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Figure 1: (a) Given two shapes M,N and a map T between them, the functional operator V is generated as one of the shape difference
operators introduced in [ROA⇤13]. Intuitively, the real-valued function f2, which is supported on a region that undergoes deformation
via T , is significantly distorted by V . Whereas f1, being supported in area-preserved region, remains the same after V acting on it. (b)
Given perturbed shapes N to Ñ, we generate highlighted functions with the multi-scale framework of [OBCCG13], which takes high values
(indicated by warm color) in the significantly distorted region. In our paper we prove two types of consistency: horizontally, as the scale k
increases, the highlighted functions remain stable, i.e., the regions where high function value takes place are consistent; vertically, at each
scale, the highlighted functions are stable with respect to the changes of the input shapes.

Abstract
In this paper, we provide stability guarantees for two frameworks that are based on the notion of functional maps – the shape
difference operators introduced in [ROA⇤13] and the framework of [OBCCG13] which is used to analyze and visualize the
deformations between shapes induced by a functional map. We consider two types of perturbations in our analysis: one is on
the input shapes and the other is on the change in scale. In theory, we formulate and justify the robustness that has been observed
in practical implementations of those frameworks. Inspired by our theoretical results, we propose a pipeline for constructing
shape difference operators on point clouds and show numerically that the results are robust and informative. In particular, we
show that both the shape difference operators and the derived areas of highest distortion are stable with respect to changes in
shape representation and change of scale. Remarkably, this is in contrast with the well-known instability of the eigenfunctions
of the Laplace-Beltrami operator computed on point clouds compared to those obtained on triangle meshes.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: —Shape Analysis.

1. Introduction

Shape comparison is a fundamental problem in geometry pro-
cessing. In the most general setting, this problem consists of en-
coding and quantifying similarities and differences across pairs
or collections of shapes. This can be especially useful for shape
retrieval [TV08, BWY⇤12], interpolation [XZWB06, VTSSH15],
or visualization [PRMH10]. However, even when a map between

shapes is given, encoding and visualizing the differences between
them is still challenging. Approaches based on the point-to-point
correspondences usually suffer from issues such as sensitivity to
noise, difficulty of selecting an appropriate scale of analysis and
inconvenient visualization. The discrete nature of point correspon-
dences is one of the major reasons of these issues. The framework
of functional maps, which is introduced in [OBCS⇤12], alleviates
these issues to some extent by considering more general linear map-
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pings between functions, which can be encoded in a multi-scale
fashion with functional bases. As demonstrated in [OBCS⇤12],
functional maps provide a compact, informative representation,
which can naturally incorporate tools from spectral analysis.

Based on the notion of functional maps, several approaches have
been proposed to analyze pairs or collections of shapes along with
maps between them. In this paper we consider two of them, which
are intimately related to each other. One is the framework of shape
difference operators introduced in [ROA⇤13], which encodes the
differences between a pair of shapes as linear operators acting on
the functions on one of the shapes (see Figure 1(a) for an illustration
of one of the operators). And the other is proposed in [OBCCG13],
which generates a collection of multi-scale distortion functions in-
dicating the areas on one of the shapes which undergo deforma-
tions. The latter framework can be integrated into the former in the
sense that its output, which is a set of highlighted functions, corre-
spond, in essence, to eigenfunctions of shape difference operators.

Though the theoretical formulations of both frameworks are
well-established, the associated stability analyses remain absent.
In practice, however, we observe the robustness of the outcomes of
these frameworks. For example, as shown in Figure 1(b), two types
of consistency are evidenced: horizontally, as the highlighted func-
tions are consistent with respect to the change in scale; vertically,
at fixed scales, the highlighted functions are stable with respect to
the changes of the input shapes. In this paper, we initiate a rigorous
theoretical analysis of these stability properties. In particular, our
contributions are three-fold:

• We provide the first rigorous formulations and theoretical guar-
antees of stability properties of the shape difference operators.

• We propose a new multi-scale scheme for extracting information
from the shape difference operators, which comes with rigorous
stability guarantees.

• Inspired by our theoretical results, we design a practical pipeline
for computing the shape difference operators on shapes rep-
resented by point clouds, and we show numerically that this
pipeline is relevant and robust, even when individual spectral
quantities such as eigenfunctions of the Laplace-Beltrami oper-
ator might not be.

1.1. Overview

We assume that we are given a pair M and N of connected, com-
pact, smooth shapes without boundary. Given a map T : M ! N,
the authors of [ROA⇤13] introduce a pair of linear operators acting
on real-valued functions on N, each of which captures one type of
differences or distortion between the two shapes induced by T . We
first study the stability of these operators with respect to perturba-
tions on metrics and measures on M and on N (Section 4).

Then we consider the multi-scale framework based on shape dif-
ference operators. For one of the shape difference operators – V
as illustrated in Figure 1(a), the authors of [OBCCG13] propose a
functional for evaluating the deviation from a function on N to its
image under V and search for a function that maximizes the func-
tional as a distortion indicator. Then they introduce a multi-scale
framework by restricting the search to a subspace spanned by the
first k eigenfunctions of the Laplace-Beltrami operator (LBO) on
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Figure 2: While being more and more localized with increasing k,
the functions from k = 20 to 100 consistently highlight the hip of
the horse, whereas the ones from k = 120 to 200 highlight the root
of its front right leg. The corresponding quantitative measurements
of distortion are marked above of each shape.

N. Figure 2 shows typical outputs of this framework: a collection
of multi-scale highlighted functions on the shape N and a sequence
of the corresponding maxima of the energy functional shown above
the highlight functions with respect to different scales ranging from
k = 20 to 200. In this example, we observe consistency in the output
at different scales, which are similar to the observations from Fig-
ure 1(b). Therefore, in the second part of our analyses (Section 5),
we provide a rigorous stability analysis with respect to the change
in scale. One challenge, however, is that the scale in the original
framework is controlled by an integer k, and as we will demon-
strate in Section 5.1, the discrete nature of scale is not suitable for
stability analysis. Indeed, as we show below, the result might not
be stable with respect to changes of k. To overcome this issue, we
introduce a new multi-scale framework whose scale is controlled
by a continuous parameter C 2 R+, and discuss the connection be-
tween the two multi-scale frameworks in Section 5.4. Within this
continuous multi-scale framework, we provide rigorous theoretical
guarantees of the stability with respect to C.

Moreover, at any fixed scale C, we prove that the new multi-
scale framework is stable with respect to perturbations on the input
shapes as well. Figure 3 illustrates this property: we perturb the
input shapes and show the highlighted functions at the same scale
k = 50. Note both the stability of the highlighted regions and the
proximity among the maxima of the distortion energy shown above
the meshes.

(a) Original (b) Densified (c) Simplified

1.2897 1.2947 1.2857

Figure 3: Highlighted functions at a fixed scale for different
meshes. We densify the original shape (a) by adding points in the
body of the horse (b) and simplify it by down-sampling the limbs
(c). The corresponding distortion energy values are shown above.

As an extension, we adapt the other shape difference operator –
the one capturing conformal distortion – to the multi-scale frame-
work of [OBCCG13] and prove the stability of this extension with
respect to the change in scale as well (Section 5.5).
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Lastly, we notice that in practice the two frameworks have so far
only been constructed on shapes which are discretized as triangle
meshes. In Section 6.3 we extend these constructions by design-
ing a pipeline for computing shape difference operators on shapes
represented as point clouds. As shown in Figure 4, although the
eigenfunctions of the LBO generated on the mesh N and on the
point cloud Y are distinct, the highlighted function generated with
M,N are comparable with the one from comparing X ,Y at a fixed
scale. This supports the stability results we obtain in theory, and
suggests a remarkable robustness of measures based on functional
maps and the derived shape difference operators.

To summarize, we provide a rigorous theoretical justification for
the stability of shape difference operators in the continuous set-
ting. We also propose a new functional sub-domain construction,
which we show to be more stable than the classical truncation of
eigenspace, in particular leading to provably stable solutions of cer-
tain energy functionals used for highlighting distorted regions. Fi-
nally, we demonstrate the relevance of our pipeline by applying the
shape difference operators to point clouds, which suggests the pos-
sibility of extending the existing frameworks to deal more general
geometric objects.

1.2. Paper Organization

After discussing related works in Section 2, we introduce the pre-
liminaries and the notations in Section 3. We then study the stabil-
ity of shape difference operators in Section 4, and provide stability
analysis for the framework of [OBCCG13], by analyzing the per-
turbations of scale, in Section 5.2 (Figure 2) and of the shapes in
Section 5.3 (Figure 3). We present experimental results showing
the stability properties in Section 6.

2. Related Work

The two frameworks we analyze in this paper are based on the no-
tion of functional maps, which has been a key ingredient of vari-
ous applications in geometry processing, including analyzing maps
between shapes [HWG14], vector field processing [ABCCO13,
AWO⇤14] and image segmentation [WHG13] to name a few.

Our main focus is to perform perturbation analysis on both shape
difference operators (which are linear operators, see [Kat95] for
an introduction of perturbation analysis on them) and a spectral
method based on such operators. Closely related to our analysis
is the framework of [RCB⇤16], whose authors conduct perturba-
tion analysis on eigenspace with respect to the Laplace-Beltrami
operator on shapes with missing parts. The spectral methods have
long been applied in various areas: spectral clustering [vL06],
shape analysis [RWP06] and so on. Besides demonstrating prac-
tical usefulness of the spectral methods, providing theoretical jus-
tifications is attracting more and more research interest. Theoreti-
cal guarantees for spectral clustering algorithms often stem from
Cheeger’s inequality, which is powerful if there exists a signifi-
cant spectral gap. Assuming such a gap, several works [KLL⇤13,
LOT12, LRTV12, OT14, DRS14] present theoretical guarantees on
the quality (measured by some graph conductance) of the output of
the respective algorithms. It is worth noting that the works above
only consider the case of a single object, while in this paper, we

study operators and quantities derived from pairs of shapes. From
this point of view, our work has a similar flavor to the ones by
Mémoli [Mém09, Mém11], who proposes metrics between shapes
based on spectral invariants and discusses their robustness with re-
spect to perturbations on the input shapes.

