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Figure 1: Given a single RGB image (left), we propose a pipeline to generate a scene map (middle) in the form of a floorplan with grid
locations for the discovered objects. The resulting scene map can then be potentially used to generate a 3D scene mockup (right). Please note
that our system does not yet support pose estimation; hence in the mockup the objects are in default front-facing orientations.

Abstract
Understanding indoor scene structure from a single RGB image is useful for a wide variety of applications ranging from the
editing of scenes to the mining of statistics about space utilization. Most efforts in scene understanding focus on extraction
of either dense information such as pixel-level depth or semantic labels, or very sparse information such as bounding boxes
obtained through object detection. In this paper we propose the concept of a scene map, a coarse scene representation, which
describes the locations of the objects present in the scene from a top-down view (i.e., as they are positioned on the floor), as
well as a pipeline to extract such a map from a single RGB image. To this end, we use a synthetic rendering pipeline, which
supplies an adapted CNN with virtually unlimited training data. We quantitatively evaluate our results, showing that we clearly
outperform a dense baseline approach, and argue that scene maps provide a useful representation for abstract indoor scene
understanding.

1. Introduction
Our ability of reasoning from visual input is vital, both to the con-
stant and continuous analysis of our surroundings, as well as to the
formation of a correct response to this analysis. If we are to create
intelligent systems capable of navigating the intricacies of the real
world as well as human beings, we need to find ways of recreating
this impressive mental ability. Hence, not surprisingly, indoor scene
understanding has received significant research attention in both
computer graphics and vision.

A core subtask of indoor scene understanding is scene structure

inference, i.e., deducing the presence and the locations of individual
objects composing the scene. Given a single image, as humans,
we can in most cases tell the class of the objects and their relative
positions in the scene. Of course, from this information a lot can
be inferred, such as an unobstructed path through the room, scale,
and scene type (a room containing a bed and a chair is likely to
be a bedroom, while a room containing a desk and an executive
chair is likely to be an office). Such floorplan-level information thus
provides a compact and useful summary about the nature and the
structure of the scene (see Figure 1).
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One possible solution to inferring such a scene floorplan from a
single image is to merge state-of-the-art solutions to both semantic
segmentation and depth estimation to define the location of all
objects in the scene. Such an approach has several disadvantages.
Firstly, it is not trivial to delineate the boundaries of the individual
objects in the image, as most of the existing semantic segmentation
approaches do not produce instance-aware segmentation [SSF14].
Secondly, both semantic segmentation and depth estimation model
each pixel individually. Fundamentally, as we are only interested
in the relative location of the objects, the intermediate steps that
involve pixel-level labeling can introduce a significant source of
error affecting holistic scene understanding.

To circumvent these problems, we propose a novel representation,
called a scene map. The scene map models the structure of an indoor
scene using a collection of grids that mark the location of objects
of different classes in a top-down view of the scene (see Figure
2). Importantly, as we target directly the global structure of the
scene compared to e.g., extracting placement in world coordinates,
low resolution grids suffice for this task. This limits the number
of variables necessary to train and estimate in practice to the bare
minimum.

In this paper, we present a pipeline for estimating the scene map
from a single image. At its heart lies a convolutional neural network,
based on the successful VGG architecture [SZ14]. As training data
for scene maps is scarce, we create a rendering pipeline that synthe-
sizes scenes and renders them on the fly, supplying the network with
a virtually unlimited amount of training data. Using this synthetic
training data, the network is trained end-to-end. The pipeline’s per-
formance is compelling, with 52% of models being located within
one grid cell of their ground truth location.

We compare our method with a baseline that combines state-of-
the-art semantic segmentation and single frame depth estimation.
Our evaluation shows that the scene map representation gives more
accurate results for this task, while needing to solve for a signifi-
cantly fewer variables than its baseline counterparts. We conclude
with discussion of limitations and future work.

Our main contributions thus include:

• Introducing the scene map as a representation for holistic scene
understanding;
• suggesting a method for synthesizing scenes together with their

scene maps by exploiting a 3D model collection, and using this
data to train a convolutional neural network; and
• proposing a method for inferring the scene map given a single

frame as input, using our learning pipeline.

