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Abstract

We consider the problem of non-rigid shape matching using the functional map framework. Specifically, we analyze a commonly

used approach for regularizing functional maps, which consists in penalizing the failure of the unknown map to commute with

the Laplace-Beltrami operators on the source and target shapes. We show that this approach has certain undesirable funda-

mental theoretical limitations, and can be undefined even for trivial maps in the smooth setting. Instead we propose a novel,

theoretically well-justified approach for regularizing functional maps, by using the notion of the resolvent of the Laplacian oper-

ator. In addition, we provide a natural one-parameter family of regularizers, that can be easily tuned depending on the expected

approximate isometry of the input shape pair. We show on a wide range of shape correspondence scenarios that our novel

regularization leads to an improvement in the quality of the estimated functional, and ultimately pointwise correspondences

before and after commonly-used refinement techniques.

CCS Concepts

• Computing methodologies → Shape analysis;

1. Introduction

Shape matching is a fundamental problem in geometry processing
and computer graphics, with applications ranging from shape inter-
polation [HRS∗16] to shape exploration [HWG14] and statistical
shape analysis [BRLB14].

In this paper, we concentrate on the functional maps framework
for computing correspondences between shapes, which has proven
to be especially useful when dealing with non-rigid and especially
near-isometric shape pairs. This approach, originally introduced
in [OBCS∗12] and subsequently extended in multiple follow-up
works, e.g. [KBB∗13, RCB∗17, HWG14], is based on optimizing
for a linear mapping between function spaces defined on the shapes,
which can be conveniently encoded as a matrix. One attractive fea-
ture of this approach is that many desirable geometric objectives
for the unknown pointwise correspondence, such as preservation of
geodesic distances, can be conveniently encoded as constraints on
the matrices representing functional maps, and often lead to simple
convex optimization problems.

The majority of objectives when optimizing for a functional map
between a pair of shapes consist of a) preservation of some pre-
computed descriptors and b) a functional map regularization term,
based on promoting some desired global map properties. This lat-
ter, regularization term is especially important for ensuring the
overall global consistency of the computed map.

Common strategies for regularization include commutativity
with the Laplacian operator, exploited in the original article
[OBCS∗12], a mask promoting a slanted diagonal in the case of
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Figure 1: Comparison of different masks. Standard: the Lapla-

cian commutativity operator can be equivalently formulated as a

penalty or regularizing mask. Slanted: the weight mask proposed

in [RCB∗17] designed to promote a slanted structure. Ours: the

mask proposed in this paper based on the resolvent of the Laplacian

operator. The penalty masks of these three methods are visualized

in the first row for an example pair from the SHREC dataset, and

the corresponding optimized point-wise maps from the functional

map pipeline are shown in the second row.

partial correspondences [RCB∗17], or orthonormality of the func-
tional map, which corresponds to local area preservation by the
underlying pointwise map [OBCS∗12, KBB∗13, ROA∗13].

Unfortunately, although functional map regularization has been
instrumental in obtaining high-quality results on some shape corre-
spondence benchmarks, these regularization terms often lack a the-
oretical foundation and indeed in some cases result in optimization
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objectives which would not be well-defined in the case of smooth
surfaces.

In this paper, we introduce a novel way of regularizing functional
maps, based on the concept of the resolvent of the Laplacian oper-
ator. Unlike the original approach, based on commutativity with
the Laplacians, our method has a natural theoretically well-defined
analogue in the case of smooth surfaces, and is guaranteed to be
bounded even in the full (infinite dimensional) basis case. More-
over, our approach provides a simple one-parameter family of reg-
ularizers, that can be tuned depending on the expected approximate
deviation from isometry in a given shape pair. Finally, we demon-
strate on a wide range of challenging settings that our approach
leads to a quantitative and qualitative improvement for the com-
puted functional and eventually pointwise maps, without incurring
any additional computational complexity (see Fig. 1 as an exam-
ple).

2. Related Work

Shape matching in its full generality is an extremely well-studied
area of geometry processing and computer graphics, and its full
overview is beyond the scope of our paper. Therefore, below we
only review the most closely related methods based primarily on
the functional maps framework. We refer the interested readers to
recent surveys including [VKZHCO11, TCL∗13, BCBB16] for an
in-depth treatment of other shape matching approaches.