Beyond spectral methods, in geometric and topological data
analysis, several approaches have been proposed for guaranteeing
stability of the data processing and analysis techniques. In particu-
lar, stability has been theoretically proven in many works aimed at
estimating geometric quantities. For example, in [MNG04], the au-
thors provide a theoretical and practical analysis of stability and ac-
curacy of normal estimation process. In [MOG11], a sharp feature
detection algorithm is presented with guarantees of stability with
respect to Hausdorff noise. In the same noise model, the stability of
the curvature measures is proven under certain conditions in [CC-
SLT09]. Similar problems are also actively studied in the commu-
nity of topological data analysis (TDA). The stability of persistence
diagram is verified in [CSEH07], which has been instrumental in
establishing a solid theoretical foundation for data analysis using
topological methods. Some more recent developments in TDA also
come with stability guarantees, including, e.g, the notion of dis-
tance to a measure [CFL⇤14].

A rich body of research has also been devoted to providing anal-
ysis for convergence properties of various discrete Laplacian op-
erators. In [War05, Xu07, DRW10] the converging behaviors of
the cotangent Laplacian operators on meshes to the underlying
Laplace-Beltrami operators are investigated from diverse perspec-
tives. While in [BSW09, LPG12, HAvL07, DRW13], similar prob-
lems are considered in a different setting, where the discrete Lapla-
cian operators are built on point clouds. In particular, our dis-
cretization scheme proposed in Section 6.3 is based on the result
from [HAvL07], where convergence of graph Laplacian on non-
uniformly sampled point clouds is proven. Lastly, we point out that
unlike the frameworks of [BSW09, LPG12], our scheme does not
require constructing any local mesh structure.

3. Preliminaries and Notations

In this section, we introduce the fundamental notions from dif-
ferential geometry involved in this work, and refer the readers
to [Gri06] for more details. Let N be a connected, compact, smooth
2-dimensional Riemannian manifold endowed with a metric gN .
The volume (or Riemannian measure) nN is induced by gN . Given
a positive smooth function rN on N, we obtain a weighted Rieman-
nian manifold (N,gN ,µN) by letting dµN = rNdnN .

Remark 3.1 In this paper, by a Riemannian manifold we mean
a triple (N,gN ,nN), where the volume nN is induced by the met-
ric. We use the term weighted Riemannian manifold to denote
(N,gN ,µN), where µN is an arbitrary measure having a density with
respect to the volume measure on N.

The Laplace-Beltrami operator (LBO) on N, DN , is semi-
negative definite and self-adjoint. Since we assume that N is com-
pact, the spectrum of DN is discrete. In fact, we can order the eigen-
values of �DN such that 0 = l1 < l2  · · ·  lk  · · · (only the
first eigenvalue is zero as N is connected).
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Figure 4: Left: highlighted functions from the mesh setting (top) and the PCD setting (bottom) both at scale k = 50; Right: the 9th to the
12th eigenfunctions of the Discrete LB operator on mesh (top) and those of the Graph Laplacian on PCD (bottom).

Since N is compact and without boundary, the classic Green for-
mula implies that for any smooth functions u,v on N.

Z

N
u(�DN)vdnN =

Z

N
hru,rvigN dnN (1)

On the other hand, it is well-known that the eigenfunctions of
�DN form an orthonormal basis of function space L2(N) = { f :R

N f 2dnN <+1}, and we have the following classical result:

Proposition 3.1 Let {ji}i�1 be an orthonormal basis of L2
n(N)

consisting of eigenfunctions of DN . Then any function u 2 L2
n(N)

admits a decomposition u = Âi�1 aiji,ai =
R

N ujidnN. Moreover:

Z

N
u2dnN = Â

i�1
a2

i (2)

If we further assume that u is differentiable, then
Z

N
hru,ruigN dnN = Â

i�1
a2

i li (3)

Here and throughout the rest of this paper we use L2
n(N) to de-

note the space of square integrable functions.

Functional Maps. A functional map, TF , is simply a pull-back
from the function space of N to that of M induced by the map T .
Namely, given a function w : N!R, TF (w) = w�T returns a func-
tion on M. As demonstrated in [OBCS⇤12], TF is a linear operator
across the function spaces on M and N.

Shape Difference Operators In [ROA⇤13], a pair of Shape Dif-
ference Operators was introduced, which encode the change of in-
ner products under functional map TF .

The area-based shape difference operator, V : L2(N)! L2(N),
is a linear operator such that for any f ,g 2 L2(N),

Z

N
fV (g)dnN =

Z

M
TF ( f )TF (g)dnM (4)

Rustamov and colleagues proved in [ROA⇤13] that such a linear
operator V is well-defined for any TF .

Note that unless T is an area-preserving map,
R

N f gdnN does not

always equal to
R

M TF ( f )TF (g)dnM , the linear operator V captures
and compensates for the discrepancy.

Similarly, the so-called conformal-based shape difference opera-
tor, R, is a linear operator such that for any f ,g in the Sobolev space
H1

0 (N) = { f :
R

N f 2 +kr fk2dnN <+1,
R

N f dnN = 0}, we have:

Z

N
hr f ,rR(g)igN dnN =

Z

M
hrTF ( f ),rTF (g)igM dnM (5)

It follows from the Riesz representation theorem that given
smooth shapes M,N and a map T , the operators V and R exist
and are unique. Particularly, if M,N are 2-dimensional Riemannian
manifolds without boundary, the authors of [ROA⇤13] show that T
is locally area-preserving (resp., conformal) if and only if V (resp.,
R) is an identity operator.

Map Analysis In [OBCCG13], an energy measuring distortions
induced by a map is defined on the function space on N. Namely,
for any real-valued function w on N, the authors define:

E(w) =
R

M TF (w)2dnMR
N w2dnN

(6)

As discussed in [OBCCG13], E(w) should be large if TF (w)
is supported on areas of M which undergo large distortion via T .
Therefore, the problem of map analysis is turned into optimization
of E(w). Moreover, instead of optimizing E(w) over all w in L2(N),
a multi-scale approach is taken by adding a constraint such that w
must lie in a subspace spanned by the first k eigenfunctions of�DN ,
which we denote by S(k).

S(k) = span{j1, · · · ,jk}. (7)

(a,b)-closeness We now introduce our model for characterizing
perturbations on the input shapes.

Definition 3.1 A Riemannian manifold (N, g̃N , ñN) is a-close to
another one (N,gN ,nN) if the following holds: For any x 2 N and
any tangent vector h in TxN, the tangent plane at x: a�1 hh,hig

hh,hig̃


a holds for some constant a� 1.
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Definition 3.2 A weighted Riemannian manifold (N,gN ,µN) is b-
close to a Riemannian manifold (N,gN ,nN) if the following holds:
µN is obtained by perturbing nN (the volume induced by gN) with
rN: dµN = rNdnN. And b�1  rN  b holds for a constant b� 1.

It is clear that the (a,b)-closeness characterizes perturbations on
the metric and on the measure, respectively. Combining them to-
gether, a weighted Riemannian manifold, (N, g̃N , µ̃N), is said to be
(a,b)-close to a Riemannian manifold (N,gN ,nN) if

• (N, g̃N , µ̃N) is b-close to the corresponding Riemannian manifold
(N, g̃N , ñN).

• (N, g̃N , ñN) is a-close to (N,gN ,nN).

Intuitively, we view (N, g̃N , µ̃N) as a perturbed version of
(N,gN ,nN). It is obvious that (1,1)-closeness implies that the two
are isometric. Furthermore, the following proposition provides a
quantitative relation between the perturbed and original manifolds.

Proposition 3.2 If (N, g̃N , µ̃N) is (a,b)-close to (N,gN ,nN), then
for any smooth function w on N.

a�1  hrw,rwigN

hrw,rwig̃N

 a,

and

(ab)�1dµ̃N  dnM  abdµ̃N .

The detailed proof of this proposition and all of the other results
mentioned below are provided in the supplementary material to im-
prove readability. At the same time, we provide the outlines of the
proofs of all the main theorems in the appendix.

Remark 3.2 Note that the gradient operator on a Riemannian
manifold is defined directly by the metric. Thus the first inequal-
ity in this proposition is not simply a corollary of the condition of
(a,b)-closeness.

Bounded-distortion Condition. Throughout our analysis in the
following sections, we assume that the input Riemannian mani-
folds, (M,gM ,nM) and (N,gN ,nN), together with the map T be-
tween them satisfy the following bounded-distortion condition.

Condition 3.1 (Bounded-distortion) Let TF be the functional map
induced by T : M! N, the distortions induced by TF (or equiva-
lently by T ) are bounded:

For any w 2 L2(N),
Z

M
TF (w)

2dnM  BT

Z

N
w2dnN

For any w 2 H1
0 (N),

Z

M
hrTF (w),rTF (w)igM dnM 

DT

Z

N
hrw,rwigN dnN

where BT and DT are finite positive constants.

In particular, the following proposition suggests that this condi-
tion is satisfied in a fairly general case.

Proposition 3.3 If M,N are compact and TF is induced by a point-
wise T which is a diffeomorphism, then Condition 3.1 is satisfied.

4. Stability of the Shape Difference Operators

In this section, we first consider the stability of the shape difference
operators with respect to perturbations on the metrics and the mea-
sures. For the sake of simplicity, from now on we denote by N the
original Riemannian manifold (N,gN ,dnN) and by Ñ the perturbed
one (N, g̃N , µ̃N), unless stated otherwise.

We have defined the area-based shape difference operator V with
respect to M,N and T in Eq. 4. Similarly, the perturbed pair of
shapes M̃, Ñ together with T give rise to another shape difference
operator Ṽ acting on L2(Ñ), which satisfies

Z

N
fṼ (g)dµ̃N =

Z

M
TF ( f )TF (g)dµ̃M ,8 f ,g 2 L2(Ñ) (8)

The stability of the area-based shape difference operator with
respect to perturbations on the metrics and measures is stated in the
following theorem:

Theorem 4.1 Let M,N be two smooth shapes, and T be a map
from M to N. Let M̃ be (aM ,bM)-close to M and Ñ be (aN ,bN)-
close to N. If aM ,aN ,bM and bN are finite real numbers not smaller
than 1, then L2(N) = L2(Ñ). Moreover, if M,N and T satisfy con-
dition 3.1, we have the following convergence guarantee

lim
aM ,aN ,bM ,bN!1+

Z

N
(V g� Ṽ g)2dnN = 0

As mentioned above, the outline of the proof of this theorem and of
the others hereinafter are provided in the appendix.

Similar stability guarantee holds for the conformal shape differ-
ence operators as well. We start with defining the conformal shape
difference operator, R̃, for the perturbed input shapes.

