bag of features (sometimes also called bag of visual terms or bag of
visterms) is constructed (Figure 3).

After the feature detection and description stages, two images
can be compared by comparing their bags of features. This way, the
image similarity problem is reduced to the problem of comparing
vectors of feature frequencies. Typically, weighted correlation or
weighted Euclidean distance is used to measure similarity of bags
of features. The weights can be chosen in such a way that features
frequent in the query shape (high term frequency) and infrequent in
the entire database (low document frequency) are assigned a large

Fig. 3. Representation of text (left) and images (right) using the bags of
features paradigm.

weight. The weight is expressed as the ratio of the term frequency
and the document frequency (referred to as term-frequency inverse
document frequency or tf-idf in search engine literature). It was
shown in Sivic and Zisserman [2003] and Chum et al. [2007] that
this type of weighted distance is superior to simple, nonweighted,
approach. In Jain et al. [2008], it was shown that an optimal weighted
distance between bags of features on a given database can be learned
by supervised learning from examples of similar and dissimilar
images.

A few recent papers tried to extend bags of features by taking
into consideration spatial information about the features. Marszalek
and Schmid [2006] used spatial weighting to reduce the influence
of background clutter (a similar approach was proposed in Leibe
et al. [2004]). Grauman and Darrell [2005] proposed comparing
distributions of local features using Earth Mover’s Distance (EMD)
[Rubner et al. 2000], which incorporates spatial distances. In
Lazebnik et al. [2006], the spatial structure of features was captured
using a multiscale bag of features construction. The representation
proposed in Amores et al. [2007] used spatial relations between
parts.

Behmo et al. [2008] proposed a generalization of bags of fea-
tures that takes into consideration the spatial relations between the
features in the image. In this approach, following the stage of fea-
ture detection and description, a feature graph is constructed. The
connectivity of the graph is determined by the spatial distance and
visual similarity of the features (spatially and visually close features
are connected). Next, the graph is collapsed by grouping together
features whose descriptors are quantized to the same index in the
visual vocabulary. The connections in the collapsed graph repre-
sent the commute time between the graph nodes. This graph can
be considered an extension of a bag of features, where there is ad-
ditional information about the relations between the visual words.
In Bronstein and Bronstein [2010a], images were described as his-
tograms of pairs of features and the spatial relations between them
(referred to as visual expressions), using a visual vocabulary and a
vocabulary of spatial relations.

3. LOCAL FEATURES IN SHAPES

Trying to adapt feature-based approached to 3D shapes, one needs
to have the following in mind. First, the type of invariance in non-
rigid shapes is different from one required in images. Typically,
feature detectors and descriptors in images are made invariant to
affine transformations, which accounts for different possible views
of an object captured in the image. In case of nonrigid shapes, the
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richness of transformations is much larger, including changes in
pose, bending, and connectivity. Since many natural shape deforma-
tions such as articulated motion can be approximated by isometries,
basing the shape descriptors on intrinsic properties of the shape will
make it invariant to such deformations. Second, shapes are typi-
cally less rich in features than images, making it harder to detect
a large number of stable and repeatable feature points. This poses
a challenging trade-off in feature detection between the number of
features required to describe a shape on one hand and the number of
features that are repeatable on the other, and motivates our choice
to avoid feature detection at all and use dense descriptors instead.
Third, unlike images which in the vast majority of applications
appear as matrices of pixels, shapes may be often represented as
triangular meshes, point clouds, voxels, level sets, etc. Therefore,
it is desirable to have local features computable across multiple
representations. Finally, since shapes usually do not have a global
system of coordinates, the construction of spatial relations between
features is a challenging problem.

There exists a plethora of local shape detection and description
algorithms, and shortly we overview some of them. The reader is
referred to the review paper [Bustos et al. 2005] and the recent
benchmarks [Bronstein et al. 2010a, 2010b] for additional details.

3.1 Feature Detectors

Harris 3D. An effective feature detection method, called the Harris
operator, first proposed in images [Harris and Stephens 1988] was
extended to 3D shapes by Glomb [2009] and Sipiran and Bustos
[2010]. This method is based on measuring variability of the shape
in a local neighborhood of the point, by fitting a function to the
neighborhood and identifying feature points as points where the
derivatives of this function are high [Bronstein et al. 2010a].

Mesh DOG. Several methods for feature detection have been in-
spired by the the difference of Gaussians (DOG), a classical feature
detection approach used in computer vision. Zaharescu et al. [2009]
introduce the mesh DOG approach by first applying Gaussian fil-
tering to functions (e.g., mean or Gauss curvature) defined on the
shape. This creates a representation of the function in scale space,
and feature points are prominent maxima of the scale space across
scales. Castellani et al. [2008] apply Gaussian filtering directly on
the mesh geometry, and use a robust method inspired by Itti et al.
[1998] to detect feature points as points with greatest displacement
in the normal direction.

Heat kernel feature detectors. Recently, Sun et al. [2009] and
Gebal et al. [2009] introduced feature detection methods based on
the heat kernel. These methods define a function on the shape,
measuring the amount of heat remaining at a point x after large
time t given a point source at x at time 0, and detect features as local
maxima of this function. As these methods are intimately related to
our work, we discuss in depth the properties of heat kernels in the
following section.

3.2 Feature Descriptors

Shape context. Though originally proposed for 2D shapes and
images [Belongie et al. 2002], shape context has also been gener-
alized to 3D shapes. For a point x on a shape X, the shape context
descriptor is computed as a log-polar histogram of the relative coor-
dinates of the other points (x ′ − x) for all x ′ ∈ X. Such a descriptor
is translation-invariant and can be made rotation-invariant. It is
computable on any kind of shape representation, including point
clouds, voxels, and triangular meshes. It is also known to be in-
sensitive to small occlusions and distortion, but in general is not

Fig. 4. Values of Kt (x, x) mapped on the shape (left) and values of Kt (x, y)
for three different choices of y (marked with black dots in three rightmost
figures). The value t = 1024 is used. Hotter colors represent smaller values.

deformation-invariant, which makes it disadvantageous in nonrigid
shape analysis applications.

Spin images. Perhaps one of the best known classes of feature
descriptors are spin images [Johnson and Hebert 1999; Andreetto
et al. 2004; Assfalg et al. 2007], which describe the neighborhood
of a point by fitting a tangent plane to the surface at the point, and
accumulating information about the neighborhood into 2D images
which can then be directly compared. Although these methods can
be robust with respect to noise and changes in triangulation, they
were originally developed for rigid shape comparison, and are thus
very sensitive to nonrigid shape deformations.

Mesh HOG. Zaharescu et al. [2009] use the histogram of gra-
dients of a function defined in a local neighborhood of a point, as
a point descriptor (similar to the Histogram Of Gradients (HOG)
[Dalal and Triggs 2005] technique used in computer vision). Though
Zaharescu et al. show insensitivity of their descriptor to nonrigid
deformations, the fact that it is constructed based on k-ring neigh-
borhoods makes it theoretically triangulation-dependent.

Heat Kernel Signatures (HKS). Recently, there has been in-
creased interest in the use of diffusion geometry for shape recogni-
tion [Rustamov 2007; Ovsjanikov et al. 2008; Mateus et al. 2008;
Mahmoudi and Sapiro 2009; Bronstein et al. 2010d; Raviv et al.
2010a]. This type of geometry arises from the heat equation(

�X + ∂

∂t

)
u = 0, (1)

which governs the conduction of heat u on the surface X (here,
�X denotes the negative semidefinite Laplace-Beltrami operator,
a generalization of the Laplacian to non-Euclidean domains). The
fundamental solution Kt (x, z) of the heat equation, also called the
heat kernel, is the solution of (1) with a point heat source at x (see
Figure 4). Probabilistically, the heat kernel can also be interpreted
as the transition density function of a Brownian motion (continuous
analog of a random walk) [Hsu 2002; Coifman and Lafon 2006;
Lafon 2004].