2. Related Work

Image-based scene understanding is one of the core areas of both
computer graphics and computer vision with a wide variety of ap-
proaches that have been proposed over the years. Below we only
review the works most closely related to ours, which in particular try
to combine object detection with 3D localization for indoor scene
labeling, and using synthetic data for training methods in scene
understanding.

Semantic segmentation. Many traditional approaches for scene

understanding are based on semantic segmentation, which tries
to associate class labels to pixels in the image (see [GH14] for
an overview of related methods). Most recently, successful tech-
niques heavily exploit training data to guide semantic segmentation
(e.g., [CCMV07, CPK∗14, NHH15] among many others). Moreover,
some recent approaches have used synthetic (rendered) data to aug-
ment the training set resulting in more accurate labeling [HPB∗15].
Unlike these methods, however, our goal is not to associate class
labels to image pixels, but to directly output a scene map, which
summarizes the objects in the image in scene coordinates. In this
way, our approach is related to techniques that estimate depth to-
gether with semantics [EF15], although we avoid the error-prone
depth estimation step by training on the scene maps directly.

Scene mockups. A number of methods have also been pro-
posed for high-level scene understanding and labeling, by exploit-
ing additional depth information available from RGB-D sensors
[SX14, GAGM15, SLX15]. Although our goals are similar, we only
use 2D image information at test time, and exploit rendered synthetic
scenes for training. Perhaps most closely related to our method is a
very recent technique by Bansal et al. [BRG16] who use a database
of 3D models and retrieve the closest model to a given bounding
box in the image. In addition, they do dense normal estimation first,
which again introduces additional complexity and a potential source
of inaccuracies.

Joint 2D-3D analysis. Our work is also closely related to the re-
cent methods that exploit the large databases of 3D models, such
as Trimble 3D Warehouse, to facilitate image analysis. Most no-
tably, 3D model collections have been used for joint retrieval
[HOM15], single-view reconstruction [HWK15], object detection
[AME∗14, MRA15], view-point estimation [SQLG15], scene pars-
ing [ZZ13], or even for learning generative models for object synthe-
sis [GFRG16]. Model collections are particularly useful as a source
of additional training data that can be incorporated into learning al-
gorithms for labeling [HPB∗15] or pose estimation tasks [CWL∗16]
among many others [WHC∗15, WSK∗15, BMM∗15]. In this area,
our work is most closely related to methods that use 3D data for
scene understanding [LZW∗15, KIX16].

Unlike these methods, however, our main goal is to use synthetic
data to train a method for semantic scene understanding that di-
rectly produces a summary of the presence and positions of the
objects in scene coordinates. This allows us to avoid the unneces-
sary intermediate computations, such as depth or normal-estimation,
or floor-plane detection, while resulting in highly informative and
concise scene summaries.

3. Method

Our method infers scene structure from a single RGB image. It does
so by learning a mapping from the input to a new representation
called a scene map through the use of a deep neural network. We
will first discuss this new representation, and then detail the network
architecture at the core of our method. Finally, we explain our syn-
thetic rendering pipeline, which feeds the network with an unlimited
supply of training data, which helps to offset the lack of real training
data for this purpose.
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Figure 2: A scene map describes the scene on a per-class basis from
a top-down view corresponding to an input RGB image. A white
square indicates the presence of an instance of that particular class
at that location. Here we show the groundtruth scene map, while
our result can be seen in Figure 7, bottom row.

3.1. Scene Map

Our system takes as input a single RGB image, and outputs a top-
down view of the scene called a scene map. Intuitively, the scene
map provides a two-dimensional summary of the objects present
in the scene and their relative positions in a way that is similar
to a floor-plan. The two coordinates of the scene map correspond
to the x and y coordinates of the plane parallel to the floor of the
given indoor scene, and the values stored at a particular coordinate
correspond to the objects present at that position. Importantly, the
scene map completely removes the third coordinate (height), and
only represents the floor implicitly by using it as a frame of refer-
ence for other objects. As we demonstrate below, such a reduced
representation greatly facilitates the inference and learning tasks,
while still providing a very useful summary of the overall scene
structure.