Z

N
hr f ,rR̃(g)ig̃N dµ̃N =

Z

M
hrTF ( f ),rTF (g)ig̃M dµ̃M (9)

The following theorem suggests that as aM ,bM ,aN ,bN converge
to 1 simultaneously, the norm of the gradient of R̃ f �R f converges
to zero, which in turn means that it converges to a constant function.

Theorem 4.2 Let M,N and M̃, Ñ be smooth shapes under the same
assumptions of Theorem 4.1, then H1

0 (N) = H1
0 (Ñ). Moreover, we

have

lim
aM ,bM ,aN ,bN!1+

Z

N
hr(R f � R̃ f ),r(R f � R̃ f )igN dnN = 0

Remark 4.1 Our proofs for theorems 4.1 and 4.2 do not require
the shapes involved to be compact or boundaryless. The stability
properties proven in this section are valid for any pair of smooth
shapes and maps satisfying Condition 3.1.

In practice, we also observe the robustness of the shape differ-
ence operators with respect to shapes with missing part(s). For in-
stance, in Figure 5, we compare shapes that are similar to the ones
in Figure 2, but with missing parts on shape M. First on the left,
M1 is obtained by cutting the head of the horse, and the highlighted
function at scale k = 50 is plotted on N next to it, which is con-
sistent with the one generated with full shapes. Furthermore, we
removed the area highlighted on the left (the hip), and compared
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M1

M2

M

k = 50 k = 110

N

Figure 5: Top row: comparing full shapes M,N without bound-
ary. We plot the highlighted functions at scales k = 50,110 respec-
tively. Middle row: removing a large part of M does not affect the
highlighted function generated from the area-based shape differ-
ence operator at the same scales. Bottom row: if we further cut
the most distorted part of M1, the highlighted area at scale k = 50
shifts to the one captured at higher scale (k = 110) in the full shape
case (See Figure 2 for comparison).

M2 and N. Interestingly, the highlighted function at k = 50 detects
the area that is captured in the full shape case but at higher scale
(see the bottom row of Figure 2 for comparison).

5. Stability of the Shape Difference Operators in a Multi-Scale
Framework

In this section, we study the stability properties of the shape dif-
ference operators in the framework of [OBCCG13], where they are
employed in a multi-scale way.

We start by pointing out the connection between the multi-scale
framework and the shape difference operators. Recall that Eq. 6
defines a functional measuring the distortion induced by T for a
given function w 2 L2(N). Given a pair of manifolds M,N and a
map T : M! N, let V be the area-based shape difference operator
formulated in Eq. 4. It follows directly from the definitions that:

E(w) =
R

M TF (w)2dnMR
N w2dnN

=

R
N wV (w)dnNR

N w2dnN
.

Since V is a positive-definite self-adjoint operator acting on
L2(N), the maximum of E(w) within L2(N) is simply the L2-norm
of V , or equivalently the largest eigenvalue of V . The framework
of [OBCCG13] computes the constrained norm of V with respect
to a special collection of subdomains of L2(N): {S(k)}k2N+ . In
general, given a subdomain W of L2(N), the maximum of E(w)
constrained in W provides a quantitative characterization of to what
extent V can distort functions in W. The maximizer (which we call
the highlighted function), w⇤, is a function in W that is the most
distorted by V . An illustration of a typical output of this framework
has been given in Figure 2.

NM

T l = 10 l = 11 l = 12

Figure 6: Highlighted functions with respect to conformal-based
shape difference operator depicted on shape N at scales l = 10,11
and 12. The 10th to the 13th eigenvalues are 0.5497, 0.6130,
0.6130, 0.6802, notice the small eigen gap between l11 and l12,
which causes the instability in the highlighted functions.

5.1. A New Subdomain Construction

A good selection of W is beneficial for abstracting information from
the shape difference operators.

Despite several advantages of choosing S(k) demonstrated
in [OBCCG13], the subdomain construction suffers some issues
that are rooted in its discrete nature.

First, since k must be integer, the minimal perturbation on scale
is 1. In practice, we observe that the output can change a lot when
k is increased by 1, i.e., the original multi-scale framework is not
stable with respect to the changes in scale.

Second, it can lead to confusing results when k is not selected
appropriately. If there is a degenerate eigenvalue, say, ll = ll+1 <
ll+2, then using the subdomain S(l) can be problematic. That is
because the eigenspace formed by the eigenfunctions with respect
to the degenerate eigenvalue can be of more than one dimension.
Truncating in this subspace introduces randomness in basis con-
struction, therefore the space spanned by the first l eigenfunctions
is not even well-defined. For example, instability in the more subtle
case of analyzing conformal differences is illustrated in Figure 6.

To overcome these issues, we construct a new collection of
multi-scale subdomains which evolves continuously. It follows
from Proposition 3.1 that for any w2 S(k),�

R
Nhrw,rwigN dnN 

lk
R

N w2dnN

It is then natural to consider the following multi-scale subdo-
mains controlled by a continuous scalar-valued parameter C:

A(C) = {w :
Z

N
hrw,rwigN dnN C

Z

N
w2dnN} (10)

From this point of view, this expression suggests that (the nor-
malized) Dirichlet’s energy of w 2 A(C) is upper-bounded by C. In
general, a small C prohibits large variations of w over a short dis-
tance with a global control of the magnitude of the gradient of w,
therefore it forces w 2 A(C) to be smooth.

In particular, the following proposition indicates the relationship
between the original and the new subdomain constructions.

Proposition 5.1 If C � lk, then S(k) is a proper subset of A(C).

5.2. Stability with Respect to the Changes in Scale

We first verify the stability with respect to the change in scale,
which only involves the original input shapes M and N. As demon-
strated in Figures 1 and 2, the results show consistency of the areas
on N indicated by the highlighted functions across a range of scales.
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It is then tempting to validate the stability of the maximizer of the
energy. However, it is not always the case. For example, imagine
that we deform the bottom of shape M in Figure 1 so that the de-
formations from M to N are symmetrical. In this case, at every
scale, the maximum of E(w) is realized by two highlighted func-
tions wt ,wb which highlight respectively the top and the bottom
of shape N, therefore we will no longer observe consistency in the
highlighted functions.

We then turn to study the stability of the maxima of the energy
E(w) with respect to the change in scale. Our stability analysis is
performed on the new multi-scale framework. For a subspace A(C),
we define:

kVkC = max E(w) s.t. w 2 A(C)

where E(w) is the functional defined in Eq. 6.

Let C go through interval [0,+1), and consider the curve
(C,kVkC). The following theorem suggests its continuity.

Theorem 5.1 Let us be given two connected compact smooth Rie-
mannian manifolds M and N, and a map T between them. If M,N,T
satisfy Condition 3.1, then for any positive constant C > 0,C0 =
C+ e > 0, we have:

��kVkC0 �kVkC
�� 4BT

p
|e|/C+2BT |e|/C.

Notice that BT is in fact an upper-bound for the constrained
norms, i.e., kVkC  BT ,8C > 0. Thus the inequality proven in the-
orem 5.1 only makes sense when e is close to zero. At the same
time, the inequality suggests that for a perturbation of fixed magni-
tude |e|, the larger C is, the more stable kVkC is.

5.3. Stability with Respect to Perturbed Inputs

On the other hand, we can also fix the scale C and add perturbations
on the shapes M and N in the same way as we did in Section 4. I.e.,
we perturb M and N to M̃ and Ñ, which are (aM ,bM)-close and
(aN ,bN)-close to the unperturbed ones respectively. Let V and Ṽ be
the corresponding area-based shape difference operators defined in
Eq. 4 and Eq. 8.

In order to define the constrained norm for Ṽ , we first construct
the corresponding functional Ẽ(w):

Ẽ(w) =
R

N wṼ (w)dµ̃NR
N w2dµ̃N

=

R
M TF (w)2dµ̃MR

N w2dµ̃N
(11)

The construction of the corresponding subdomain Ã(C) follows the
same spirit of Eq. 10:

Ã(C) = {w :
Z

N
hrw,rwig̃N dµ̃N C

Z

N
w2dµ̃N} (12)

Based on the above constructions of Ã(C) and Ẽ(w), the
constrained norm in the perturbed case is defined as kṼkC =
max Ẽ(w) s.t. w 2 Ã(C). The main result of this section is stated in
the following theorem, which claims that at each scale C, the con-
strained norm is stable with respect to perturbations on the input
shapes.

Theorem 5.2 Let M,N be two connected compact smooth shapes
without boundary, and T be a map from M to N. Let M̃ (resp.Ñ) be
a smooth manifold that is (aM ,bM)-close (resp. (aN ,bN)-close) to
M (resp. N). V and Ṽ are the area-based shape difference opera-
tors constructed with M,N and M̃, Ñ respectively. If M,N,T satisfy
condition 3.1, then at any fixed scale C, we have:

lim
aM ,bM ,aN ,bN!1+

kṼkC = kVkC

5.4. Approximating kVkC

By investigating the behavior of the operators within the continu-
ously evolving subdomains A(C), we have a more stable and poten-
tially richer understanding of V than that arising from S(k). How-
ever, in practice, calculating kVkC is far from being obvious. Since
neither E(w) nor A(C) is convex, there is no guarantee on achieving
the global optimum with the constraint A(C).

For the sake of consistency, we denote by kVkk the maximum of
E(w) within subdomain S(k) . As discussed in [OBCCG13], com-
puting kVkk in the case where M and N are finite discrete meshed
shapes is straightforward.

First note that the construction of A(C) and S(k) are closely re-
lated. The following proposition quantifies this relationship.

Proposition 5.2 Let M,N and T be a pair of manifolds and a map,
which satisfy Condition 3.1. IF lk,lk+1 are two consecutive eigen-
values of the LB operator on N, then the constrained norms with
respect to A(lk) and S(k) satisfy the following inequality:

0 kVklk
�kVkk  4BT

p
lk/lk+1 +2BT lk/lk+1

As a direct corollary, the smaller lk/lk+1 is, the better kVkk
approximates to kVklk

. It is also worth noting that this proposi-
tion indicates a general criterion of choosing a discrete scale: it is
preferable to choose k such that the gap between lk and lk+1 is
significant. And as we will discuss soon, this proposition suggests
that if the spectral gap is clear, then the maximizer realizing kVkk
is a nice candidate of initial guess for iterative algorithms for max-
imizing E(w) constrained in A(lk).

Secondly, a major obstacle of optimizing within A(C) is that it is
of infinite dimension. Even in the discrete case, the problem scale
is still determined by the number of points, which can range in the
tens or hundred of thousands. The following proposition suggests
that there is a trade-off between accuracy and complexity in this
optimization.