Sun et al. [2009] proposed using the diagonal of the heat kernel
as a local descriptor, referred to as the Heat Kernel Signatures
(HKS). For each point x on the shape, its heat kernel signature is
an n-dimensional descriptor vector of the form

p(x) = c(x)(Kt1 (x, x), . . . , Ktn (x, x)), (2)

where c(x) is chosen in such a way that ‖p(x)‖2 = 1.
The HKS descriptor has many advantages, which make it a fa-

vorable choice for shape retrieval applications. First, the heat ker-
nel is intrinsic (i.e., expressible solely in terms of the Riemannian
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Fig. 5. An RGB visualization of the first three components of the HKS de-
scriptor of different shapes (top row) and transformations of the same shape
(bottom row). Four leftmost shapes in the bottom row are approximately
isometric, and the descriptor appears to be invariant to these deformations.
The rightmost shape in the bottom row has different topology (hand and leg
are glued at point marked with black dot). Note that though the descriptor
changes in the area of the topological change, the discrepancy is localized.

structure of X), and thus invariant under isometric deformations
of X. This makes HKS deformation-invariant (Figure 5, bottom
row left). Second, such a descriptor captures information about the
neighborhood of a point x on the shape at a scale defined by t . It
captures differential information in a small neighborhood of x for
small t , and global information about the shape for large values
of t . Thus, the n-dimensional feature descriptor vector p(x) can
be seen as analogous to the multiscale feature descriptors used in
the computer vision community. Third, for small scales t , the HKS
descriptor takes into account local information, which makes topo-
logical noise have only local effect (Figure 5, bottom row right).
Fourth, Sun et al. prove that if the Laplace-Beltrami operator of
a shape is nondegenerate (does not contain repeated eigenvalues),
then any continuous map that preserves the HKS at every point must
be an isometry. This latter property led Sun et al. to call the HKS
provably informative. Finally, as will be shown next, the compu-
tation of the HKS descriptor relies on the computation of the first
eigenfunctions and eigenvalues of the Laplace-Beltrami operator,
which can be done efficiently and across different shape represen-
tations. This makes HKS applicable to different geometric data,
though we focus in this article on shapes represented as triangular
meshes.

Scale-Invariant Heat Kernel Signatures (SI-HKS). A disadvan-
tage of the HKS is its dependence on the global scale of the shape. If
X is globally scaled by β, the corresponding HKS is β−2Kβ−2t (x, x).
It is possible in theory to perform global normalization of the shape
(e.g., normalizing the area or Laplace-Beltrami eigenvalues), but
such a normalization is impossible if the shape has, for example,
missing parts. As an alternative, a local normalization was pro-
posed in Bronstein and Kokkinos [2010] based on the properties of
the Fourier transform. By using a logarithmic scale-space t = ατ ,
global scaling results in HKS amplitude scaling and shift by 2 logα β
in the scale-space. This effect is undone by the following sequence

of transformations

pdif(x) = (log Kατ2 (x, x) − log Kατ1 (x, x), . . . ,

log Kατm (x, x) − log Kατm−1 (x, x)),

p̂(x) = |(Fpdif(x))(ω1, . . . , ωn)|, (3)

where F is the discrete Fourier transform, and ω1, . . . , ωn denotes
a set of frequencies at which the transformed vector is sampled.
Taking differences of logarithms removes the scaling constant, and
the Fourier transform converts the scale-space shift into a complex
phase, which is removed by taking the absolute value. Typically,
a large m is used to make the representation insensitive to large
scaling factors and edge effects. Such a descriptor was dubbed
Scale-Invariant HKS (SI-HKS) [Bronstein and Kokkinos 2010].

3.3 Numerical Computation of HKS

For compact manifolds, the Laplace-Beltrami operator has a discrete
eigendecomposition of the form

−�Xφl = λlφl, (4)

where λ0 = 0 ≥ λ1 ≥ λ2 . . . are eigenvalues and φ0 = const, φ1, . . .
are the corresponding eigenfunctions. The heat kernel can be written
in the following form Jones et al. [2008]

Kt (x, x ′) =
∞∑
l=0

e−λl tφl(x)φl(x
′). (5)

Since the coefficients decay exponentially as λi increase, for large
values of t we can approximate the HKS as

Kt (x, x) ≈
k∑

l=0

e−λl tφl(x)2. (6)

Thus, in practice, the computation of the HKS descriptor boils down
to computing the first largest eigenvectors and eigenvalues of the
Laplace-Beltrami operator. For small values of t , this computation
of HKS is numerically unstable, an issue that has been recently
addressed in Vaxman et al. [2010] using a multiresolution approach.

Discrete eigendecomposition problem. In the discrete setting,
having the shape represented by a finite sampling X̂ = {x1, . . . , xN },
several variants of the Laplace-Beltrami operator can be expressed
in the following generic form

(�X̂f )i = 1

ai

∑
j

wij(fi − fj ), (7)

where f : X̂ = f (xi) is a scalar function defined on X̂, wij are
weights, and ai are normalization coefficients. In matrix notation,
Eq. (7) can be written as

�X̂f = A−1Wf, (8)

where A = diag(ai) and W = diag
(∑

l �=i wil

)− (wij), allowing one
to find the discrete eigenfunctions and eigenvalues by solving the
generalized eigendecomposition [Lévy 2006]

W
 = A
�, (9)

where � is the (k + 1) × (k + 1) diagonal matrix of eigenvalues and

 is an N × (k + 1) matrix of the corresponding eigenvectors, such
that 
il ≈ φl(xi).

Laplace-Beltrami operator discretization. Different discretiza-
tions of the Laplace-Beltrami lead to different choice of A and W
[Zhang 2004; Floater and Hormann 2005; Bobenko and Springborn
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2007]. For triangular meshes, a popular choice adopted in this arti-
cle is the cotangent weight scheme [Pinkall and Polthier 1993] and
its variants [Meyer et al. 2003], in which wij = (cot αij + cot βij)/2
for j in the 1-ring neighborhood of vertex i and zero otherwise,
where αij and βij are the two angles opposite to the edge between
vertices i and j in the two triangles sharing the edge. It can be
shown [Wardetzky et al. 2008] that this discretization preserves
many important properties of the continuous Laplace-Beltrami op-
erator, such as positive semidefiniteness, symmetry, and locality.
For shapes represented as point clouds, the discretization of Belkin
et al. [2009] can be used.

Finite elements. Direct computation of the eigenfunction without
explicit discretization of the Laplace-Beltrami operator is possible
using the Finite Elements Method (FEM). By the Green formula, the
Laplace-Beltrami eigenvalue problem �Xφ = λφ can be expressed
in the weak form as

〈�Xφ, α〉L2(X) = λ〈φ, α〉L2(X) (10)

for any smooth α, where 〈f, g〉L2(X) = ∫
X

f (x)g(x)dμ(x) and μ(x)
is the standard area measure on X. Given a finite basis {α1, . . . , αq}
spanning a subspace of L2(X), the solution φ can be expanded
as φ(x) ≈ u1α1(x) + · · · + uqαq (x). Substituting this expansion
into (10) results in a system of equations

q∑
j=1

uj 〈�Xαj , αr〉L2(X) = λ

q∑
j=1

uj 〈αj , αr〉L2(X),

for r = 1, . . . , q, which, in turn, is posed as a generalized eigenvalue
problem

Au = λBu. (11)

(here A and B are q × q matrices with elements arj =
〈�Xαj , αr〉L2(X) and brj = 〈αj , αr〉L2(X)). Solution of (11) gives
eigenvalues λ and eigenfunctions φ = u1α1 + · · · + uqαq of �X .