Functional Maps. Our approach fits within the functional map
framework, which was originally introduced in [OBCS∗12] for
solving non-rigid shape matching problems, and extended signifi-
cantly in follow-up works, including [KBB∗13,ADK16,KBBV15,
RCB∗17,EBC17,BDK17] among many others (see also [OCB∗17]
for an overview). The key observation in these techniques is that
it is often easier to estimate correspondences between real-valued
functions, rather than points on the shapes. This is because func-
tions have a natural vector space structure, and moreover functional
transformations are most often linear, which means that functional
maps can be encoded, and thus optimized for, as small matrices in
a reduced functional basis.

As observed by several works in this domain, [KBB∗13,
ROA∗13, RCB∗17, BDK17] many natural properties on the un-
derlying pointwise correspondences can be expressed as objec-
tives on functional maps. Most notably, this includes: orthonor-
mality of functional maps, which corresponds to the local area-
preservation nature of pointwise correspondences [OBCS∗12,
KBB∗13, ROA∗13]; preservation of inner products of gradients
of functions, which corresponds to conformal maps [ROA∗13,
BDK17, WLZT18]; preservation of pointwise products of func-
tions, which corresponds to functional maps arising from point-to-
point correspondences [NO17, NMR∗18]; slanted diagonal struc-
ture of functional maps, which corresponds to correspondences be-
tween partial shapes [RCB∗17, LRBB17]. Similarly, several other
regularizers have been proposed, including using robust norms and
matrix completion techniques [KBB∗13, KBBV15], exploiting the
relation between functional maps in different directions [ERGB16],
the map adjoint [HO17], and powerful cycle-consistency con-
straints [HWG14] in the context of shape collections, among many

others. More recently constraints on functional maps have been
introduced to promote continuity of the recovered pointwise cor-
respondence [PSO18], maps between curves defined on shapes
[GBKS18], kernel-based techniques aimed at extracting more in-
formation from given descriptor constraints [WGBS18], and an ap-
proach for incorporating orientation information into the functional
map infererence pipeline [RPWO18] among others.

Among all of these, perhaps the most widely-used building block
for regularizing functional maps, introduced in [OBCS∗12] and ex-
tended in follow-up works, including [WHG13,RCB∗17,LRB∗16,
LRBB17], is based on the commutativity with the Laplacian op-
erators, which implies a diagonal (or slanted diagonal in the case
of partial correspondence) structure for functional maps. To pro-
mote this structure, the most common method (see also Chapter 2.4
in [OCB∗17]) consists in adding an energy to the functional map
estimation pipeline, which penalizes the failure of the unknown
functional map to commute with the Laplace-Beltrami operators on
the source and target shapes. Conveniently, this term still leads to
a convex optimization problem during functional map estimation.
Moreover, as observed in [OBCS∗12], for functional maps arising
from pointwise ones, this term is zero if and only if the map pre-
serves geodesic distances exactly.

Unfortunately, although functional map regularization via com-
mutativity with the Laplace-Beltrami operators has been instru-
mental in obtaining high quality results in challenging benchmarks,
the exact properties of this regularization are not well-understood.
In particular, as we show below, the commonly-used energy is not
bounded in the full (infinite-dimensional) basis in general. Instead,
our novel regularizer, although based on a similar underlying prin-
ciple, overcomes this limitation, and both leads to a theoretically
better justified energy, and a practical improvement on a range of
challenging datasets.

Optimal Transport. We also note briefly that other commonly-
used relaxations for matching problems include those based on op-
timal transport, e.g. [SPKS16, MCSK∗17, VLR∗17]. These tech-
niques have recently gained prominence especially due to the com-
putational advances for adressing large-scale transport problems,
primarily using the Sinkhorn method with entropic regularization
[Cut13, SDGP∗15]. Furthermore, other techniques that exploit the
formalism of optimal transport, for solving assignment problems
include the recent variants of Product Manifold Filter using Gaus-
sian and Heat Kernels [MCSK∗17, VLR∗17]. Interestingly, these
latter methods argue that near-isometric shape matching can be bet-
ter addressed via preservation of general functional kernels rather
than preservation of e.g. geodesic distances. Our modification of
the regularization term of functional maps can also be seen through
a similar light, as we show that a more theoretically justified func-
tional operator leads to an improvement of the overall structural
properties of the map, which eventually result in more accurate
functional and pointwise maps.