More precisely, assuming that the scenes contain objects belong-
ing to N different classes, a scene map S consists of grids Gi of
resolution r× r, with i ∈ {1 . . .N}, giving one grid per class. Each
grid is represented as a binary matrix, which marks the locations
of all instances of any class in the scene; see Figure 2. This repre-
sentation is inspired by the popular occupancy grid representation
commonly used in robotics applications for 3D mapping [TBF05],
where the 3D environment is modeled as an evenly-spaced field
of binary random variables, taking the value 1 when an obstacle
is present at the corresponding location. Thus, a scene map can be
considered as a spatial-semantic occupancy grid, with 2 dimensions
reserved to spatial coordinates and the third to class identity.

The scene map is of limited resolution by design. As we are
interested in the general layout of a scene, a margin of e.g., 30cm in
the placement of an object could be acceptable. By assuming such a
margin, the number of variables in the placement problem (r×r×N)
is significantly reduced compared to using a fine grid, or to modeling
the problem in the original pixel space (w× h×N). This type of
simplification is encountered equally in computer vision applications
that convert regression into classification: e.g., in [ACM15] where
the aim is to predict ego-motion encoded as a rotation-translation
movement. Instead of regressing to precise (continuous) angle and
translation values, the problem is converted into a classification task
by binning each movement into a fixed (discrete) number of ranges
of movement magnitude. This choice results in a sensible trade-off

between accuracy and complexity in problems where very precise
predictions are not mandatory.

In our setup, the scene map is designed to encode a square area
on the floor of the scene in front of the camera of 6m×6m in size.
This is large enough to accommodate more than 95% of the scenes
in the SUNRGB-D dataset, and can easily fit the average UK room
size [Wil10]. We use grids of size 16×16, resulting in a grid cell
size of 37.5cm.

3.2. Scene Map Inference Overview

Our main goal is to compute the scene map representation from a
single input RGB image. For this we follow a data-driven approach
that has been shown to be effective for a wide variety of image
processing tasks. Namely, we train a Convolutional Neural Network
(CNN) that, given a single image, tries to output its scene map rep-
resentation directly, without estimating any low-level attributes such
as depth or pixel-wise class labels. One challenge with adopting
this approach, however, is that it requires a large amount of training
data to be successful, due in part to the large number of variables
that typically need to be estimated. Unfortunately, there is no exist-
ing sufficiently large dataset that contains ground truth scene map
labelings (e.g., the recent SUNRGB-D dataset [SLX15] contains
approximately 10000 images). To overcome this issue, we train our
network with scenes that we synthesize on the fly by exploiting an
existing 3D model collection [LPT13] and varying the composition
of the scene and the appearance of the objects using a large texture
dataset [PGM∗95] using a probabilistic model. In particular, we
create a scene synthesis pipeline that uses a rendering approach
and a randomized object placement and appearance variation model.
This pipeline effectively provides our learning framework with an
unlimited source of data that we use to train an adapted CNN for
scene map inference. To summarize, our general approach consists
of the following key steps:

• Adapting a well-developed CNN architecture for inference of
scene maps from single images.

• Constructing a randomized scene synthesis pipeline based on a
scene composition model coupled with appearance variation and
an efficient rendering method.

• Using our scene synthesis method to train the network by gener-
ating a large number of ground truth pairs consisting of an image
and its associated scene map.

• Using the trained network to estimate the scene map on a new
test image.

Below we describe each of the individual steps of our pipeline
and provide the corresponding implementation details.