As the basis, linear, quadratic, or cubic polynomials defined on
the mesh can be used. The FEM approach is quite general, and in
particular, the cotangent scheme can be derived as its instance by
using piecewise linear hat functions centered on the vertices and
supported within the 1-ring neighborhood. Since the inner products
in FEM are computed on the surface, the method can be less sensitive
to the shape discretization than the direct approach based on the
discretization of the Laplace-Beltrami operator. This is confirmed
by numerical studies performed by Reuter et al. who showed the
advantage in accuracy of higher-order FEM schemes at the expense
of computational and storage complexity [Reuter et al. 2005]. In
Bronstein et al. [2010b], linear FEM method produced comparable
results in the discretization of HKS compared to cotangent weights
(note that the sole difference between these methods is the use of a
lumped mass matrix to get a diagonal matrix A for the latter).

4. BAGS OF FEATURES

Given local descriptor computed at a set of stable feature points
(or alternatively, a dense descriptor), similarly to feature-based ap-
proaches in computer vision, our next step is to quantize the descrip-
tor space in order to obtain a compact representation in a vocabulary
of “geometric words.” A vocabulary P = {p1, . . . , pV } of size V
is a set of representative vectors in the descriptor space, obtained
by means of unsupervised learning (vector quantization through
k-means).

Given a vocabulary P , for each point x ∈ X with the descriptor
p(x), we define the feature distribution θ (x) = (θ1(x), . . . , θV (x))T,

a V × 1 vector whose elements are

θi(x) = c(x)e− ‖p(x)−pi ‖2
2

2σ2 , (12)

and the constant c(x) is selected in such a way that ‖θ (x)‖1 = 1.
θi(x) can be interpreted as the probability of the point x to be
associated with the descriptor pi from the vocabulary P .

Eq. (12) is a “soft” version of vector quantization. “Hard” vector
quantization is obtained as a particular case of (12) by choosing
σ ≈ 0, in which case θi(x) = 1 (where i is the index of the
vocabulary element pi closest to p in the descriptor space) and zero
otherwise.

Integrating the feature distribution over the entire shape X yields
a V × 1 vector

f(X) =
∫

X

θ (x)dμ(x), (13)

which we refer to as a Bag of Features (or BoF for short). Using
this representation, we can define a distance between two shapes X
and Y as a distance between bags of features in IRV ,

dBoF(X, Y ) = ‖f(X) − f(Y )‖. (14)

An example of bags of features using a vocabulary of size 64 is
shown in Figure 7 (top).

4.1 Spatially Sensitive Bags of Features

The disadvantage of bags of features is the fact that they consider
only the distribution of the words and lose the relations between
them. Resorting again to a text search example, in a document
about “matrix decomposition” the words “matrix” and “decompo-
sition” are frequent. Yet, a document about the movie Matrix and a
document about decomposition of organic matter will also contain
these words, which will result in a similar word statistics and, con-
sequently, similar bags of features. In the most pathological case, a
random permutation of words in a text will produce identical bags
of words. In order to overcome this problem, text search engines
commonly use vocabularies consisting not only of single words but
also of combinations of words or expressions. The combination of
words “matrix decomposition” will be thus frequently found in a
document about the algebraic notion, but unlikely in a document
about the Matrix movie (Figure 6).1

In case of shapes, the phenomenon may be even more pro-
nounced, as shapes, being poorer in features, tend to have many
similar geometric words. The analogy of expressions in shapes
would be sets of spatially close geometric words. Instead of look-
ing at the frequency of individual geometric words, we look at the
frequency of word pairs, thus accounting not only for the frequency
but also for the spatial relations between features. For this purpose,
we define the following generalization of a bag of features, referred
to as a Spatially Sensitive Bags of Features (SS-BoF).

F(X) =
∫

X×X

θ (x)θT(y)Kt (x, y)dμ(x)dμ(y) (15)

The resulting representation F is a V × V matrix, representing the
frequency of appearance of nearby geometric words or “geometric
expressions” i, j . It can be considered as a bag of features in a
vocabulary of size V 2 consisting of pairs of words (see Figure 7,

1For this reason, Web search engines return different results when the search
string is written with quotation marks (“matrix decomposition”) and without
(matrix decomposition).
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Fig. 6. Example visualizing the importance of expressions. Shown left to
right: text about matrix decomposition in math; same text with randomly
shuffled words; text on biological process of decomposition; text about the
movie Matrix. All the texts have similar or even identical distributions of
words, shown as the left histogram. Yet, adding a vocabulary with combi-
nations of words (expressions) allows one to distinguish between the texts
(right histogram).

bottom). When hard quantization is used (the vectors θ are binary),
the element Fij would be large if the instances of the words i and
j are spatially close to each other on X (the diffusion distances
between words i and j is small, or alternatively, the heat kernel K
is large). fij can also be interpreted as the proximity of the words
i, j in the descriptor space and on the surface X, which is similar
to the spirit of Behmo et al. [2008], and Bronstein and Bronstein
[2010a].

We define a distance between two shapes X and Y as a distance
between F(X) and F(Y ),

dSS−BoF(X, Y ) = ‖F(X) − F(Y )‖. (16)

4.2 Statistical Weighting

An important question is how to compare the bag of features rep-
resentations of two shapes. While deferring the question of con-
structing an optimal metric to the next section, we note that not all
geometric words are equally important for the purpose of shape re-
trieval. In text retrieval, it is common to assign different weights to
words according to their statistical importance. Frequent words in a
document are likely to be informative; on the other hand, in order to
be discriminative, they should be rare in the corpus of documents to
which the document belongs. Down-weighting common words like
prepositions and articles increases the performance of text search
engines. Similar approaches have been successfully used for object
retrieval in video [Sivic and Zisserman 2003], as well as 3D shape
comparison [Shilane and Funkhauser 2006; Bronstein et al. 2009].

Here, we use statistical weighting of bags of geometric features.
In the case when hard quantization is used, a bag of features rep-
resents the occurrence frequency of different geometric words in
the shape, referred to as term frequency. Assume we have a shape
database of size D, containing the shapes X1, . . . , XD . The inverse
document frequency of geometric word i is defined as the logarithm
of the inverse fraction of the shapes in the database in which this
word appears,

wi = log

(
D∑D

j=1 δ(fi(Xj ) > 0)

)
, (17)

where δ is an indicator function, and fi(Xj ) counts the number
of occurrences of word i in shape j . The smaller is wi , the more

common the term i is in the database, and so it is less likely to
be able to discriminate between shapes [Chum et al. 2007]. This
information can be taken into consideration when comparing bags
of features, by down-weighting common words. This leads to a
weighted L1 distance

dBoFw(X, Y ) =
V∑

i=1

wi |fi(X) − fi(Y )|, (18)

referred to as tf-idf weighting.
Statistical weighting can be applied in the same way to SS-BoFs.

In the computation of inverse document frequency, instead of geo-
metric words, geometric expressions (pairs of words) are used. This
way, common expressions are down-weighted.

5. SHAPES AS BINARY CODES

Assume that we are given a class of transformations T (such as
bending), invariance to which is desired in the shape retrieval prob-
lem. Theoretically, it is possible to construct the local descriptors
to be invariant under T , making the resulting bag of features rep-
resentation, up to quantization errors, invariant as well. However,
only simple geometric transformation can be modeled explicitly,
and thus the descriptor would rarely be truly invariant to real shape
transformations.