Proposition 5.3 For a fixed parameter C, let e > 0 and ll+1 be the
smallest eigenvalue of the LB operator on N such that C  ell+1.
Now denote kVkC,l by the optimum of the following problem:

maxE(w) s.t. w 2 A(C)\S(l). (13)

Then kVkC�kVkC,l is of order
p

e.
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5.5. Analysis for the Conformal Shape Difference Operator

In essence, with the energy functional E(w), the framework
of [OBCCG13] casts the problem of extracting information from
the area-based shape difference operator as a series of constrained
optimization problems.

Note that the framework of [ROA⇤13] introduces two shape dif-
ference operators which encode different types of distortion be-
tween shapes. A natural extension of the multi-scale framework
of [OBCCG13] is to construct parallel functionals and subdomains
with respect to the conformal shape difference operators, R.

We first define a functional, F , acting on H1
0,n(N) as the follow-

ing:

F(w) =
R

Nhrw,rR(w)igN dnNR
Nhrw,rwigN dnN

=

R
MhrTF (w),rTF (w)igM dnMR

Nhrw,rwigN dnN
.

(14)
where w is not a constant function so that

R
Nhrw,rwigN dnN 6= 0.

On the other hand, modifying the multi-scale subdomain con-
struction is necessary to suit the new functional. If we use A(C)
in the conformal case, then F(w) is not well-defined if w is the
constant function. In fact, following the same idea proving Proposi-
tion 5.1, for any w2A(C), we can find w̄2A(C�e) such that w�w̄
is a constant function, which in turn means that F(w) = F(w̄).
To obtain multi-scale results, we construct another subdomain,
Acon f (C), for the conformal case.

Acon f (C) = A(C)\{w :
Z

N
wdnN = 0} (15)

and we define kRkC = maxF(w) s.t. w 2 Acon f (C). It is worth not-
ing that if C < l2, the second eigenvalue of �DN , then Acon f (C)
is empty. Thus C must be at least l2 so that kRkC is well-defined.
In practice, it is easier computationally to maximize F(w) in the
subdomains spanned by finite number of eigenfunctions. Follow-
ing the same arguments above, we modify S(k) to obtain Scon f (k) =
span{j2, · · · ,jk}, where k must be at least 2.

After the above formulations, we validate the stability of R with
respect to the change in scale.

Theorem 5.3 Let M,N be two connected compact smooth Rieman-
nian manifolds, and T be a map between them. Let l2 be the first
non-zero eigenvalue of �DN. If M,N,T satisfy condition 3.1, then
for C > l2,C0 =C+ e > l2 we have:

��kRkC0�kRkC
�� 4DT

s
l2|e|

(C�l2)(C� |e|) +2DT
l2|e|

(C�l2)(C� |e|)

Then we consider perturbations on the input manifolds. As be-
fore, we denote by M̃ and Ñ the perturbed version of M and N.
The perturbed conformal shape difference operator, R̃, is defined in
Eq. 9. The associated functional, F̃(w), is defined as follows:

F̃(w) =
R

MhrTF (w),rTF (w)ig̃M dµ̃MR
Nhrw,rwig̃N dµ̃N

. (16)

Accordingly, we define Ãcon f (C) = Ã(C) \ {
R

N wdµ̃N = 0} and
kR̃kC = max F̃(w) s.t. w 2 Ãcon f (C).

Unfortunately, the strategy of proving Theorem 5.2 does not
work in this case. That is because the interleaved structure is not
guaranteed between the new subdomains Acon f (·) and Ãcon f (·):
a function satisfying

R
N wdnN = 0 does not necessarily fulfillR

N wdµ̃N = 0 simultaneously.

6. Experimental Results

In this section, we demonstrate experimental results that are related
to our theoretical analyses. Notice that implementing the frame-
works of [ROA⇤13, OBCCG13] on a pair of meshed shapes M,N
requires essentially an approximation of the LBO on each of the
shape. That is usually done by computing two matrices AM ,WM , the
former is a diagonal matrix whose (i, i)-th entry is the area element
(see [MDSB03]) around the i-th vertex in M, and the latter is the
stiffness matrix computed with the cotangent scheme (see [PP93]).
The LBO is then approximated by A�1

M WM .

6.1. Approximating kVkC
Now suppose that we are given a pair of meshed shapes, we demon-
strate how to search for a local optimum of the constrained non-
linear optimization with the barrier function method. Let M,N be
two meshed shapes consisting of nM and nN vertices respectively.
The functional map TF induced by T is represented by a matrix
P 2 RnM⇥nN in the discrete setting. Let Fk 2 RnN⇥k be a matrix
whose columns are the first k eigenvectors solved by WN f = lAN f .

Then calculating kVkC in this setting is equivalent to maximize
the following function:

max
f T PT AMP f

f T AN f
,s.t.

f T LN f
f T AN f

C

Based on that a barrier function is constructed

G(b, f ) =� f T PT AMP f
f T AN f

�blog(C� f T LN f
f T AN f

)

As suggested in proposition 5.2, we take the optimizer that realizes
kVkk as the initial guess for minimizing G(1, f ). After obtaining
f1 as a local minimizer, we take it as the initial guess for G( 1

2 , f ).
The iterations continue until there is no more significant improve-
ment or b is sufficiently small. Note that this method, while being
easy to implement can potentially be improved with more advanced
constrained optimization techniques. We leave the exploration of
alternatives as an interesting direction for future work.

As mentioned in section 5.1, both subdomains S(k) and A(C)
are designed to control the Dirichlet energy of feasible solutions.
The difference between them is that in the former case the energy
is controlled by truncating high frequency components while in the
latter case high frequency components are allowed but with implicit
bounds on their weights. To demonstrate this, we consider the pair
of deformed spheres shown in Figure 1 and the map therein and
compute the local maxima and maximizers of kVkC with different
scales C ranging from 0 to 2.

First, we applied the algorithm described above to compute the
maximum of E(w) constrained in A(C), and then computed the
maximum constrained in S(k),k = 1,2, · · · ,36, where l36 < 2 <
l37. Figure 7 shows the plots representing the maximal energy with
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respect to the old and the new subdomain construction, note that
since shape N (undeformed sphere) admits several sets of repeated
eigenvalues, the energy plot is irregular, while the curve (C,kVkC)
is continuous and always above the points (lk,kVkk). On the other
hand, Figure 8 shows the portion of each of the four local maximiz-
ers expressed by the first k eigenfunctions (k = 1⇠ 300). It can be
seen that the four local highlighted functions are well-expressed by
the first 300 eigenfunctions (with l300 = 15.20). The blue curve in-
dicates that the local maximizer at C = 0.5 is almost fully spanned
by the first 50 eigenfunctions, whereas the purple curve indicates
that the first 50 only represent around 75 percent of the norm of the
one at C = 2.

Figure 7: Plots of energy at changing scales with respect to differ-
ent subdomain constructions.

3.16 8.37 12.48

Figure 8: The X-axis indicates the index of eigenval-
ues/eigenfunctions, and the Y-axis represents the ratio
Âk

i=1 a2
i /Âi�1 a2

i , where the maximizer is decomposed as
Âi�1 aiji. Three eigenvalues, l50,l150 and l250, are labeled
accordingly along the X-axis.

Note that since the barrier function method is a gradient-based
technique, the results depend on the initial guess and can get
trapped in local maxima. Such issues will be amplified when deal-
ing with more sophisticated input shapes, where the global maxima
are not as clear as in the simple shapes demonstrated above.

In fact, the new subdomain construction enjoys better theoreti-
cal properties, while loses computational simplicity as a trade-off.
However, as suggested in Proposition 5.2, the original optimization
problem is closely related to the new one. From this point of view,
we will use the original framework which optimizes within S(k),
and reduces to solving a generalized eigenvalue problem in analyz-
ing more complicated shapes in the following experiments, which
also illustrates remarkable stability.

6.2. Robustness of the Area-based Shape Difference Operator

We have observed robustness of the frameworks of [OBCCG13]
with respect to perturbations on the input meshes in Figures 1 and 3.
In Figure 9, we generated Ns by simplifying mesh N: the former
consists of 6250 vertices while the latter consists of 12499 vertices.
Locally, the mesh connectivity is significantly changed, however,
as shown in the top two rows of Figure 9, the highlighted functions
at scales k = 20,50,200 are all consistent.

Besides changing the mesh structure, we now perturb the input
meshes by introducing noise in the vertex positions. In the bottom
row of Figure 9, M0 and N0

s are obtained by perturbing the vertices
on M and Ns along the respective normal directions. In particular,
we perturb a point p to p0 = p+ 1/2d̄xpnp, where d̄ is the mean
edge length of the mesh, xp is i.i.d N (0,1) and np is the normal
vector at point p. Under the additional point perturbations, the re-
sulting highlighted functions are still consistent.

k = 20 k = 50 k = 200

M N

Ns

N �
sM �

Figure 9: Top row: we compared two shapes in one-to-one cor-
respondence, M and N, and depicted the highlighted functions at
scales k = 20,50,200 on N. Middle row: we preserved M while
simplifying N so that the number of vertices was reduced by half.
Bottom row: the same result after perturbing the vertices of both M
and Ns with Gaussian noise.

6.3. Pipeline for Point Cloud Data

Inspired by the stability of the shape difference operators and the
highlighted distortion functions in theory and in the case of triangle
meshes, below we aim to apply this framework to point cloud data.
Approximating the LBO of a manifold with a certain Laplacian
of a graph built on top of points sampled from the manifold is a
problem that has been well-studied. In particular, our pipeline takes
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advantage of the results in [HAvL07], where the authors show that
given a point cloud X sampled from a Riemannian manifold N, the
un-normalized graph Laplacian of a certain weighted graph (which
we estimate with WX below) approximates to �r�1DN , where r is
the sampling density of X . On the other hand, we use the framework
in [BCCSLD11] to estimate the sampling density. The matrix AX
below, serves as an estimator of r�1, therefore we use A�1

X WX as
an approximation of the LBO.

Our pipeline for implementing the frameworks above on shapes
represented as point clouds is described in Algorithm 1, where we
compute for an input point cloud X two matrices AX ,WX and then
use them as AM ,WM in the same way as in the mesh setting. In
all the experiments involving point cloud inputs, we always use
K = 40, i.e., we compute 40-NN graphs on all point clouds.