3. Background

Our work is based on the functional map representation and the
estimation pipeline. Below we review the basic notions and the
main steps for estimating a map between a pair of shapes using
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this framework, and refer the interested reader to a recent set of
course notes [OCB∗17] for a more in-depth discussion.

Basic Pipeline. Given a pair of shapes, S1,S2 represented as tri-
angle meshes, and containing, respectively, n1 and n2 vertices, the
general pipeline for computing a map between them using the func-
tional map representation, consists of the following main steps:

1. Compute a small set of k1 << n1 and k2 << n2 basis func-
tions on each shape. The most common choice consists in us-
ing the first k eigenfunctions of the Laplace-Beltrami operator
of each shape, although other bases derived from the Hamil-
tonian operator [CSBK18] and more localized basis functions
[NVT∗14, MRCB18] have also been used.

2. Compute a set of descriptor functions on each shape, that are
expected to be approximately preserved by the unknown map.
Store their coefficients in the corresponding bases as columns of
matrices A1,A2.

3. Compute the optimal functional map C by solving the following
optimization problem:

Copt = argmin
C12

Edesc
(

C12
)

+αEreg
(

C12
)

(1)

where the first term aims at the descriptor preservation:

Edesc
(

C12
)

=
∥

∥C12A1 −A2
∥

∥

2
, whereas the second term reg-

ularizes the map by promoting the correctness of its overall
structural properties. As mentioned above, the most common
approach consists of penalizing the failure of the unknown func-
tional map to commute with the Laplace-Beltrami operators,
which can be written as:

Ereg(C12) = Ecomm
(

C12
)

=
∥

∥C12∆1 −∆2C12
∥

∥

2
(2)

where ∆1 and ∆2 are the Laplace-Beltrami operators of the two
shapes expressed in the respective bases. Here, and throughout
the rest of our paper, unless stated otherwise ‖ · ‖ denotes the
matrix Frobenius norm.

4. Convert the functional map C to a point-to-point map, for ex-
ample using an iterative approach, such as the Iterative Closest
Point (ICP) in the spectral embedding, or using other more ad-
vanced techniques [RMC15, EBC17].

One of the attractive properties of this pipeline is that the func-
tional map computation in step 3 leads to a simple (convex) least
squares optimization with a relatively small number of unknowns,
independent of the number of points on the shapes. This step has
been further extended e.g. using more powerful descriptor preser-
vation constraints via commutativity [NO17], or using manifold
optimization [KGB16] among many others (see also Chapter 3
in [OCB∗17]).

4. Functional Map Regularization

Our main goals are to analyze the commonly-used functional map
regularization term, to bring attention to some of its theoretical
limitations, and to propose a novel regularizer with better theoret-
ical properties, which lead to practical improvements. Therefore,
in this in this section, we first consider the standard Laplacian-
commutativity term, and then introduce our new regularizer based
on the resolvent operator of the Laplacian.
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Figure 2: Given a single pair of WKS descriptors, we optimize a

100-by-100 functional map using the standard mask and our resol-

vent mask and compare to ground truth. The converted point-wise

maps are shown on the right. We can see that the functional map

stemming from our resolvent mask has less noise than the func-

tional map computed with the standard mask. Also, our resolvent

mask leads to a point-wise map with better quality.

4.1. Reformulation of the Laplacian-Commutativity term

As mentioned above, the Laplacian-commutativity term given in
Eq. (2) was first introduced to promote approximately isometric
correspondences. If the functional map is expressed in the basis
given by the eigenfunctions of the Laplace-Beltrami operator, and
letting Λ1 and Λ2 represent vectors that store the eigenvalues of
the Laplacians of shape S1 and S2 respectively, this term can be
equivalently reformulated as:

Ecomm
(

C12
)

=
∥

∥C12∆1 −∆2C12
∥

∥

2

=
∥

∥C12diag
(

Λ1
)

−diag
(

Λ2
)

C12
∥

∥

2

=
∥

∥C12 ⊙
(

1k2 ΛT
1
)

−
(

Λ21
T
k1

)

⊙C12
∥

∥

2

=
∥

∥

(

1k2 ΛT
1 −Λ21

T
k1

)

⊙C12
∥

∥

2

, Emask
(

C12
)

= ∑
i j

[MLB]i j [C12]
2
i j ,

(3)

where ⊙ is the entry-wise matrix multiplication, 1k is a k-dim all-
ones vector and [A]i j denotes the (i, j) entry of a matrix A.