Metric learning. As an alternative, we propose learning the
invariance from examples. Assume that we are given a set of bags
of features (or spatially sensitive bags of features) F describing
different shapes. We denote by P = {(f, f ◦ τ ) : f ∈ F , τ ∈ T } the
set of positive pairs (bags of features of identical shapes, differing
up to some transformation), and by N = {(f, f′) : f �= f′ ∈ F} the
set of negative pairs (bags of features of different shapes). Negative
pairs are modeled by taking different shapes which are known to
be distinct. For positive pairs, it is usually possible to simulate
representative transformations from class T . Our goal is to find a
metric between bags of features that is as small as possible on the
set of positives and as large as possible on the set of negatives.

Similarity Sensitive Hashing (SSH). Shakhnarovich [2005] con-
sidered metrics parameterized as

dA,b(x, x ′) = dH(sign(Af + b), sign(Af′ + b)), (19)

where dH(y, y′) = s

2 − 1
2

∑s

i=1 sign(yiy
′
i) is the Hamming metric

in the s-dimensional Hamming space H
s = {−1,+1}s of binary

sequences of length s. A and b are an s × V matrix and an s × 1
vector, respectively, parameterizing the metric. Our goal is to find
A and b such that dA,b reflects the desired similarity of pairs of bags
of features f, f′ in the training set.

Ideally, we would like to achieve dA,b(f, f′) ≤ d0 for (f, f′) ∈ P ,
and dA,b(f, f′) > d0 for (f, f′) ∈ N , where d0 is some threshold. In
practice, this is rarely achievable as the distributions of dA,b on P
and N have cross-talks responsible for false positives (dA,b ≤ d0 on
N ) and false negatives (dA,b > d0 on P). Thus, optimal A, b should
minimize

min
A,b

1

|P|
∑

(f,f′)∈P
{esign(dA,b(f,f′)−d0)}

+ 1

|N |
∑

(f,f′)∈N
{esign(d0−dA,b(f,f′))}. (20)

In Shakhnarovich [2005], the learning of optimal parameters A, b
was posed as a boosted binary classification problem, where dA,b
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Fig. 7. Top row: examples of bags of features computed for different deformations of centaur (red), dog (blue), and human (magenta). Note the similarity of
bags of features of different transformations and dissimilarity of bags of features of different shapes. Also note the overlap between the centaur and human
bags of features due to partial similarity of these shapes. Bottom row: examples of spatially sensitive bags of features computed for different deformations of
human (left and center) and elephant (right).

acts as a strong binary classifier and each dimension of the lin-
ear projection sign(Aix + bi) is a weak classifier. This way, the
AdaBoost algorithm can be used to progressively construct A and
b, which is a greedy solution of (20). At the ith iteration, the ith
row of the matrix A and the ith element of the vector b are found
minimizing a weighted version of (20). Weights of false positive
and false negative pairs are increased, and weights of true positive
and true negative pairs are decreased, using the standard AdaBoost
reweighting scheme [Freund and Schapire 1995], as summarized in
Algorithm 1.

Projection selection. Finding an optimal projection Ai at step 3
of Algorithm 1 is difficult because of the sign function nonlinearity.
In Shakhnarovich [2005], a random projection was used at each
step. In Bronstein et al. [2010c], is was shown empirically that a
better way is to select a projection by using the minimizer of the
exponential loss of a simpler problem,

Ai = argmax
‖A‖=1

ATCN A

ATCPA
, (21)

where CP and CN are the covariance matrices of the positive and
negative pairs, respectively. It can be shown that Ai maximizing

Algorithm 1: Metric learning between bags of features using
similarity sensitive hashing (SSH)

Input: P pairs of bags of features (fp, f′
p) labeled by

sp = s(fp, f′
p) ∈ {±1}.

Output: Parameters A, b of the optimal projection.
1 Initialize weights w1

p = 1/P .

2 for i = 1, . . . , d do
3 Set the ith row of A and b by solving the

optimization problem

(Ai , bi) = min
Ai ,bi

∑P

p=1 wi
psp(2 − sign(Aifp + bi))

(2 − sign(Aif
′
p + bi)).

Update weights
wi+1

p = wi
pe−spsign(Ai fp+bi )sign(Ai f′p+bi ) and normalize by

sum.

(21) is the largest generalized eigenvector of C
− 1

2
P C

1
2
N , which can be

found by solving a generalized eigenvalue problem. This approach
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is similar in its spirit to Linear Discriminative Analysis (LDA) and
was used in Bronstein et al. [2010c, 2010e]. Since the minimizers
of (20) and (21) do not coincide exactly, in our implementation, we
select a subspace spanned by the largest ten eigenvectors, out of
which the direction as well as the threshold parameter b minimizing
the exponential loss are selected. Such an approach appears more
efficient (in terms of bits required for the hashing to discriminate
between dissimilar data) than Shakhnarovich [2005].

Advantages. There are a few advantages to invariant metric learn-
ing in our problem. First, unlike the tf-idf weighting scheme, which
constructs a metric between bags of features based on an empirical
evidence, the metric dA,b is constructed to achieve the best discrim-
inativity and invariance on the training set. The Hamming metric in
the embedding space can be therefore thought of as an optimal met-
ric on the training set. If the training set is sufficiently representative,
such a metric generalizes well. Secondly, the projection itself has an
effect of dimensionality reduction, and results in a very compact rep-
resentation of bags of features as bitcodes, which can be efficiently
stored and manipulated in standard databases. Third, modern CPU
architectures allow very efficient computation of Hamming dis-
tances using bit counting and SIMD instructions. Since each of the
bits can be computed independently, shape similarity computation
in a shape retrieval system can be further parallelized on multiple
CPUs using either shared or distributed memories. Due to the com-
pactness of the bitcode representation, search can be performed in
memory. Fourth, invariance to different kinds of transformations
can be learned. Finally, since our approach is a meta-algorithm, it
works with any local descriptor, and in particular, can be applied
to descriptors most successfully coping with particular types of
transformations and invariance.

We summarize our shape retrieval approach in Algorithm 2.

6. RESULTS

6.1 Experimental Setup

Dataset. In order to assess our method, we used the SHREC 2010
robust large-scale shape retrieval benchmark, simulating a retrieval
scenario in which the queries include multiple modifications and
transformations of the same shape [Bronstein et al. 2010b]. The
dataset used in this benchmark was aggregated from three public
domain collections: TOSCA shapes [Bronstein et al. 2008], Robert
Sumner’s collection of shapes [Sumner and Popović 2004], and
Princeton shape repository [Shilane et al. 2004]. The shapes were
represented as triangular meshes with the number of vertices ranging
approximately between 300 and 30,000. The dataset consisted of
1184 shapes, out of which 715 shapes were obtained from 13 shape
classes with simulated transformation (55 per shape) used as queries
and 456 unrelated shapes, treated as negatives.2

Queries. The query set consisted of 13 shapes taken from the
dataset (null shapes), with simulated transformations applied to
them. For each null shape, transformations were split into 11 classes
shown in Figure 9: isometry (nonrigid almost inelastic deforma-
tions), topology (welding of shape vertices resulting in different
triangulation), micro holes and big holes, global and local scaling,
additive Gaussian noise, shot noise, partial occlusion (resulting
in multiple disconnected components), down sampling (less than
20% of original points), and mixed transformations. In each class,
the transformation appeared in five different versions numbered
1–5. In all shape categories except scale and isometry, the version

2The datasets are available at http://tosca.cs.technion.ac.il/book/shrec
robustness.html.

Algorithm 2: ShapeGoogle algorithm for shape retrieval

Input: Query shape X; geometric vocabulary
P = {p1, . . . , pV }, database of shapes {X1, . . . , XD}.