Algorithm 1: Pipeline for Point Cloud Inputs
input : A point cloud X = {x1,x2, · · · ,xn} and an integer K
output: Two matrices AX and WX

AX ,KX ,WX  � zero matrices of dimension n⇥n
for xi 2 X do

N(xi,K) � the K nearest neighborhoods of xi in X\xi

AX (i, i) � ( Â
x j2N(xi,K)

kxi� x jk2)3/2

t �
n

Â
i=1

Â
x j2N(xi,K)

kxi� x jk/Kn

if x j 2 N(xi,K) or xi 2 N(xi,K) then
KX (i, j) � exp(�kxi� x jk2/2t2)

for i = [1..n] do
di � mean of non-zero elements in the i-th row of KX

for KX (i, j) 6= 0 do
K̃X (i, j) � KX (i, j)/did j

if i = j then
WX (i, j) �Â

j
K̃X (i, j)

else
WX  ��K̃X (i, j).

Using these constructions, we observe that the robustness is evi-
denced in the results from our PCD setting as well. In Figure 10, we
tested with point clouds sampled from horses (8431 points) and cats
(7207 points). Point clouds X ,Y come from two meshes in point-
to-point correspondence, the highlighted functions on Y are shown
to be consistent with the ones computed in the mesh setting on N
(see the right-most column). We then resampled point clouds on
shape Y while keeping the total number of points unchanged, and
computed the highlighted function with respect to X and the resam-
pled point cloud. At the end, a further step was taken to add noisy
points on the resampled point clouds. Given a point cloud, we first
randomly select np points from it. Then for a selected point p, we
perturb p = (px, py, pz) 2 R3 to (px + dx, py + dy, pz + dz) where
dx,dy,dz are one-dimension random variables distributed normally
with mean 0, and standard deviation d̄ , which is the median of
the distances from a point to its nearest neighbor. Repeating the

displacements r times for each selected point, we enlarge the origi-
nal point cloud with npr more points. The stability of (area-based)
shape difference operator is again verified by the consistency of
areas highlighted by the functions.

On the other hand, we have seen in Figure 4 that although the
eigenfunctions of the graph Laplacian on the point cloud are dis-
tinct from those of the LBO on the mesh, the eigenfunctions of
the shape difference operators are comparable. We further explore
this by considering the pair of cats taken from the bottom row of
Figure 10. In particular, we computed the eigenfunctions of the
LBO on mesh N and of the graph Laplacian on Y and the per-
turbed resampled point cloud. The highlighted functions and part
of the eigenfunctions with respect to the three representations are
depicted in Figure 11. Again, changing the representation of the
shape causes significant perturbations on the eigenfunctions, how-
ever, as illustrated in Figure 10, the areas indicated by the respective
highlighted functions remain similar to each other.

6.4. Analyzing Shape Collections

The experiment above shows the stability of the shape difference
operators for analyzing maps between a single pair of shapes in a
multi-scale way. As we prove in Section 4, the shape difference op-
erators are stable with respect to perturbations on the input shapes.
To demonstrate this, we repeat one of the experiments in [ROA⇤13]
(see Figure 3 on page 7 therein), but in the point cloud setting. We
compute the shape difference operators and then vectorize them so
that we can apply PCA. The PCA embeddings in R2 are depicted
in the right two columns of Figure 12.

The top row of Figure 12 depicts the embeddings for the de-
formed spheres. Both layouts uncover the grid structure of the
original shape collection. The results in [ROA⇤13] suggest that in
both area and conformal cases, the variances of the first two prin-
cipal components are evenly close to 50 percents. In our results:
(1) Area-based case: though the sum of percentages add up to al-
most 100, the grid is unbalanced and stretched along the direction
of the first principal component; (2) Conformal case: balance pre-
served, the shapes of the first and the second rows are not well dif-
ferentiated, suggesting that the operators are less sensitive to small
changes.

The bottom row shows the layouts for the galloping horse se-
quence, which consists of two cycles of continuous movement of
the horse. Our results successfully capture the circular structure of
the sequence, as depicted in the layout. The plot also reveals the
fact that there are more conformal distortions than area distortions
in this data, as the range of layout in the third column is larger than
that in the second one.

Overall, we conclude from these experiments that although the
results from the PCD setting are not always as accurate as those
from the mesh setting, our results capture most of the basic and
significant information hidden in the data. Considering that we start
from a much coarser understanding of the input shapes , these re-
sults are non-trivial and quite remarkable, especially given the well-
known instability in the eigenfunctions of the LBO.
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Re-sampling NoisyYX N

Figure 10: Robustness of results from the PCD setting: X and Y are the original point clouds extracted from meshes. In the third column,
we resampled point clouds on the polygonal mesh, and then we added noisy point displacements to that in the forth column, which are both
generated with np = 400,r = 20, i.e. there are 8000 more noisy points (see the text for details). All the area-based highlighted functions are
computed at scale k = 50. On the rightmost column are the highlighted functions from the mesh setting.

Highlighted Function

Figure 11: Left: the highlighted functions on the mesh (top), the noiseless point cloud (middle) and the noisy point cloud (bottom). The 11th

to the 15th eigenfunctions of the LBO on mesh (top), the graph Laplacian constructed on top of the original point cloud (middle) and of the
resampled noisy point cloud (bottom).

7. Conclusion and Future Work

In this paper we present two types of stability guarantees for the
shape difference operators. We also introduce a new multi-scale
scheme for extracting information from the shape difference op-
erators, which is provably stable in contrast to the original one
proposed in [OBCCG13]. From a practical point of view, we
present a pipeline for constructing shape difference operators on
point clouds, which extends the range of applications of the related
frameworks.

Several follow-up problems arise along our investigation. We
especially remark the optimization problem attached to our new
multi-scale scheme. As the new scheme provides more stable re-
sults in theory, it is appealing to design an efficient implementa-
tion. It is as well appealing to consider more rigorous analysis of
our pipeline for point cloud data.
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Appendix A:

Here we outline the proofs for the main theorems in this paper. We
refer interested readers to the corresponding supplemental material
for detailed proofs.

Theorem 4.1 and Theorem 4.2: First we can prove L2(N) =
L2(Ñ) with proposition 3.2. To verify the convergence, we first
prove that

R
N fV f dnN �

R
N fṼ f dnN vanishes as aM ,aN ,bM ,bN

converge to 1 simultaneously. Then due to the fact that V is self-
adjoint, we prove

R
N gV f dnN �

R
N gṼ f dnN vanishes under the

same condition. Lastly, we let g =V f � Ṽ f and finish the proof.

The idea of proving in the case of conformal shape differ-
ence operator is analogous to the area-based one, but provingR

Nhr f ,rR f igN dnN �
R

Nhr f ,rR̃ f igN dnN ! 0 is slightly more
complicated as both the measure and the inner-product are per-
turbed.

Theorem 5.1 and Theorem 5.3: Given parameters C0 > C, our
strategy is to find for any function w 2 A(C0) a function w̄ 2 A(C),
such that |E(w)�E(w̄)| is upper-bounded by some variable with
respect to C0�C, which vanishes as C0 ! C. Regarding the con-
formal case, we apply the same idea, i.e., find for any function
w 2 Acon f (C0) a function w̄ 2 Acon f (C), such that |F(w)�F(w̄)| is
uniformly bounded by a variable depending on C0�C.

Theorem 5.2: The key observations to proving this theorem are:
first, A(C) and Ã(C) are interleaving, i.e., for any C > 0 we can
find a C0 such that A(C) ⇢ A(C0) and vice versa; second, given a
w2 L2(N) = L2(Ñ), the ratio of E(w) to Ẽ(w) is two-side bounded
with respect to aM ,bM ,aN and bN . The theorem is obvious then
after verifying those observations.
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1. Proofs for Results in Section 3

1.1. Proposition 3.1

Since
R

N jij jdnN = di j , we have
R

N u2dnN =
R

N Âi(aiji)
2dnN =

Âi
R

N a2
i
R

N jidnN +Âi, j
R

N aia j
R

N jij jdnN = Âi a2
i , which verifies

the first equation.

Regarding the second one, according to the Green for-
mula, we have

R
Nhrji,rj jigN dnN =

R
N ji(�DN)j jdnN =

l j
R

N jij jdnN = l jdi j. Therefore
R

Nhru,ruigN dnN =

Âi a2
i
R

Nhrji,rjiigN dnN + Âi, j aia j
R

Nhrji,rj jigN dnN =

Âi a2
i li.

1.2. Proposition 3.2

Proof Without loss of generality, we consider a point p on the 2-
dimension manifold N, let TpN be the tangent plane at point p. By
the definition of a manifold, there exist a open chart (U,f) such
that U is an open set of N containing point p and f : U ! R2 is a
homomorphism.
We assume that {x1,x2} is a local coordinate system in the chart
U . Then { ∂

∂x1

��
p,

∂
∂x2

��
p} form a basis of TpN. It’s well-known that

a metric gN at point p is a symmetric bi-linear positive definite
form on TpN, especially, it admits a matrix representation un-
der {x1,x2}, which we denote by [g] and its (i, j)th entry [g]i, j =
h ∂

∂xi

��
p,

∂
∂x j

��
pigN , i, j 2 {1,2}.

It is well known that a Riemannian metric induces a volume, the
connection can be characterized by the following theorem (Theo-
rem 3.11 in [Gri06]).

Theorem 1.1 For any Riemannian manifold (N,gN), there exists a
unique measure nN on L(N) (the family of all measurable sets in
N) such that, in any chart (U,f),

dnN =
p

det[g]dl (1)

where l is the Lebesgue measure in f(U).