In other words, the regularization term Ecomm can be written as
a product between the matrix MLB, which we call the penalty mask

matrix and the squares of the entries of the unknown functional
map C12. In the case of Ecomm, the entries of MLB are given as
MLB(i, j) = (Λ2(i)−Λ1( j))2. Fig. 2 shows a heat map of this ma-
trix (see the first row in the “Mask” column).

Unfortunately, this simple formulation has certain fundamental
undesirable properties. In particular, in the case of smooth surfaces,
Laplace-Beltrami operators are unbounded operators on square-
integrable functions [MP49]. Consequently, in general, the energy
term ‖C12∆1−∆2C12‖

2 is undefined on smooth surfaces. As a sim-
ple example, consider the situation where C12 = Id, the identity
operator, and the two surfaces are scaled versions of each other
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Figure 3: The spectra of a sphere and a square torus of unit area,

as well as the corresponding Weyl estimate.

(i.e., ∆2 = c∆1 for some constant c 6= 1). In this case, ‖C12∆1 −
∆2C12‖

2 = |1− c|2‖∆1‖
2 is infinite.

That being said, the ill-definiteness of ‖C12∆1 −∆2C12‖
2 is not

a mere question of scale. Recall that, by Weyl’s law [Dod81], large
Laplacian eigenvalues of surfaces can be estimated in terms of the
surface area S as follows:

λk ∼
4π

S
k . (4)

Thus, by rescaling the surfaces such that their areas match guar-
antees that their eigenvalues have comparable asymptotic growth.
This, however, is not sufficient to make ‖C12∆1 −∆2C12‖

2 well-
defined. This can be seen from another simple, if slightly arti-
ficial, example. Consider a sphere (M1) and a flat square torus
(M2), both of unit area. While these surfaces are not diffeomor-
phic, they are among the few whose Laplace-Beltrami eigenvalues
can be explicitly computed (see [Sau06a,Sau06b] among many oth-
ers), which is why we consider them here. Said spectra, as well as
the corresponding Weyl estimate are illustrated in Fig. 3. For sim-
plicity’s sake, we once again pick a functional map of the form
C12 = Id. We illustrate the spectra, as well as the corresponding
‖C12∆1 −∆2C12‖

2 on Fig. 4. Notice the divergence of the Lapla-
cian commutator energy. On the same figure, we illustrate its pro-
posed replacement, defined in the next section. Note its rapid con-
vergence.

In addition to being ill-defined in the continuous setting, the
Laplacian commutativity mask has another significant problem.
Namely, it penalizes the high frequency entries of functional maps
in the same way as the low frequency ones, despite the greater insta-
bility of the former, and in this way fails to exhibit the funnel-like
structure observed in ground-truth functional maps (see e.g. Fig. 2
above or Figure 4 in [OBCS∗12]). Recall that a mask serves as a
penalty during the optimization of the functional map matrix. Thus,
the mask and the ground truth functional map should be comple-
mentary, in the sense that for the regions of ground-truth functional
maps with smaller (resp. large) values, the mask should add more
(resp. less) penalty.

We illustrate this phenomenon in Fig. 5, which shows the aver-
age of the squared values of functional maps constructed from the
ground-truth correspondences using 250 eigenfunctions over 100
FAUST non-isometric shape pairs. We then compare its structure
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Figure 4: The Laplacian and Resolvent commutator energies for

C12 = Id computed using the lowest k eigenvalues of the unit

area sphere and torus (see Fig. 3). Note the rapid convergence of

‖C12R(∆1)−R(∆2)C12‖
2 and the divergence of ‖C12∆1−∆2C12‖

2.

The spectra are rescaled with respect to the largest eigenvalue with

k = 100, as described in Eq. (14).

to the Laplacian commutativity mask (labeled “Standard”), aver-
aged over the same shape pairs. We perform the same computation
for the heuristic slanted mask introduced in [RCB∗17] and, finally,
for our proposed resolvent-based mask defined in the next section.
Notice that our mask better reproduces the funnel-like structure of
the ground-truth maps.

4.2. A novel regularization based on the Resolvent

In this section, we propose an alternative form for the Laplacian
commutativity regularizer that overcomes the problems identified
in the previous section. The resulting regularizer is better from both
the theoretical and practical standpoints.