Output: Shapes from {X1, . . . , XD} most similar to X.
1 if Feature detection then
2 Compute a set X′ of stable feature points on X.
3 else
4 X′ = X.

5 Compute local feature descriptor p(x) for all x ∈ X′.
6 Quantize the local feature descriptor p(x) in the vocabulary P ,

obtaining for each x a distribution θ (x) ∈ IRV .
7 if Geometric expressions then
8 Compute a spatially-sensitive V × V bag of geometric

words

F(X) =
∫

X×X

θ (x)θT(y)Kt (x, y)dμ(x)dμ(y),

and parse it into a V 2 × 1 vector f(X).
9 else

10 Compute a V × 1 bag of geometric words

f(X) =
∫

X

θ (x)dμ(x)

.

11 Embed the bag of words/expressions into the s-dimensional
Hamming space y(X) = sign(Af(X) + b) using pre-computed
parameters A, b.

12 Compare the bitcode y(X) to bitcodes y(X1), . . . , y(XD) of the
shapes in the database using Hamming metric and find the
closest shape.

number corresponded to the transformation strength levels: the
higher the number, the stronger the transformation (e.g., in noise
transformation, the noise variance was proportional to the strength
number). For scale transformations, the levels 1–5 corresponded
to scaling by the factor of 0.5, 0.875, 1.25, 1.625, and 2. For the
isometry class, the numbers did not reflect transformation strength.
The total number of transformations per shape was 55, and the total
query set size was 715. Each query had one correct corresponding
null shape in the dataset.

Evaluation criteria. Evaluation simulated matching of trans-
formed shapes to a database containing untransformed (null) shapes.
As the database, all 469 shapes with null transformations were used.
Multiple query sets according to transformation class and strength
were used. For transformation x and strength n, the query set con-
tained all the shapes with transformation x and strength ≤ n. In each
transformation class, the query set size for strengths 1, 2, . . . , 5 was
13, 26, 39, 52, and 65. In addition, query sets with all transforma-
tions broken down according to strength were used, containing 143,
286, 429, 572, and 715 shapes (referred to as average in the follow-
ing).

Performance was evaluated using precision/recall characteristic.
Precision P (r) is defined as the percentage of relevant shapes in
the first r top-ranked retrieved shapes. In the present benchmark, a
single relevant shape existed in the database for each query. Mean
Average Precision (mAP), defined as

mAP =
∑

r

P (r) · rel(r),
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Fig. 8. Null shapes used in the benchmark. Transformations of the first 13 shapes (top left) were used as queries in our experiments.

(where rel(r) is the relevance of a given rank), was used as a single
measure of performance. Intuitively, mAP is interpreted as the area
below the precision-recall curve. Ideal performance retrieval perfor-
mance results in first relevant match with mAP=100%. Retrieval
performance results between similar-class positive shapes (males
and females, centaur, horse, and human shapes) were ignored and
did not participate in the statistics, since these shapes can be con-
sidered either positive or negative depending on the application.

6.2 Shape Google

In the first experiment, we studied the performance of the pro-
posed bag of features approach (without SSH). The shapes were
represented as bags of geometric words or expressions based on
HKS or SI-HKS local descriptors. The computation of the HKS de-
scriptors was performed as follows. The cotangent weight scheme
with Dirichlet boundary conditions was used to discretize �X . The
heat kernel was approximated using k = 100 largest eigenvalues
and eigenvectors. The HKS was computed at n = 6 scales, with
t1, . . . , t6 were chosen as 1024, 1351, 1783, 2353, 3104, and 4096
(these are settings identical to Ovsjanikov et al. [2009]). For the
computation of SI-HKS descriptors, we used the same heat kernel
discretization; the values of τ were from 1 to 25 with increments of
1/16 (m = 385), and α = 2. The first six discrete frequencies of the
Fourier transform (n = 6) were taken (these are settings identical to

Bronstein and Kokkinos [2010]). Approximate nearest-neighbors
approach [Arya et al. 1998] was used to perform clustering in the
descriptor space and construct the vocabularies. The soft quantiza-
tion parameter σ was set to twice the median size of the clusters
in the geometric vocabulary. The L1 distance was used to compare
between bags of features and spatially sensitive bags of features.

Complexity. The code was implemented in MATLAB with some
parts written in C with MEX interface. The experiments were run
on a laptop with a 2 GHz Intel Pentium Core2 Duo CPU and 3GB
of RAM. Computational time for a bag of feature was in the range
of 1–10 seconds, depending mostly on the number of vertices. Typ-
ical time of computing the discrete Laplacian matrix and finding its
eigenvectors was a few seconds; computation of HKS descriptors
took negligible time; vector quantization took less than 1 second;
and computation of histogram was negligible. Comparison time of
two bags of features using the L1 norm was also negligible. Pre-
computation of the vocabulary was performed offline by clustering
a set of approximately 5×105 representative descriptors using Arya
et al. [1998] and took between 25 – 50 minutes depending on the
number of clusters (vocabulary size).

Choice of the descriptor. Fixing the vocabulary size to 48, we
compared the performance produced by different choices of the de-
scriptor. Tables I and II show the performance (mAP in percent)
across transformation classes and strengths of ShapeGoogle us-
ing bags of features based on HKS and SI-HKS local descriptors,
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Fig. 9. Transformations of the human shape used as queries (shown in strength 5, left to right): null, isometry, topology, sampling, local scale, scale, holes,
micro holes, noise, shot noise, partial, mixed.

Fig. 10. Retrieval results with ShapeGoogle. Left: query shapes; middle: first five matches obtained with HKS descriptors; right: first five matches obtained
with SI-HKS descriptors. Shape annotation follows the convention shapeid.transformation.strength; numbers below show distance from query. Only a single
correct match exists in the database (marked in red), and ideally, it should be the first one.

respectively (for each descriptor, a separate vocabulary was com-
puted). The use of SI-HKS shows significant performance boosting
on global Scale transformations (from 27.42% to 98.21%), as well
as improvement on Local scaling and Mixed transformations, and
also overall performance. At the same time, SI-HKS shows slight
degradation in the Topology transformations class, which is ex-
plained by the fact that we have to take larger scales of the heat
kernel (up to 225) in order to provide sufficient support for the
Fourier transform. This experiments visualizes how the choice of
the descriptor results in invariance to different transformations.

Figure 10 shows a few examples of retrieved shapes, ordered by
relevance, which is inversely proportional to the distance from the
query shape. This figure visualizes how the performance of shape
retrieval depends on the invariance of the local descriptor. Using
HKS, all the matches for Scale and Mixed transformations (rows

1–2 and 4) are incorrect (middle column). On the other hand, using
the SI-HKS, which is scale-invariant, dramatically improves the
results in these transformation classes (right column).

Sparse vs dense descriptor. We compared the performance
produced by using dense descriptor computed at each point
of the shape as opposed to a sparse descriptor, computed at
a set of points produced by a feature detection algorithm. We
used two feature detection algorithms which produced the
best results in the SHREC’10 feature detection benchmark
[Bronstein et al. 2010a]. Both methods are based on the heat
kernel signature [Sun et al. 2009]. In the first method (HKS
scale-space peaks), feature points are detected as local peaks of
the HKS descriptor. Given the HKS function Kt (x, x) computed
on a mesh for a large fixed value of t , a point x is declared as
a feature point if Kt (x, x) > Kt (x ′, x ′) for all x ′ in a 2-ring

ACM Transactions on Graphics, Vol. 30, No. 1, Article 1, Publication date: January 2011.