Now we let ñN be the volume induced by g̃N , and prove that if for
any h 2 TpN, a�1  hh,hig

hh,hig̃
 a, then

a�1dñN  dnN  adñN (2)

According to the Theorem 1.1, it suffices to prove that

a�2  det[g]
det[g̃]

 a2 (3)

To prove that, we first argue that the ratio of det[g] to det[g̃] is in-
variant with respect to a change of the local coordinate system.
Assume that another local coordinate system is obtained by let-
ting (y1,y2) = F(x1,x2), where F : R2 !R2 is a smooth map. The
matrices with respect to {y1,y2} is denoted as [g]y and [g̃]y. It fol-
lows from Lemma 3.12 in [Gri06] that [g] = J(F)T [g]yJ(F) and
[g̃] = J(F)T [g̃]yJ(F), in which J(F) is the Jacobian matrix of F .
Hence we have the following invarance:

det[g]y
det[g̃]y

=
det(J(F)T [g]J(F))

det(J(F)T [g̃]J(F))
=

det[g]
det[g̃]

(4)

The invariance allows us to pick freely a local coordinate system
without affecting the ratio of the determinants . We then pick one
such that the matrix representation of g̃ is an identity matrix and
denote the corresponding orthonormal basis of TpN by {e1,e2}.
Thus we have det[g̃] = 1, and in the following we bound det[g]. If
there exist an eigenvalue of [g], l, that is larger than a, then we let
u be the associated eigenvector and h = u1e1 + u2e2. As a conse-
quence, hh,hig = uT [g]u = l > a. Since [g̃] is an identity matrix,
we have hh,hig̃ = 1 and the ratio hh,hig

hh,hig̃
exceeds a, which contra-

dicts the assumption. Since g is positive definite at point p, thus all
its eigenvalues are positive and not larger than a. Thus the determi-
nant of [g], which equals the product of all the eigenvalues, is not
larger than a2. The other side of Inequality 3 can be proven in the
same way.
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On the other hand, thanks to the definition of (a,b)-close, we have
b�1dµ̃N  dñN  bdµ̃N . Combining them together, we have

(ab)�1dµ̃N  dnN  abdµ̃N (5)

Lastly we proceed to prove that

a�1  hr f ,r f igN

hr f ,r f ig̃N

 a (6)

In the local coordinate {x1,x2}, the gradient of a smooth func-

tion f with respect to metric g is rg f =
2

Â
i, j=1

[g]i, j
∂ f
∂x j

∂
∂xi . Notic-

ing that the definition of rg f depends on [g], we consider
the cotangent vector d f = [g]r f , which is independent of g,
and we have hr f ,r f ig = ([g]r f ,r f ) = ([g]�1[g]r f , [g]r f ) =
([g]�1d f ,d f ) = hd f ,d f ig�1 . Similarly we have hr f ,r f ig̃ =
hd f ,d f ig̃�1 .
We use the same basis (e1,e2) of TpN as above. For g̃, in this ba-
sis [g̃] and its inverse [g̃]�1 are both identity matrices. As we’ve
proven that all eigenvalues of [g] don’t exceed a, we have the
smallest eigenvalue of [g]�1 is at least a�1. Therefore we derive
that hr f ,r f ig = hd f ,d f ig�1  ahd f ,d f ig̃�1 = ahr f ,r f ig̃ The
other side of Inequality 6 is proven symmetrically.

1.3. Proposition 3.3

Proof Since T is a diffeomorphism, its inverse exists and is a
smooth map from N to M. For the sake of clarity, we denote the
inverse by J. Let gM be the Riemannian metric on M, its pullback
induced by J, J⇤gM , is a metric on N:

hh,hiJ⇤gM(p) = hdJh,dJhigM(Jp),8h 2 TpN

where dJ is a push-forward such that dJh( f ) = h( f � J),8h 2
TpN and 8 f : M ! R.

At any point p 2 N, we consider the maximum of ratio hh,hiJ⇤gM (p)

hh,higN (p)

for h 2 TpN. Since a metric at p is a symmetric positive-definite
bi-linear form on the tangent space, therefore the maximum is the
largest eigenvalue of Ax = lBx, where A,B are respectively the ma-
trix representation of J⇤gM(p) and gN(p). It is obvious that the
maximum is continuous with respect to p, thus it is actually a con-
tinuous function on N. On the other hand, since N is compact we
know that there is a uniform up-bound for the ratio, in other words,
there exist a constant G such that

hh,hiJ⇤gM(p)  Ghh,higN(p),8p 2 N,h 2 TpN

We then consider volume nJ,gM and nN induced by J⇤gM and gN
respectively and let dnJ,gM = rdnN . Following the same procedure
proving Proposition 3.2, we can prove that r(p) G,8p 2 N.
Now that the distortions on metric and measure induced by T is uni-
formly bounded, the distortion of the related inner product is also
uniformly bounded. In other words, there exist constants BT ,DT
such that the inequalities in Condition 3.1 hold.

2. Proofs for Results in Section 4

2.1. Theorem 4.1

Proof We first prove L2(N) = L2(Ñ) so that Ṽ f is well-
defined for f 2 L2(N). According to Proposition 3.2, we have

a�1
N b�1

N dµ̃N  dnN  aNbNdµ̃N . Then for any f 2 L2(N),
R

N f 2dµ̃N 
R

N f 2aNbNdnN = aNbN
R

N f 2dnN < 1, therefore
L2(N) ⇢ L2(Ñ). On the other hand, one can similarly verify that
L2(Ñ)⇢ L2(N), which implies L2(N) = L2(Ñ).
For f 2 L2(N) = L2(Ñ), it follows from the triangle inequality that

|
Z

N
fV f dnN �

Z

N
fṼ f dnN |

 |
Z

N
fV f dnN �

Z

N
fṼ f dµ̃N |+ |

Z

N
fṼ f dµ̃N �

Z

N
fṼ f dnN |

:= |P1|+ |P2|

Then we estimate P1 and P2 separately. According to Proposi-
tion 3.2, measure nM(resp.nN) and µ̃M(resp.µ̃N) satisfy

a�1
M b�1

M dµ̃M  dnM  aMbMdµ̃M

and

a�1
N b�1

N dµ̃N  dnN  aNbNdµ̃N .

Thus, we have

P1 =
Z

M
TF ( f )2dnM �

Z

M
TF ( f )2dµ̃M ( by definitions of V,Ṽ )

� (1�aMbM)
Z

M
TF ( f )2dnM ( since a�1

M b�1
M dµ̃M  dnM)

And similarly P1  (1�a�1
M b�1

M )
R

N TF ( f )2dnM . Noticing that 0
R

M TF ( f )2dnM  BT
R

N f 2dnN < 1 as f 2 L2(N), we have |P1|
vanishes as aM ,bM ! 1+.
Regarding P2, we define two complementary subsets of N with
respect to f : I+ = {x 2 N : f (x)Ṽ f (x) � 0} and I� = {x 2 N :
f (x)Ṽ f (x)< 0}.

P2 =
Z

I+
f Ṽ f (dµ̃N �dnN)+

Z

I�
f Ṽ f (dµ̃N �dnN)

 (1�a�1
N b�1

N )
Z

I+
f Ṽ f dµ̃N +(1�aNbN)

Z

I�
f Ṽ f dµ̃N

And we obtain the lower bound similarly:

P2 =
Z

I+
f Ṽ f (dµ̃N �dnN)+

Z

I�
f Ṽ f (dµ̃N �dnN)

� (1�aNbN)
Z

I+
f Ṽ f dµ̃N +(1�a�1

N b�1
N )

Z

I�
f Ṽ f dµ̃N

By the formulation of Ṽ , both f and Ṽ f are functions in
L2(Ñ), thus it follows from the Cauchy-Schwarz inequal-

ity that |
R

I± f Ṽ f dµ̃N | 
qR

I± f 2dµ̃N
R

I±(Ṽ f )2dµ̃N 
qR

N f 2dµ̃N
R

N(Ṽ f )2dµ̃N < 1. Then P2 vanishes as aN ,bN

tend to 1.
To summarize,

R
f (V f �Ṽ f )dnN ! 0 for any f 2 L2(N) = L2(Ñ).

Given f ,g 2 L2(N), since both V and Ṽ are self-adjoint operators,
direct computation shows that

4
Z

N
f (V g� Ṽ g)dnN =

Z

N
( f +g)(V � Ṽ )( f +g)dnN�

Z

N
( f �g)(V � Ṽ )( f �g)dnN

As f +g, f �g 2 L2(N), it follows immediately that for any pair of
f ,g,

R
N f (V g� Ṽ g)dnN vanishes as aM ,bM ,aN , and bN converge
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to 1 simultaneously. Especially we let f = V g� Ṽ g 2 L2(N), and
conclude that lim

aM ,aN ,bM ,bN!1+

R
N(V g� Ṽ g)2dnN = 0.

2.2. Theorem 4.2

Proof We first prove H1
0 (N) = H1

0 (Ñ) so that R̃ f is well-defined
for f 2 H1

0 (N). Since (N,gN ,nN) and (N, g̃N , µ̃N) are on top of the
same smooth topological manifold, they share the same boundary.
Therefore if f is zero on the boundary of the formal, then it is zero
on the boundary of the latter.
We now prove if

R
N f 2 + hr f ,r f igN dnN < 1, then

R
N f 2 +

hr f ,r f ig̃N dµ̃N < 1 and vice versa. First according to Proposi-
tion 3.2, we have

a�1
N b�1

N dµ̃N  dnN  aNbNdµ̃N

and for any smooth function f ,

a�1
N hr f ,r f ig̃N  hr f ,r f igN  aNhr f ,r f ig̃N

Then for any f 2 H1
0 (N),

R
N f 2 + hr f ,r f ig̃N dµ̃N 

R
N f 2aNbNdnN +

R
N aNhr f ,r f igN aNbNdnN 

aNbN(
R

N f 2dnN + aN
R

Nhr f ,r f igN dnN) < 1, therefore
H1

0 (N) ⇢ H1
0 (Ñ). On the other hand, one can similarly verify that

H1
0 (Ñ)⇢ H1

0 (N), which implies H1
0 (N) = H1

0 (Ñ).
Now considering f 2 H1

0 (N) = H1
0 (Ñ), it follows from the triangle

inequality that

|
Z

N
hr f ,rR f igN dnN �

Z

N
hr f ,rR̃ f igN dnN |

|
Z

N
hr f ,rR f igN dnN �

Z

N
hr f ,rR̃ f ig̃N f dµ̃N |

+ |
Z

N
hr f ,rR̃ f ig̃N dµ̃N �

Z

N
hr f ,rR̃ f ig̃N dnN |

+ |
Z

N
hr f ,rR̃ f ig̃N dnN �

Z

N
hr f ,rR̃ f igN dnN |

:=|P1|+ |P2|+ |P3|

Then we estimate P1,P2 and P3 separately. According to Proposi-
tion 3.2, measures nM and µ̃M satisfy

a�1
M b�1

M dµ̃M  dnM  aMbMdµ̃M

and for any smooth functions fM on M,

a�1
M hr fM ,r fMig̃M  hr fM ,r fMigM  aMhr fM ,r fMig̃M

Thus, we have by the definitions of R, R̃

P1 =
Z

M
hrTF ( f ),rTF ( f )igM dnM �

Z

M
hrTF ( f ),rTF ( f )ig̃M dµ̃M


Z

M
hrTF ( f ),rTF ( f )igM dnM �a�1

M

Z

M
hrTF ( f ),rTF ( f )igM dµ̃M

 (1�a�2
M b�1

M )
Z

M
hrTF ( f ),rTF ( f )igM dnM

The lower bound of P1 is estimated in the same way, and we have

P1 � (1�a2
MbM)

Z

M
hrTF ( f ),rTF ( f )igM dnM

Noticing that 0 
R

MhrTF ( f ),rTF ( f )igM dnM 

DT
R

Nhr f ,r f igN dnN < 1 as f 2 H1
0 (N), we have |P1|

vanishes as aM ,bM ! 1+.
Regarding P2, we define two complementary subsets of N with re-
spect to f : I+ = {x 2 N : hr f ,rR̃ f ig̃N � 0} and I� = {x 2 N :
hr f ,rR̃ f ig̃N < 0}.