The first issue of the original Laplacian-commutativity term
arises from the fact that the Laplace-Beltrami operator is un-
bounded. We thus propose to replace it with a meaningful bounded
operator, namely its resolvent. Below, we give a brief overview and
refer the reader to [RS80] for the detailed functional-analytic un-
derpinnings of the following discussion.

Resolvent. Let A : D → H be a densely-defined closed operator
on some Hilbert space H with domain D ⊂ H. Let ρ(A) ⊂ C be
the set of all complex numbers µ such that Rµ(A) = (A−µId)−1

is defined and bounded. The set ρ(A) and the operator Rµ(A) are
known as the resolvent set of A and the resolvent (operator) of A

at µ, respectively. The resolvent set ρ(A) is the complement of the
spectrum of A in the complex plane.

The general idea of considering the resolvent of an unbounded
operator rather than the operator itself comes from the notion of
norm-resolvent convergence, which is used to study the conver-
gence of unbounded self-adjoint operators [RS80]. In that sense,
our choice to use the resolvent of the Laplace-Beltrami operator is
a natural one. Note that here, closedness is a technical condition
used in the definition of the resolvent. In particular, it is satisfied by
self-adjoint operators, such as the ones we consider.

Before proceeding further, we slightly generalize our problem.
In what follows we will consider powers of the Laplacian rather
than the Laplacian itself. Specifically, we will use ∆γ for some γ >
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Figure 5: The average squared ground-truth functional map and

three penalty masks over 100 FAUST non-isometric shape pairs.

0 rather than ∆. As explained below, the parameter γ controls the
funnel-like structure of the resulting mask. Thus, this parameter
takes on an important role in the numerical tests reported later in
this paper.

Now since the Laplace-Beltrami operator ∆ is positive and self-
adjoint, its spectrum is contained in the non-negative real line. The
same also holds for ∆γ. Thus, we are guaranteed that Rµ(∆) is a
well-defined bounded operator for any complex µ not in the non-
negative real line.

For our purposes, the resolvent of ∆γ is expressed as

R(∆γ) =
(

∆γ − (a+ ib)Id
)−1

, (5)

where i is the imaginary unit and a,b ∈ R. Our proposal is to use
the resolvent of the Laplacian instead of the Laplacian in the com-
mutator term. We thus define a new energy term,

Eresolvent
(

C12
)

=
∥

∥C12R
(

∆
γ
1

)

−R
(

∆
γ
2

)

C12
∥

∥

2
. (6)

Before proceeding further, recall that we only need to consider
bounded functional maps C12, since functional maps that arise as
pullbacks of diffeomorphisms are bounded. This last fact is shown
in appendix A, for completeness. Our proposal is motivated by the
following result.

Theorem 1 (Bounded Resolvent Commutativity) Let C12 be a
bounded functional map. Then, in the operator norm,

∥

∥C12R
(

∆
γ
1

)

−R
(

∆
γ
2

)

C12
∥

∥

2
op

<∞ . (7)

Proof The result directly follows from the fact that products and
linear combinations of bounded operators are bounded. As defined
above, R(∆γ) is bounded, which concludes the proof.

As explained above, there is no analogous guarantee for the com-
monly used Laplacian commutativity, since the Laplace-Beltrami
operator itself is unbounded. In contrast, our resolvent-based com-
mutativity is always well-defined, and leads to a commutator with
bounded operator norm, even in the case of smooth surfaces.

Notice that Theorem 1 holds in the operator norm, rather than
the more convenient Frobenius norm, which we use to define the
energy in Equation (6). Our usage of the Frobenius norm can be
justified in two ways. First, a Frobenius norm version of Theorem
1 holds for γ > 1/2. This is shown in Lemma 2 of Appendix B.
Thus, for γ > 1/2, the usage of the Frobenius norm is perfectly
justified in the smooth setting. For lower values of γ, we invoke the
fact that, in practice, we work on a finite dimensional vector space.
Since all norms are equivalent on finite dimensional vector spaces,

we are free to replace the operator norm with the Frobenius one.
In that case, we lose the guarantee that the energy Eresolvent makes
sense in the full Laplace-Beltrami basis in the smooth setting. Yet,
as shown in the experiments reported below, this does not seem to
cause any issue.