Shape Google: Geometric Words and Expressions for Invariant Shape Retrieval • 1:13

Table I. Performance (mAP in %) of ShapeGoogle Using Bags
of Features of Size 48 Based on HKS Local Descriptor Computed
with Cotangent Weight Discretization

Strength
Transform. 1 ≤ 2 ≤ 3 ≤4 ≤5

Isometry 100.00 100.00 100.00 100.00 100.00
Topology 100.00 98.08 97.44 96.79 96.41
Holes 100.00 100.00 97.44 95.19 90.13
Micro holes 100.00 100.00 100.00 100.00 100.00
Scale 0.98 40.68 43.31 33.72 27.42
Local scale 100.00 100.00 98.72 89.38 80.22
Sampling 100.00 100.00 100.00 100.00 99.23
Noise 100.00 100.00 100.00 100.00 100.00
Shot noise 100.00 100.00 100.00 100.00 100.00
Partial 7.54 5.70 4.51 3.58 2.95
Mixed 53.13 55.86 47.77 37.54 30.34
Average 94.94 93.12 90.84 87.82 85.00

Table II. Performance (mAP in %) of ShapeGoogle Using Bags of
Features of Size 48 Based on SI-HKS Local Descriptor Computed
with Cotangent Weight Discretization

Strength
Transform. 1 ≤2 ≤3 ≤4 ≤5

Isometry 100.00 100.00 100.00 100.00 100.00
Topology 96.15 96.15 94.87 93.27 92.69
Holes 100.00 100.00 100.00 94.71 89.97
Micro holes 100.00 100.00 100.00 100.00 100.00
Scale 91.03 95.51 97.01 97.76 98.21
Local scale 100.00 100.00 97.44 89.38 82.08
Sampling 100.00 100.00 100.00 100.00 97.69
Noise 100.00 100.00 100.00 100.00 100.00
Shot noise 100.00 100.00 100.00 100.00 100.00
Partial 17.43 10.31 9.57 8.06 6.61
Mixed 56.47 57.44 63.59 67.47 65.07
Average 97.05 95.16 94.03 92.54 90.79

Table III. Performance (mAP in %) of ShapeGoogle Using Bags
of Features of Size 48 Based on Feature Points Detected using
HKS scale-space peaks and HKS local descriptor Computed with
Cotangent Weight Discretization

Strength
Transformation 1 ≤2 ≤3 ≤4 ≤5

Isometry 100.00 97.44 96.05 96.07 95.63
Topology 88.81 81.45 78.73 74.70 72.26
Holes 96.15 87.50 80.56 74.47 67.06
Micro holes 100.00 100.00 100.00 100.00 100.00
Scale 0.86 36.30 35.20 28.60 23.14
Local scale 100.00 94.23 90.26 77.69 67.93
Sampling 100.00 96.15 95.51 93.00 82.47
Noise 100.00 100.00 98.08 95.80 93.15
Shot noise 100.00 100.00 100.00 98.40 93.26
Partial 15.95 8.63 6.64 5.19 4.24
Mixed 31.68 31.13 24.55 19.15 15.65
Average 94.34 90.80 87.21 83.17 78.85

Table IV. Performance (mAP in %) of ShapeGoogle Using Bags of
Features of Size 48 Based on Feature points detected using topologi-
cal persistence and HKS Local Descriptor Computed with Cotangent
Weight Discretization

Strength
Transformation 1 ≤2 ≤3 ≤4 ≤5

Isometry 78.79 72.08 74.65 67.51 65.22
Topology 63.62 60.45 55.22 52.92 51.21
Holes 53.85 45.70 41.85 38.94 36.68
Micro holes 79.74 79.74 75.07 73.63 72.80
Scale 0.85 19.28 26.35 23.11 19.72
Local scale 53.88 50.63 51.57 50.31 47.47
Sampling 72.19 70.59 69.09 63.69 57.17
Noise 81.73 74.68 65.90 60.79 58.15
Shot noise 76.50 67.74 63.23 58.91 53.31
Partial 3.04 1.71 1.51 1.21 1.03
Mixed 22.00 25.21 21.47 18.48 16.50
Average 89.09 81.67 75.94 70.50 65.92

Table V. Performance (mAP in %) of ShapeGoogle Using Bags of
Features of Varying Size Based on HKS Local Descriptor Com-
puted with Cotangent Weight Discretization

Vocabulary size
Transform. 16 24 32 48 64

Isometry 100.00 100.00 100.00 100.00 100.00
Topology 88.07 94.28 94.36 96.41 97.95
Holes 76.35 79.40 83.79 90.13 92.31
Micro holes 100.00 100.00 100.00 100.00 100.00
Scale 22.86 25.78 26.55 27.42 29.71
Local scale 75.67 79.70 78.05 80.22 81.63
Sampling 96.28 97.69 99.23 99.23 99.23
Noise 100.00 100.00 100.00 100.00 100.00
Shot noise 100.00 100.00 100.00 100.00 100.00
Partial 1.82 2.16 2.36 2.95 3.08
Mixed 26.61 27.86 29.30 30.34 30.26
Average 82.85 83.91 84.28 85.00 85.41

Performance is measured over all strengths (≤5).

Table VI. Performance (mAP in %) of ShapeGoogle Using Spatially
Sensitive Bags of Features of Size 48×48 Based on HKS Local
Descriptor Computed with Cotangent Weight Discretization

Strength
Transform. 1 ≤2 ≤3 ≤4 ≤5

Isometry 100.00 100.00 100.00 100.00 100.00
Topology 100.00 100.00 100.00 100.00 100.00
Holes 100.00 100.00 100.00 100.00 99.23
Micro holes 100.00 100.00 100.00 100.00 100.00
Scale 0.73 43.44 40.32 31.69 26.01
Local scale 100.00 100.00 98.72 93.88 85.06
Sampling 100.00 100.00 97.44 98.08 97.70
Noise 100.00 100.00 100.00 100.00 100.00
Shot noise 100.00 100.00 100.00 100.00 100.00
Partial 24.13 19.28 16.24 12.53 10.28
Mixed 75.64 78.85 59.89 45.55 36.64
Average 95.76 94.54 91.86 89.10 86.55
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Table VII. Performance (mAP in %) of ShapeGoogle Using Spa-
tially Sensitive Bags of Features of Varying Size Based on HKS
Local Descriptor Computed with Cotangent Weight Discretization

Vocabulary size
Transform. 16×16 24×24 32×32 48×48 64×64

Isometry 99.23 99.23 99.23 100.00 100.00
Topology 97.44 99.23 100.00 100.00 100.00
Holes 95.73 98.08 98.46 99.23 100.00
Micro holes 100.00 100.00 100.00 100.00 100.00
Scale 24.18 23.08 23.85 26.01 24.54
Local scale 82.68 84.95 84.86 85.06 86.24
Sampling 97.70 97.70 97.70 97.70 97.70
Noise 100.00 100.00 100.00 100.00 100.00
Shot noise 100.00 100.00 100.00 100.00 100.00
Partial 7.65 8.47 9.39 10.28 10.28
Mixed 31.48 35.29 36.08 36.64 36.73
Average 85.51 86.06 86.25 86.55 86.58
Performance is measured over all strengths (≤5).