P2 =
Z

I+
hr f ,rR̃ f ig̃N (dµ̃N �dnN)+

Z

I�
hr f ,rR̃ f ig̃N (dµ̃N �dnN)

 (1�a�1
N b�1

N )
Z

I+
hr f ,rR̃ f ig̃N dµ̃N

+(1�aNbN)
Z

I�
hr f ,rR̃ f ig̃N dµ̃N

And we obtain the lower bound similarly:

P2 =
Z

I+
hr f ,rR̃ f ig̃N (dµ̃N �dnN)+

Z

I�
hr f ,rR̃ f ig̃N (dµ̃N �dnN)

� (1�aNbN)
Z

I+
hr f ,rR̃ f ig̃N dµ̃N

+(1�a�1
N b�1

N )
Z

I�
hr f ,rR̃ f ig̃N dµ̃N

If the integrals of hr f ,rR̃ f ig̃N on I+ and I� are both finite, then
P2 vanishes as aN ,bN tend to 1. In fact, by the formulation of R̃,
both f and R̃ f are functions in H1

0 (Ñ), thus it follows from the
Cauchy-Schwarz inequality that

|
Z

I±
hr f ,rR̃ f ig̃N f dµ̃N |


rZ

I±
hr f ,r f ig̃N dµ̃N

Z

I±
hrR̃ f ,rR̃ f ig̃N dµ̃N


rZ

N
hr f ,r f ig̃N dµ̃N

Z

N
hrR̃ f ,rR̃ f ig̃N dµ̃N

<1

Lastly, we argue that P3 vanishes as aM ,aN ,bM and bN tend to
1. Since the metric defines a symmetrical inner products on the
tangent spaces, we have hr f ,rR̃ f ig̃N = 1

4 (hr( f + R̃ f ),r( f +
R̃ f )ig̃N � hr( f � R̃ f ),r( f � R̃ f )ig̃N ) and hr f ,rR̃ f igN =
1
4 (hr( f + R̃ f ),r( f + R̃ f )igN �hr( f � R̃ f ),r( f � R̃ f )igN ).
On the other hand, as aN ,bN ! 1, the following convergence holds

lim
aN ,bN!1

hr( f ± R̃ f ),r( f ± R̃ f )ig̃N = hr( f ± R̃ f ),r( f ± R̃ f )igN

Therefore we have

lim
aN ,bN!1

hr f ,rR̃ f ig̃N = hr f ,rR̃ f igN

which assures that P3 vanishes as aN ,bN ! 1.
To summarize,

R
hr f ,r(R f � R̃ f )igN dnN ! 0 for any f 2

H1
0 (N) = H1

0 (Ñ). Given f ,g 2 H1
0 (N), since both V and Ṽ are self-

adjoint operators, direct computation shows that

4
Z

N
hr f ,r(Rg� R̃g)igN dnN

=
Z

N
hr( f +g),r(R� R̃)( f +g)igN dnN

�
Z

N
hr( f �g),r(R� R̃)( f �g)igN dnN

As f + g, f � g 2 H1
0 (N), it follows immediately that for any pair
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of f ,g,
R

Nhr f ,r(Rg� R̃g)igN dnN vanishes as aM ,bM ,aN , and bN
converge to 1 simultaneously. Especially we let f = Rg � R̃g 2
H1

0 (N), and conclude that lim
aM ,aN ,bM ,bN!1+

R
Nhr(V g�Ṽ g),r(V g�

Ṽ g)igN dnN = 0.

3. Proof for Results in Section 5

3.1. Proposition 5.1

Proof It follows from the construction that if C � lk, then S(k)
is a subset of A(C). To see that S(k) is a proper subset let we =
(1�e)j1+ejk+1, then w 62 S(k). Notice that since N is connected,
l1 = 0, thus for e sufficiently close to 0, we 2 A(lk).

3.2. Theorem 5.1

We first prove an auxiliary lemma.

Lemma 3.1 Under the same assumptions of Theorem 5.1, for any
w0,w1 2 L2(N) such that neither

R
N w2

0dnN nor
R

N(w0 +w1)
2dnN

is zero, the absolute difference between E(w0 +w1) and E(w0) is
bounded as below:

|E(w0 +w1)�E(w0)| 4BT
p

r+2BT r

where BT is the constant in Condition 3.1 and r =
R

N w2
1dnNR

N w2
0dnN

.

Proof We estimate the difference by two parts:

|E(w0 +w1)�E(w0)|
����E(w0 +w1)�

R
M TF (w0 +w1)

2dnMR
N w2

0dnN

����

+

����

R
M TF (w0 +w1)

2dnMR
N w2

0dnN
�E(w0)

����

:= P1 +P2

For P1, direct computation shows:

P1  BT

Z

N
(w0 +w1)

2dnN

����
1

R
N w2

0dnN
� 1R

N(w0 +w1)2dnN

����

 BT
2|
R

N w0w1dnN |+
R

N w2
1dnNR

N w2
0dnN

 2BT

qR
N w2

0dnN
R

N w2
1dnN

R
N w2

0dnN
+BT

R
N w2

1dnNR
N w2

0dnN

 2BT
p

r+BT r

The third line follows from the Cauchy-Schwarz inequality applied
on w0 and w1 which are both in L2(N).
P2 is estimated in the same way, and the bound is identical:

P2 
����

R
M TF (2w0w1 +w2

1)dnMR
N w2

0dnN

����


2|
R

M TF (w0)TF (w1)dnM |+BT
R

N w2
1dnNR

N w2
0dnN

 2BT

qR
N w2

0dnN
R

N w2
1dnN

R
N w2

0dnN
+BT

R
N w2

1dnNR
N w2

0dnN

 2BT
p

r+BT r

Putting them together yields |E(w0 + w1)� E(w0)|  4BT
p

r +

2BT r, where r =
R

N w2
1dnNR

N w2
0dnN

We then prove Theorem 5.1:

Proof We first consider e > 0, i.e., C0 > C. By definition, A(C) ⇢
A(C0), thus kVkC0 �kVkC � 0. We then estimate the upper bound
for the difference. Given w 2 A(C+e), our strategy is to construct a
function w̄ 2 A(C), such that |E(w)�E(w̄)| is uniformly bounded.
If w itself lies in A(C), then it’s trivial to set w̄ = w. We now
consider w 2 A(C + e)\A(C). Assume that

R
N w(�DN)wdnN =

(C+d)
R

N w2dnN , where 0 < d  e. Without loss of generality, we
further assume that w = Âi�1 aiji and Âi�1 a2

i = 1, where (ji,li)
is the i-th eigensolution to DNj+ lj = 0. According to Proposi-
tion 3.1, the constraint on w can be written as:

Â
i�2

a2
i li =C+d.

Let b1 be a real number such that b2
1 � a2

1 = d/C and b1a1 � 0.
The existence of b1 is assured by the fact that a1 is finite (in fact
|a1|  1). Then we set w̄ = b1j1 +Âi�2 aiji. Direct computation
shows that

R
N w̄(�DN)w̄dnN =Âi�2 a2

i li =C+d and
R

N w̄2dnN =

b2
1 +Âi�2 a2

i = b2
1 +1�a2

1 = 1+ d
C = C+d

C = 1
C
R

N w̄(�DN)w̄dnN ,
meaning that w̄ 2 A(C).
Thanks to Lemma 3.1, |E(w)�E(w̄)|= |E(w)�E(w+ w̄�w)|
4BT

p
r + 2BT r, where r =

R
N(w̄ � w)2dnN/

R
N w2dnN = (b1 �

a1)
2. Without loss of generality, we assume that a1,b1 � 0, thus

b1 =
q

a2
1 +d/C > a1. Moreover, b1 � a1 =

q
a2

1 +d/C � a1 =
d/Cp

a2
1+d/C+a1


p

d/C. Therefore r  d/C  e/C. Now assuming

that w⇤ is the maximizer of E(w) constrained in A(C+e), the above
derivation shows that there exists a w̄⇤ 2 A(C) such that |E(w⇤)�
E(w̄⇤)|  4BT

p
e/C + 2BT e/C. That implies kVkC+e �kVkC 

E(w⇤)�E(w̄⇤) |E(w⇤)�E(w̄⇤)| 4BT
p

e/C+2BT e/C.
Regarding the case e < 0, i.e., C0 < C. We simply replace C and
C + e in the previous analysis with C � e and C, respectively.
With identical derivations, for each w 2 A(C), we construct a func-
tion w̄ 2 A(C � d) such that |E(w)� E(w̄)| = |E(w)� E(w +
w̄ � w)|  4BT

p
r + 2BT r, where r  |e|/C. Similarly, we have

kVkC �kVkC+e  4BT
p
|e|/C+2BT |e|/C for e < 0.

Putting them together, we finish the proof of this theorem.