Similarly to the usual Laplacian commutativity term Ecomm,
Eresolvent can also be expressed as a mask matrix. This can be done
as follows. Notice that R(∆γ) is diagonal in the Laplacian eigenba-
sis. Moreover, if ∆ has eigenvalues {λn}

∞
n=0, then, by matrix inver-

sion, the eigenvalues {rn}
∞
n=0 of R(∆γ) will be given by:

rn =
1

λ
γ
n −a− ib

=
λ

γ
n −a

(λ
γ
n −a)2 +b2

+
b

(λ
γ
n −a)2 +b2

i . (8)

In practice, we choose a = 0 and b = 1, which yields

rn =
λ

γ
n

(λ
γ
n)2 +1

+
1

(λ
γ
n)2 +1

i . (9)

Since the square of the Frobenius norm independently considers the
real and imaginary parts of a matrix, we can re-express Equation (6)
in terms of two new matrices MRe and MIm, defined below.

Eresolvent
(

C12
)

=
∥

∥MRe⊙C12
∥

∥

2
+
∥

∥MIm⊙C12
∥

∥

2

= ∑
i j

[MRe]
2
i j [C12]

2
i j +∑

i j

[MIm]
2
i j [C12]

2
i j

= ∑
i j

(

[MRe]
2
i j +[MIm]

2
i j

)

[C12]
2
i j

(10)

The matrices MRe and MIm correspond to the real and imaginary
parts of the eigenvalues of the resolvent, respectively. Explicitly,
these matrices are given by

MRe(i, j) =
Λ2(i)

γ

Λ2(i)2γ +1
−

Λ1( j)γ

Λ1( j)2γ +1
(11)

MIm(i, j) =
1

Λ2(i)2γ +1
−

1
Λ1( j)2γ +1

(12)

These matrices are not quite masks in the sense of Eq. (3). As per
Equation (10), the above two matrices can be combined into a sin-
gle mask

Mres(i, j) =MRe(i, j)2 +MIm(i, j)2 . (13)

The split of Mres into MRe and MIm will be revisited later, when
we explore beyond the established theory and consider a mask
constructed from weighted combinations of these two matrices.

4.3. Rescaling the Spectra

As it stands now, we observe that in practice the mask defined
in equation (13) decays too quickly as the Laplacian eigenvalues
grow. In other words, the mask is not sufficiently sensitive to the

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



J. Ren, M. Panine, P. Wonka, & M. Ovsjanikov / Structured Regularization of Functional Map Computations

Figure 6: The resolvent mask introduced in Eq. (13) with different

γ. The darker the region, the larger the penalty. Here, ∆1 and ∆2
are near-isospectral, which explains the approximately symmetric

structure of the mask.

higher frequencies. This is due to the scale introduced by the pa-
rameter b found in the definition of the resolvent. There are a few
equivalent ways of addressing this issue.

Our approach is as follows. We begin by computing the k lowest
eigenvalues of the considered Laplacians. Then, both spectra are
rescaled according to the rule

Λi 7−→
Λi

max
(

max(Λ1),max(Λ2)
) . (14)

In other words, the spectra of the source and target shape are
rescaled by the same factor, such that the largest considered eigen-
value (over both spectra) becomes equal to 1. From Equation (8),
one can see that this rescaling can be absorbed into a choice of
b and a change in the weight of the resolvent energy in the over-
all energy. Thus, conceptually, the spectral rescaling is equivalent
to a choice of the parameter b used in the definition of the resol-
vent. Alternatively, recall that rescaling the spectrum is equivalent
to rescaling the surface. Consequently, this rescaling does not affect
the theoretical guarantees of the previous section.

Returning to the previously discussed example of the sphere and
torus of unit area (see Fig. 3), we illustrate the resolvent energy
computed by the above procedure in Fig. 4. Note the rapid conver-
gence of the resolvent commutator energy (in red) and the diver-
gence of the Laplacian commutator energy (in blue).

4.4. Mask Structure as a Function of γ

Having defined the way to compute the resolvent mask, we are now
ready to explore the way in which tuning the parameter γ controls
its the funnel-like structure.

Fig. 6 illustrates the resolvent mask for different values of γ. The
darker the region, the more penalized the corresponding entry in the
functional map C12 would be. Notice that the funnel-like structure
of the mask changes with different values of γ.