Table VIII. Performance (mAP in %) of ShapeGoogle Using
Bags of Features of Size 48 Based on SI-HKS Local Descrip-
tor Computed with Cotangent Weight Discretization and 96-Bit
Similarity-Sensitive Hash

Strength
Transform. 1 ≤2 ≤3 ≤4 ≤5

Isometry 100.00 100.00 100.00 100.00 100.00
Topology 100.00 100.00 100.00 100.00 100.00
Holes 100.00 100.00 100.00 100.00 100.00
Micro holes 100.00 100.00 100.00 100.00 100.00
Scale 100.00 100.00 100.00 100.00 100.00
Local scale 100.00 100.00 100.00 97.18 94.98
Sampling 100.00 100.00 100.00 100.00 99.23
Noise 100.00 100.00 100.00 100.00 100.00
Shot noise 100.00 100.00 100.00 100.00 100.00
Partial 96.15 88.81 86.52 86.80 78.86
Mixed 96.15 96.15 97.44 98.08 95.35
Average 99.84 99.48 99.30 99.10 98.27

Table IX. Performance (mAP in %) of ShapeGoogle+SSH Using
Bags of Features of Size 48 Based on SI-HKS Local Descriptor
Computed with Cotangent Weight Discretization as Function of
the Hash Length (s)

Hash length (s)
Transform. 16 24 32 48 64 96

Isometry 98.08 100.00 100.00 100.00 100.00 100.00
Topology 98.46 100.00 100.00 100.00 100.00 100.00
Holes 96.89 97.69 99.23 99.23 98.46 100.00
Micro holes 100.00 100.00 100.00 100.00 100.00 100.00
Scale 98.65 98.46 100.00 100.00 99.23 100.00
Local scale 88.96 93.55 94.98 93.85 97.74 94.98
Sampling 92.05 96.21 97.31 97.44 100.00 99.23
Noise 100.00 100.00 100.00 100.00 100.00 100.00
Shot noise 99.23 100.00 100.00 100.00 100.00 100.00
Partial 37.67 40.73 48.72 57.00 62.93 78.86
Mixed 83.73 85.55 85.90 89.33 91.02 95.35
Average 94.12 95.18 95.94 96.53 97.22 98.27

Performance is measured over all strengths (≤5).

Table X. Performance (mAP in %) of Shape DNA (Reuter et al.
[2006])

Strength
Transform. 1 ≤2 ≤3 ≤4 ≤5

Isometry 83.35 85.92 82.18 81.83 81.76
Topology 83.35 83.35 83.35 83.35 83.35
Holes 84.97 58.32 41.60 31.93 25.81
Micro holes 84.63 84.63 84.63 84.63 85.40
Scale 1.01 1.95 1.55 1.27 1.10
Local scale 88.48 73.13 62.78 51.45 42.48
Sampling 83.35 85.96 85.56 83.90 75.73
Noise 83.35 85.92 80.66 72.95 63.07
Shot noise 83.35 85.92 82.92 73.75 62.35
Partial 2.17 2.12 2.06 1.89 1.74
Mixed 3.37 9.01 7.82 6.25 5.23
Average 91.11 84.72 78.94 73.68 68.60

Table XI. Performance (mAP in %) of Part-Based BOF (Toldo
et al. [2009]).

Strength
Transform. 1 ≤2 ≤3 ≤4 ≤5

Isometry 100.00 88.57 88.54 88.04 88.04
Topology 100.00 98.08 97.44 97.12 97.69
Holes 100.00 91.94 76.24 67.65 61.58
Micro holes 100.00 100.00 100.00 100.00 100.00
Scale 100.00 100.00 100.00 100.00 100.00
Local scale 100.00 97.12 94.40 85.97 77.61
Sampling 94.87 95.51 90.68 85.06 79.30
Noise 100.00 88.78 69.27 58.23 52.67
Shot noise 92.31 94.23 93.59 93.27 93.85
Partial 1.35 1.49 1.46 1.48 1.43
Mixed 39.13 40.30 38.20 36.59 33.55
Average 95.28 92.11 88.41 85.06 82.20

Table XII. Performance (mAP in %) of CM-BOF (Lian et al.
[2010a, 2010b])

Strength
Transform. 1 ≤2 ≤3 ≤4 ≤5

Isometry 100.00 86.67 79.24 77.46 72.58
Topology 100.00 100.00 100.00 100.00 100.00
Holes 100.00 100.00 100.00 100.00 100.00
Micro holes 100.00 100.00 100.00 100.00 100.00
Scale 100.00 100.00 100.00 100.00 100.00
Local scale 100.00 100.00 98.72 96.47 92.95
Sampling 100.00 100.00 100.00 100.00 100.00
Noise 100.00 100.00 100.00 100.00 100.00
Shot noise 100.00 100.00 100.00 100.00 98.46
Partial 54.22 47.45 46.28 40.57 35.49
Mixed 100.00 100.00 100.00 98.56 97.31
Average 99.03 97.73 96.71 95.66 94.33

neighborhood of x. The second method (topological persistence)
follows the same basic procedure described before, but differs in
the final step of selecting feature points. After defining the function
Kt (x, x) for t = 0.1, persistent homology was used to filter out
unstable feature points. For this, the 0-dimensional persistence dia-
gram of this function [Edelsbrunner et al. 2000; Chazal et al. 2009b]
was computed. A point was declared a feature if it is a local maxi-
mum of this function and furthermore, if the difference between the
death and birth times of the corresponding connected component
is above a threshold α (see Edelsbrunner et al. [2000] for details).
A uniform α = 0.1 was used for all shapes, which was chosen by
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Fig. 11. ROC curves comparing the performance of different methods. TPR is the recognition rate (the higher the better).

manually examining the persistence diagram of one of the null
shapes. At the detected points, the HKS descriptor was computed.
The bags of features were created using the same vocabulary of size
48.

Tables III and IV show the results obtained using both methods.
We conclude that the overall performance of the dense descriptor
(Table I) is superior.

Vocabulary size. To study the influence of the vocabulary size, we
used the HKS local descriptor, changing the vocabulary size from
16–64 geometric words. Table V shows the obtained performance
across transformation classes over all strengths (≤5). The overall
performance as well as performance almost in all classes improves
with the increase of the vocabulary size, coming at the expense of
the representation size (length of the bag of features vector).

Geometric expressions. To test the influence of geometric ex-
pressions, we used the same geometric vocabularies to compute the
spatially sensitive bags of features. The time scale of the heat kernel
in (15) was fixed to t = 1024.

Table VI shows the performance of ShapeGoogle with 48×48
spatially sensitive bags of features based on HKS local descrip-
tors. Comparing to the performance of bags of features computed
with the same vocabulary (Table I), we see consistent improve-

ment in almost all classes of transformations except global Scale.
Especially dramatic improvement is observed with Partial transfor-
mation (from 2.95% to 10.28%), which makes us believe that the
use of geometric expressions can be especially helpful in coping
with large missing parts. On the other hand, Scale performance de-
teriorates (from 27.42% to 26.01%), which is explained by the fact
that our definition of spatial distance relations (15) using a fixed
time scale is not scale-invariant.

Table VII shows the performance of spatially sensitive bags of
features as function of vocabulary size (compare to Table V). All
the aforementioned phenomena are consistently manifested with
different vocabularies. Overall, the spatially sensitive bags of fea-
tures show better performance with the same vocabulary, coming at
the expense of larger storage complexity.

6.3 Similarity-Sensitive Hashing

In the second experiment, we evaluated the contribution of
similarity-sensitive hashing to the performance of our shape re-
trieval approach. A separate set with a total of 624 shapes pro-
vided as part of the SHREC 2010 benchmark was used for training.
The training set included representative transformations of different
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Fig. 12. Retrieval results using different methods. First column: query shapes; second column: first three matches obtained with the method of Toldo et al.
[2009]; third column: first three matches obtained with the method of Lian et al. [2010a]; fourth column: first three matches obtained with ShapeGoogle+SSH.
Shape annotation follows the convention shapeid.transformation.strength; numbers below show distance from query. Only a single correct match exists in the
database (marked in red), and ideally, it should be the first one.

classes and strengths. Besides null shapes, the training set contained
no shape instances from the test set. The positive and negative set
size was |P| = 104 and |N | = 105, respectively. Hashing of length
varying from s = 16 to 96 bit was applied to bags of features based
on SI-HKS local descriptor quantized in a vocabulary of size 48.