3.3. Network

To learn the mapping from the RGB image space to the scene
map representation, we use a deep neural network that builds
upon VGG11 [SZ14], with a few modifications (see Figure 3). No-
tably, we added batch normalization after each convolutional and
fully-connected layer, resulting in a significant decrease in training
time [IS15]. The original VGG11 maps the input image to a dis-
criminative feature representation in R1024, then uses a classifier to
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Figure 3: Our network architecture, based on VGG11.

predict a class label for each image. Since our problem requires a
spatial representation and not a single class label, we remove the
classifier and instead reshape this representation to the desired scene
map representation of size r× r×N. Note that most architectures
designed for spatial tasks (e.g. for semantic segmentation) use mir-
rored encoder-decoder networks, enforcing direct correspondences
between the feature maps learnt by the encoder and the decoder
at each level [NHH15]. But in our case such architectures are not
justified, since the input domain (image pixels) is different in resolu-
tion and viewpoint from the output domain (grid cells). However,
investigating for more adapted architectures for our task constitutes
a direction of future work. The result is passed through a sigmoid
layer, so that each cell in the grid reflects the likelihood of an ob-
ject of a given class being present. The overall architecture has 20
million parameters.

Training. We have implemented the proposed network using Torch.
The RMSprop optimiser [TH12] was used with an initial learning
rate of 10−3, and a learning rate decay of 0.8 after every 10000
iterations. Note that the training is done from scratch, since no pre-
trained models are available for VGG11. The training was performed
on a multi-GPU system (4 GPUs, 12G memory each), with batch
size of 32, and took approximately 10 hours to converge.

3.4. Non-maximum suppression

Each cell within a class grid shows the confidence of the network
about the presence of an object of that class at the corresponding
spatial location. However, the network is often uncertain about the
precise location of an object. This uncertainty is expressed by a
spreading of the probability across multiple cells in the vicinity of
the actual location. Note that this behavior is justified considering
that depth estimation from a single image suffers from scale am-
biguity, especially when a certain object has not been seen before.
Deep learning approaches for depth estimation from single RGB
images [EF15] try to bypass this issue by implicitly learning abso-
lute scale ranges for each object from the large number of training

examples. The intra-class scale variability will dictate the range
width, and eventually the accuracy that can be obtained; wide range
resulting in more uncertainty in the output. A very simple idea to
reduce uncertainty and binarize the probability maps would be to
use a fixed cut-off value, e.g. 0.5, and deem every cell with an out-
put probability of 0.5 or higher to contain an object of that class.
However, we found that performing a max pooling post-processing
step, with a 3×3 window, results in sparser, more accurate scene
maps than direct thresholding. Hence, we use this approach in our
experiments (see Figure 4).

3.5. Rendering pipeline

Training a deep neural network requires large amounts of training
data. The largest available dataset for our purpose, SUNRGB-D
[SLX15], contains approximately 10000 images with 60000 bound-
ing boxes of 1000 different classes. We have found this not to be

Figure 4: Result of non-maximum suppression. Yellow cells repre-
sent false positives, green cells true positives. The top row shows
the scene map after simple thresholding at 0.5. This results in spu-
rious activations around the true location of each object. After
non-maximum suppression, these are removed, with only the local
maximum (the true positive) being left.
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enough for training a network that generalizes well. To boost our
training data numbers, we set up a synthetic rendering pipeline,
which renders training pairs of images with the associated scene
maps on the fly. This provides the system with an unlimited stream
of essentially unique training data (although theoretically two scenes
could be identical, the probability of this is vanishingly low). This
is an instance of online learning, which has self-regularizing capa-
bilities, limiting the risk of overfitting [Bot98].

Data. The rendering pipeline takes a set of class-labeled objects O
and textures T as input. In our experiments, we take O as a subset
of the IKEA dataset [LPT13]. This dataset contains objects of four
classes chair, shelf, table and sofa, with 16 objects per class. We
manually curated all models to have accurate relative scale and
to be centered at world origin, with consistent orientation. The
texture set T consists of a subset of 136 textures from the VisTex
dataset [PGM∗95], which we curated manually to be appropriate
textures for furniture. Both O and T are separated into training and
test sets, using a 75%/25% split, as illustrated in Figure 5.

Figure 5: We split models and textures into training and test sets at
a 75%/25% split. This allows us to test how well the network learns
the general shape of each class of object.