3.3. Theorem 5.3

Lemma 3.2 Under Condition 3.1, for any w0,w1 2 H1
0 (N) such

that neither w0 nor w0 +w1 is a constant function on N, the differ-
ence between F(w0 +w1) and F(w0) is bounded as below:

|F(w0 +w1)�F(w0)| 4DT
p

s+2DT s

where DT is the constant in Condition 3.1 and s =
R

N krw1k2dnNR
N krw0k2dnN

.
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Proof We estimate the difference by two parts:

|F(w0 +w1)�F(w0)|


����F(w0 +w1)�

R
MhrTF (w0 +w1),rTF (w0 +w1)igM dnMR

Nhrw0,rw0igN dnN

����

+

����

R
MhrTF (w0 +w1),rTF (w0 +w1)igM dnMR

Nhrw0,rw0igN dnN
�F(w0)

����

:= P1 +P2

For P1, direct computation shows:

P1  DT

Z

N
hr(w0 +w1),r(w0 +w1)igN dnN

����
1R

Nhrw0,rw0igN dnN

� 1R
Nhr(w0 +w1),r(w0 +w1)igN dnN

����

 DT
2|
R

Nhrw0,rw1igN dnN |+
R

Nhrw1,rw1igN dnNR
Nhrw0,rw0igN dnN

 2DT

pR
Nhrw0,rw0igN dnN

R
Nhrw1,rw1igN dnNR

Nhrw0,rw0igN dnN

+DT

R
Nhrw1,rw1igN dnNR
Nhrw0,rw0igN dnN

 2DT
p

s+DT s

The third line follows from the Cauchy-Schwarz inequality applied
on w0 and w1 which are both in L2(N).
P2 is estimated in the same way, and the bound is identical:

P2 
����2

R
MhrTF (w0),rTF (w1)igM + hrTF (w1),rTF (w1)igM dnMR

Nhrw0,rw0igN dnN

����


2|
R

MhrTF (w0),rTF (w1)igM dnM |+DT
R

Nhrw1,rw1igN dnNR
Nhrw0,rw0igN dnN

 2DT

pR
Nhrw0,rw0igN dnN

R
Nhrw1,rw1igN dnNR

Nhrw0,rw0igN dnN

+DT

R
Nhrw1,rw1igN dnNR
Nhrw0,rw0igN dnN

 2DT
p

s+DT s

Putting them together yields |F(w0 + w1)� F(w0)|  4DT
p

s +
2DT s, where s =

R
Nhrw1,rw1igN dnNR
Nhrw0,rw0igN dnN

We then prove Theorem 5.3.

Proof The strategy of this proof is similar to the one for Theo-
rem 5.1.
We first consider the case of e > 0, i.e., C0 >C > l2. By definition,
Acon f (C) ⇢ Acon f (C0), thus kRkC0 �kRkC � 0. We then estimate
the upper bound for the difference. Given w 2 Acon f (C + e), our
strategy is to construct a function w̄ 2 Acon f (C), such that |E(w)�
E(w̄)| is uniformly bounded.
If w itself lies in Acon f (C), then it’s trivial to set w̄ = w. We
now consider the case w 2 Acon f (C + e)\Acon f (C). Assume thatR

N w(�DN)wdnN = (C + d)
R

N w2dnN , where 0 < d  e. With-
out loss of generality, we further assume that w = Âi�1 aiji and
Âi�1 a2

i = 1, where (ji,li) is the i-th eigensolution to DNj+lj =
0. Note that

R
N wdnN = 0, thus a1 = 0, i.e., w = Âi�2 aiji. Accord-

ing to the orthogonality of eigenbasis, the constraint on w can be

written as

Â
i�2

a2
i li =C+d.

Let b2 be a real number satisfying b2
2 � a2

2 = d/(C � l2) and
b2a2 � 0. The existence of b2 is assured by the fact that a2 is finite
(in fact |a2|  1). Then we set w̄ = b2j2 +Âi�3 aiji. Direct com-
putation shows that

R
N w̄(�DN)w̄dnN = b2

2l2 +Âi�3 a2
i li = C +

Cd
C�l2

and
R

N w̄2dnN = b2
2 +Âi�3 a2

i = b2
2 + 1� a2

2 = 1+ d
C�l2

=
1
C
R

N w̄(�DN)w̄dnN , meaning that w̄ 2 Acon f (C).
Thanks to Lemma 3.2, |F(w)�F(w̄)|= |F(w)�F(w+ w̄�w)|
4DT

p
s+2DT s, where s =

R
Nhr(w̄�w),r(w̄�w)igN dnNR

Nhrw,rwigN dnN
= l2(b2�a2)

2

C+d .
Without loss of generality, we assume that a2,b2 � 0, thus b2 =q

a2
2 +

d
C�l2

> a2. Moreover, b2 � a2 =
q

a2
2 +

d
C�l2

� a2 =
d/(C�l2)p

a2
2+d/(C�l2)+a2


p

d/(C�l2). Therefore s  l2d
(C�l2)(C+d) 

l2e
(C�l2)C

. Now assuming that w⇤ is the maximizer of F(w) con-

strained in Acon f (C + e), the above derivation shows that there
exists a w̄⇤ 2 Acon f (C) such that |F(w⇤)� F(w̄⇤)|  4DT

p
s +

2DT s. That implies kVkC+e�kVkC E(w⇤)�E(w̄⇤) |E(w⇤)�
E(w̄⇤)| 4DT

q
l2e

C(C�l2)
+2DT

l2e
C(C�l2)

.

Regarding the case e < 0, i.e., C > C0 > l2. We simply replace C
and C+ e in the previous analysis with C� e and C. With identical
derivations, for each w 2 Acon f (C), we construct a function w̄ 2
Acon f (C�d) such that |F(w)�F(w̄)|= |F(w)�F(w+ w̄�w)|
4DT

p
s+2DT s, where s  l2|e|

(C�e)(C�l2)
.

Putting them together, we finish the proof of Theorem 5.3.

3.4. Proof of Theorem 5.2

One advantage of our construction of subdomains is that it allows
to associate subdomains with respect to different manifolds. Par-
ticularly we observe the following interleaved structures between
A(C) and Ã(C):

Lemma 3.3 Let Ñ be a (aN ,bN)-close to N, the two collections of
subdomains defined in Eq. 10 and Eq. 12 are interleaved:

A(C)⇢ Ã(Ca3
Nb2

N)⇢ A(Ca6
Nb4

N)

.

Proof For w 2 A(C), it follows from the Eq. 10 thatR
Nhrw,rwigN dnN  C

R
N w2dnN . According to Proposition 3.2,

we have
Z

N
hrw,rwig̃N dµ̃N 

Z

N
aNhrw,rwigN dµ̃N


Z

N
aNhrw,rwigN aNbNdnN

Ca2
NbN

Z

N
w2dnN

Ca2
NbN

Z

N
w2aNbNdµ̃N

Ca3
Nb2

N

Z

N
w2dµ̃N .
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meaning that w2 Ã(Ca3
Nb2

N), thus A(C)⇢ Ã(Ca3
Nb2

N). Similarly we
can derive the other inclusion relationship.

On the other hand, the functionals, E(w) and Ẽ(w) with respect
to different pairs of input manifolds are as well related to each other.

Lemma 3.4 For any w 2 L2(N) satisfying E(w) > 0 , the ratio of
Ẽ(w) to E(w) is two-sided bounded:

a�1
M a�1

N b�1
M b�1

N  Ẽ(w)/E(w) aMaNbMbN

Proof According to Proposition 3.2, we have

a�1
M b�1

M dµ̃M  dnM  aMbMdµ̃M

and

a�1
N b�1

N dµ̃N  dnN  aNbNdµ̃N

And by definition:

Ẽ(w) =
R

M TF (w)2dµ̃MR
N w2dµ̃N


R

M TF (w)2aMbMdnM
R

N w2a�1
N b�1

N dnN

 aMaNbMbNE(w).

Symmetrically, the other side is bounded:

Ẽ(w) =
R

M TF (w)2dµ̃MR
N w2dµ̃N

�
R

M TF (w)2a�1
M b�1

M dnMR
N w2aNbNdnN

� a�1
M a�1

N b�1
M b�1

N E(w).

Then we prove the stability in Theorem 4.1:

Proof Given a fixed scale C > 0, we denote C1 = Ca�3
N b�2

N and
C2 =Ca3

Nb2
N . Let u1 2A(C1),u2 2A(C2) and v2 Ã(C) be functions

satisfying E(u1) = kVkC1 , E(u2) = kVkC2 and Ẽ(v) = kṼkC.
Thanks to Lemma 3.3, we have A(C1) ⇢ Ã(C), thus according to
Lemma 3.4:

kṼkC
kVkC1

=
Ẽ(v)

E(u1)
� Ẽ(u1)

E(u1)
� a�1

M a�1
N b�1

M b�1
N

.
On the other hand, as Ã(C)⇢ A(C2), we have:

kṼkC
kVkC2

=
Ẽ(v)

E(u2)
 Ẽ(v)

E(v)
 aMaNbMbN

Lastly, Putting the above two inequalities together, we have

a�1
M a�1

N b�1
M b�1

N kVkC1  kṼkC  aMaNbMbNkVkC2

It follows from Theorem 4.1 that
��kVkC2 �kVkC1

�� 4BT

r
C2 �C1

C1
+2BT

C2 �C1
C1

Obviously, letting aN ,bN tend to 1, we have kVkC2 ! kVkC1 .
Moreover, as aM ,bM tend to 1 as well, according to the squeeze
theorem we have

lim
aM ,bM ,aN ,bN!1+

kṼkC = kVkC

3.5. Proofs of propositions in Section 5.4

The two propositions build the connection between kVnkC and
kVnkk. We start with Proposition 5.2

Proof First of all, as shown in Section 5.1, S(k) is a proper subset
of A(lk), which proves the left-side inequality.
Regarding the right-side inequality, we assume that w is the max-
imizer realizing kVklk

and decompose it into the eigenbasis:w =
Âi�1 aiji. Now let w̄ = Âik aiji, obviously w̄ 2 S(k) and there-
fore E(w̄) kVkk.
We then estimate the difference E(w) � E(w̄), according to
Lemma 3.1, it’s upper-bounded by 4BT

p
r + 2BT r, where r =

Âi�k+1 a2
i /Âi�1 a2

i . As w 2 A(lk), it follows that lk Âi�1 a2
i �

Âi�1 a2
i li � Âi�k+1 a2

i +li � lk+1 Âi�k+1 a2
i , thus r  lk/lk+1.

Plugging it back, we have kVklk
� kVkk  E(w) � E(w̄) 

4BT
p

lk/lk+1 +2BT lk/lk+1.

The proof of Proposition 5.3 follows the similar idea:

Proof Let function w 2 A(C) such that E(w) = kVkC. We assume
that w = Âi�1 aiji, and let w̄ be Âil aiji. Then obviously E(w)�
kVkC,l  E(w)�E(w̄), because w̄ 2 A(C)\S(l) as well.
Repeating the proof of Proposition 5.2, we have kVkC �E(w̄) 
4BT

p
r + 2BT r, where r = Âi�l+1 a2

i /Âi�1 a2
i . Similarly we de-

duce that r  C/ll+1  e, therefore kVkC �kVkC,,l  4BT
p

e+
2BT e.
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