Complexity. Training time on the aforesaid set was aforesaid 20
minutes and was performed offline. After having the optimal projec-
tion parameters (A and b), the additional complexity of embedding
the bag of feature vectors into the Hamming space was negligible.

Table IX shows the performance of ShapeGoogle+SSH as a func-
tion of the hash length (s) across transformation classes. Even for
a very short hash length (16 bit), the method outperforms bags
of features without hashing (average mAP of 94.12% compared
to 90.79%; see Table II). Thus, hashing has both metric learning
and dimensionality reduction effects. The latter offers significant
advantages in storage and search complexity (compare to ≈ 1000
bit codes used in Mitra et al. [2006]). The performance of SSH
increases with the hash length. Table VIII summarizes the perfor-
mance of ShapeGoogle+SSH with s = 96.

6.4 Comparison to Other Methods

As a reference, in the third experiment we compared our method to
three state-of-the-art methods for shape retrieval.

Shape DNA. Reuter et al. [2006] described shapes by the vec-
tor of their first Laplace-Beltrami eigenvalues, a representation re-
ferred to as Shape DNA. Due to intrinsic nature of the Laplace-
Beltrami operator, its spectrum is deformation-invariant. In our ex-
periments, we used linear FEM [Patané and Falcidieno 2010] to
compute the first 50 eigenvalues and the L1 distance to compare be-
tween the vectors, which were empirically found to produce the best
performance.

Clock matching bag of features. Lian et al. [2010a] presented the
Clock Matching Bag Of Features (CM-BOF) method, which was

among the top performing algorithms in the SHREC’10 benchmark
[Bronstein et al. 2010b]. In this method, following a PCA-based
shape normalization, the shape is projected onto multiple directions,
resulting in a set of 2D views. Each view is described as a word
histogram obtained by the vector quantization of the view’s local
features. During shape matching, all possible poses are taken into
account. The exact settings of this method in our experiments appear
in Bronstein et al. [2010b].

Part-based bags of words. Toldo et al. [2009] used an ap-
proach following the same philosophy of ShapeGoogle, represent-
ing the shape as a histogram of “geometric words” describing object
subparts. Spectral clustering combined with a region-growing ap-
proach is used to segment the object into parts; each part is then
described using a rigid descriptor. A more detailed description and
the exact settings of this method in our experiments appear in Bron-
stein et al. [2010b].

Tables X–XII detail the performance of these methods on the
same dataset. CM-BOF shows the highest performance among
the three, but is outperformed by ShapeGoogle+SSH shown in
Table VIII (which has mAP of 98.27% compared to 94.33% of
CM-BOF). The difference in performance is especially pronounced
on the Isometry and Partial transformation classes.

Figure 11 depicts the Receiver Operation Characteristic (ROC)
curves of ShapeGoogle+SSH and the compared methods. The ROC
curve represents the trade-off between the percentage of simi-
lar shapes correctly identified as similar (True Positives Rate or
TPR) and the percentage of dissimilar shapes wrongfully iden-
tified as similar (False Positive Rate or FPR) depending on a
global threshold applied to the shape distance matrix. These
curves show that our approach significantly outperforms the other
methods.

Figure 12 visualizes a few examples of retrieved shapes, ordered
by relevance, which is inversely proportional to the distance from
the query shape.
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7. CONCLUSIONS

We presented an approach to nonrigid shape retrieval similar in
its spirit to text retrieval methods used in search engines. We drew
analogies with feature-based image representations used in the com-
puter vision community to construct shape descriptors that are in-
variant to a wide class of transformations on one hand and are
discriminative on the other.

We have observed significant performance improvement in many
classes of transformations when using bags of geometric expres-
sions rather than simple geometric words. Also, the use of similarity-
sensitive hashing showed dramatic improvement both in shape
representation size and the quality of the shape metric. Our ap-
proach showed very high retrieval accuracy in a standard large-scale
shape retrieval benchmark, exceeding the previous state-of-the-art
approaches.

In the future works, we intend to explore in depth the anal-
ogy of our descriptors with Scale-Invariant Feature Transform
(SIFT) in computer vision. Other applications possible using our
approach are dense correspondence between nonrigid shapes. Ex-
tending metric learning methods to product vocabularies (like in our
spatially sensitive bags of features) may lead to further performance
improvement. Finally, another promising direction is the use of mul-
timodal hashing [Bronstein et al. 2010e] to cope with the problem of
cross-representation retrieval and different versions of vocabularies.
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OVSJANIKOV, M., PATANÉ, G., SPAGNUOLO, M., AND TOLDO, R. 2010b.
SHREC 2010: Robust large-scale shape retrieval benchmark. In Proceed-
ings of the 3DOR Conference.

BRONSTEIN, A. M., BRONSTEIN, M. M., AND KIMMEL, R. 2006a. Efficient
computation of isometry-invariant distances between surfaces. SIAM J.
Sci. Comput. 28, 5, 1812–1836.

BRONSTEIN, A. M., BRONSTEIN, M. M., AND KIMMEL, R. 2006b. Gen-
eralized multidimensional scaling: A framework for isometry-invariant
partial surface matching. Proc. Nat. Acad. Sci. 103, 5, 1168–1172.

BRONSTEIN, A. M., BRONSTEIN, M. M., AND KIMMEL, R. 2008. Numerical
Geometry of Non-Rigid Shapes. Springer.

BRONSTEIN, A. M., BRONSTEIN, M. M., AND KIMMEL, R. 2010c. The video
genome. arXiv 1003.5320v1.

BRONSTEIN, A. M., BRONSTEIN, M. M., KIMMEL, R., MAHMOUDI, M., AND

SAPIRO, G. 2010d. A Gromov-Hausdorff framework with diffusion
geometry for topologically-robust non-rigid shape matching. Int. J. Com-
put. Vis. 89, 2-3, 266–286.

BRONSTEIN, M. M. AND BRONSTEIN, A. M. 2009. On a relation between
shape recognition algorithms based on distributions of distances. Tech.
rep. CIS-2009-14, Department of Computer Science, Technion, Israel.

BRONSTEIN, M. M. AND BRONSTEIN, A. M. 2010b. Shape recognition with
spectral distances. Trans. Patt. Anal. Mach. Intell. To appear.

BRONSTEIN, M. M., BRONSTEIN, A. M., KIMMEL, R. AND YAVNEH, I. 2006.
Multigrid multidimensional scaling. Numer. Linear Alg. Appl. 13, 149–
171.

BRONSTEIN, M. M., BRONSTEIN, A. M., MICHEL, F., AND PARAGIOS, N.
2010e. Data fusion through cross-modality metric learning using
similarity-sensitive hashing. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR’10).

BRONSTEIN, M. M. AND KOKKINOS, I. 2010. Scale-Invariant heat kernel
signatures for non-rigid shape recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR’10).

BUSTOS, B., KEIM, D. A., SAUPE, D., SCHRECK, T., AND VRANIC, D. V. 2005.
Feature-Based similarity search in 3D object databases. ACM Comput.
Surv. 37, 4, 387.

ACM Transactions on Graphics, Vol. 30, No. 1, Article 1, Publication date: January 2011.



1:18 • A. M. Bronstein et al.

CASTELLANI, U., CRISTANI, M., FANTONI, S., AND MURINO, V. 2008.
Sparse points matching by combining 3D mesh saliency with statisti-
cal descriptors. Comput. Graph. Forum 27, 643–652.

CHAZAL, F., COHEN-STEINER, D., GUIBAS, L. J., MÉMOLI, F., AND OUDOT,
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