Scene generation. When the pipeline is queried for a new training
example, a new random scene is generated (see Figure 6). First, a
subset o ranging from 2 to 6 objects from O is sampled at random
with replacement. These objects are then randomly placed around
the world center in a 6×6 meter square. The objects are randomly
rotated around the up-vector in increments of 90 degrees. We make
sure the objects placed do not collide with each other. Inspection of
100 publicly available indoor photographs shows that one wall is
nearly always visible, with a second perpendicular wall being visible
approximately 75% of the time. As such, two perpendicular walls

Figure 6: An illustration of 4 samples from the data generation
pipeline. We render RGB, semantic segmentation, depth, and scene
map, resulting in an unlimited stream of fully defined training data.

are placed around the scene, with random, but coherent orientation.
Finally, the objects and walls are individually textured by randomly
sampling and scaling from our texture set T . Note that by including
small texture scales, we mimic textures with repeating patterns.

The camera is placed at a height drawn randomly in the range
between 1m and 1.8m to mimic the range of heights from which
most handheld photographs are taken.

Rendering. The generated scenes are then rendered using an
OpenGL setup with a simple Phong shading model. For each scene,
we also generate the scene map, semantic labeling, and depth ground
truth. The latter two are used only for baseline comparison (see Sec-
tion 4.1). See Figure 6 for some samples from the rendering pipeline.

4. Evaluation

In the preceding sections we proposed the scene map as a repre-
sentation for holistic scene understanding, reasoning that its low
dimensionality removes unnecessary variables from the optimiza-
tion process compared to dense, pixel-based approaches. Below, we
compare our scene map estimation method with a dense approach
that combines the output of semantic segmentation with depth esti-
mation, both from single frame RGB input.

4.1. Baseline

Semantic segmentation. The semantic segmentation pipeline we
use is a version of [NHH15], using VGG11 [SZ14] as the basis
encoder instead of VGG16 (to be comparable with our pipeline in
terms of depth), as well as with the fully connected layers removed.
The final layer has 6 output maps, one for each class (i.e., chair,
shelf, table, sofa) plus two for the wall and floor. We use a spatial
cross-entropy loss, classifying each pixel individually. This pipeline
is trained from scratch on the same data as our scene map pipeline
(see Section 3.5).

Depth estimation. Our depth estimation network is similar, but
the final layer outputs just a single map instead of the number of
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Figure 7: Left: generated scene map using our pipeline. Each column represents a specific class, each row is one sample. Ground truth is
represented using cell color: green grid cells indicate true positives, yellow grid cells indicate false positives, red grid cells indicate false
negatives. Right: scene map generated using the semantic segmentation + depth estimation baseline.

classes as before. We use a log mean squared error loss on the
output [EF15].

Combining outputs. We convert the output of the above two net-
works into a scene map. First, connected components are extracted
from the semantic segmentation. Then, for each component, we find
the average depth using the estimated depth map. Using the known
focal length of the camera we then compute the 3D location of the
center of each component, and project this into the scene map.

Performance of networks. By themselves, these networks show
high performance in their respective tasks on this data. On the test
models and test textures, the semantic segmentation network shows
an accuracy of 96.5%, and the depth network an rMSE of 17cm.
These unusually high numbers (for reference, [NHH15] report an
accuracy of 72.5% in the original paper) are in part due to the
unlimited amount of training data our synthetic rendering pipeline
provides the network. Moreover, the data used in [NHH15] likely
has higher variability and noise than our data, as they come from
real photographs instead of synthetically rendered scenes, and hence
are more challenging.

4.2. Training vs. test

As discussed in Section 3.5, all training data is generated synthet-
ically, resulting in images very unlikely to be seen twice, but the
models used for generating the images are seen many times over. We
will evaluate the network both on images generated using these same
models, as well as images generated using the models in the test set.
Both scenarios are plausible: one can imagine the case where the
types of models used in the scene are known in advance, or the case
where only the classes are known.

4.3. Comparison

In Figure 7, we show the output of our pipeline, as well as the output
of the baseline. Our method shows a clear advantage in performance
over the baseline method. Note that although our method does not
always find the perfect location, in virtually all cases the presence
of an object is detected. The baseline sometimes misses an object
entirely, and often activates two cells for a single object.

In Table 1 we compare the accuracy of our method with the base-
line quantitatively. Performance is evaluated on both training models
as well as test models. Aside from the true and false positive rates,
we also report the performance when “one-off” and “two-off” errors
are counted as correct (i.e., an object detection one or two cells away
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Method Model set TPR TPR+1 TPR+2 FPR
Baseline Train 0.03 0.20 0.47 0.0037

Ours Train 0.24 0.66 0.82 0.0029
Baseline Test 0.02 0.19 0.43 0.0043

Ours Test 0.15 0.52 0.71 0.0031

Table 1: Comparison of our method with the semantic segmentation
+ depth estimation baseline. TPR is true positive rate, TPR+1 and
TPR+2 are true positive rates when respectively off-by-one and
off-by-two errors are allowed. FPR is false positive rate. Note that
as most of the grid is empty, false positive rates are very low.

from the ground truth is still counted). Our method significantly
outperforms the baseline on all settings. It is interesting to note that
for the baseline there is not much difference in performance between
the training and test models. For our own method, the decrease in
performance from training to test is more significant, while still
outclassing the baseline by a compelling margin.

4.4. Effect of object density

To test our pipeline’s scalability with respect to the number of objects
in the scene, we tested two scenarios where the this number was
respectively increased to a range of 6 to 9 objects, and 10 to 15
objects. These scenarios generate scenes with objects very close
together, making the task of distinguishing objects more difficult.
Sample results can be seen in Figure 8. Clearly, the network is having
increasingly more difficulty placing each object at the right location.
Moreover, it more often fuses two objects together, resulting in just
a single cell being activated. Table 2 shows the quantitative decrease
in performance as the number of objects in the scene increases.

Number of objects TPR TPR+1 TPR+2 FPR
5-9 0.11 0.42 0.58 0.0044

10-15 0.09 0.32 0.44 0.0053

Table 2: Effect of object density on performance of our pipeline.
Performance decreases with increased scene occupation, but does
not dwindle as to be unusable.

5. Discussion and Conclusion

We have presented a new representation for scene structure called
the scene map. It reduces the number of parameters necessary for
representing scene structure to a minimum, thereby reducing the
necessary variables to estimate during optimization. Although the
accuracy of the proposed method is limited by design through the
size of the grid cells, our output can be directly used for a number
of tasks, some of which are detailed below. This is opposed to pixel-
wise approaches, which are designed to output accurate predictions,
but whose output necessitates non-trivial post-processing to become
usable in practice, as shown in our evaluation.

Future work. While we proposed a first pipeline to extract scene
maps from single RGB images, several refinements remain to be
explored. As it stands, not enough real data is available to train our
network from scratch. To extend our method to real images, we plan
to use a method for domain adaptation between synthetic and real
images (e.g., SUNRGB-D). Moreover, we aim to compare with other

Figure 8: Results with increasingly dense scenes. Ground truth is
represented using cell color: green grid cells indicate true positives,
yellow grid cells indicate false positives, red grid cells indicate false
negatives. The precise localization of objects becomes more difficult,
but in general the presence of objects is still inferred correctly.

baseline methods. For example, in the current baseline the semantic
segmentation step could be replaced by an object detection pipeline
(e.g. [RHGS15]). Finally, evaluating on a larger set of classes is
needed to show applicability on more varied scenes.

We believe that scene maps extracted from a single image can
be directly used for multiple purposes, as they provide a complete
summary of the composition and structure of the scene. For ex-
ample, they open the possibility of automatic retrieval of images
with specific scene configurations. In a complementary task, scene
maps can help to automatically extract statistics of space utilization
from large image datasets [NSF12, SLX15]. Such statistical models
could be used for different tasks such as improved scene synthesis
and scene type classification. Finally, when combined with in-class
model retrieval and a pose estimation pipeline, scene mockups can
be potentially generated from scene maps, which in turn can be
helpful for architectural visualization and scene relighting.
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