From Fig. 6, we see that the behaviour of the mask as a function
of γ can be separated into two regimes. The first corresponds to
γ ∈ (0,1]. There, increasing γ results in a narrowing of the funnel-
like shape of the mask. Thus, the larger γ is, the more the mask pe-

nalizes functional maps that take eigenfunctions of ∆1 to eigenfunc-
tions of ∆2 with distant eigenvalues. Correspondingly, small values
of γ are more lax in that regard, allowing for maps between eigen-
functions with quite different eigenvalues. The former choice of γ is
appropriate when the shapes under consideration are approximately
isometric, as one then expects the eigenfunctions and eigenvalues
of both surfaces to be roughly the same. The latter choice is sound
for shape pairs that are further away from isometry.

The second regime corresponds to γ > 1. There, we observe an
inversion of the funnel-like structure, with the reverse funnel shape
being more and more pronounced as γ increases. This results in a
low penalty for maps between low frequency eigenfunctions, which
does not respect the shape of the ground-truth maps (see Fig. 5).

Later in this paper, we report empirically obtained optimal values
for γ on a benchmark dataset (see Fig. 14).

4.5. Proposed Functional Map Energy

In summary, we propose the following energy to compute a func-
tional map for a pair of shapes, with a set of given descriptors:

E
(

C12
)

= α1Edesc +α2Emult +α3Eorient +α4Eresolvent (15)

where Edesc is the descriptor-preserving term defined in Sec. 3,
Emult is the descriptor-commutativity term defined as Emult =

∑i

∥

∥C12D
mult
1i −D

mult
2i C12

∥

∥

2
introduced in [NO17], Eorient is the

orientation-preserving term introduced in [RPWO18]. Eresolvent is
the our new term introduced in Eq. (6) and discussed above.
As mentioned above, when functional maps are expressed in the
Laplace-Beltrami eigenbasis, this term can be written via a penalty
using the mask matrix given in Eq. (13) .

Before proceeding to a more extensive evaluation of the pro-
posed energy, in Fig. 2 above, we provide an example of a func-
tional map obtained using this energy and compare it to one ob-
tained using the standard Laplacian commutator regularizer. Fig. 2
also shows the resolvent mask with γ = 0.5 (second row), com-
pared to the standard mask (first row). The rightmost column shows
the quality of pointwise maps, recovered from the functional maps
(shown in the second rightmost column) using both our and the
standard Laplacian regularizers.

5. Results

We tested the proposed approach using a MATLAB-based imple-
mentation, which we adapt from the state-of-the-art functional map
approach in [RPWO18]. Here, we first describe the benchmark
datasets and the baseline methods.

Datasets. We use the two datasets introduced in [RPWO18].
These consist of shapes from the FAUST [BRLB14] and
TOSCA [BBK08] datasets, which were remeshed so that the shapes
have different triangulations, and are no longer in one-to-one cor-
respondence, making the matching more challenging and realistic.
Specifically, we include 300 FAUST shape pairs and 284 TOSCA
pairs for evaluation.

Baselines. To evaluate our new regularizer, we compare to the fol-
lowing two masks:

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



J. Ren, M. Panine, P. Wonka, & M. Ovsjanikov / Structured Regularization of Functional Map Computations

50 100 150 200 250

0.05

0.1

0.15

0.2

k: functional map size

A
ve

ra
ge

er
ro

r
FAUST

per-vertex measure

standard slanted
ours

50 100 150 200 250
0.1

0.2

0.3

k

FAUST

direct measure

Initialization with ICP

50 100 150 200 250
0.04

0.06

0.08

0.1

0.12

k

TOSCA

per-vertex measure

50 100 150 200 250

0.1

0.15

0.2

0.25

k

TOSCA

direct measure

Figure 7: Changing the functional map size. We randomly select 50 FAUST non-isometric pairs and 50 TOSCA isometric pairs. For each

of the pairs, we only use one pair of WKS [ASC11] descriptors. We then optimize for a functional map with different size ranging from 20

to 250 using different Laplacian mask terms. The solid lines represent the initialization with different masks and the dashed lines are the

ICP-refined results. We report the per-vertex and the direct error measure. We can see that the proposed mask is much more stable than the

standard and the slanted mask as the functional map size increases.

• "standard": the standard Laplacian-commutativity mask, which
is defined as MLB(i, j) =

(

∆2(i)−∆1( j)
)

as discussed before.
• "slanted": the heuristic slanted diagonal penalty mask proposed

in [RCB∗17], which is defined as

M(i, j) = exp

(

−η

√

i2 + j2

)∥

∥

∥

∥

n

‖n‖
×
(

(i, j)T −p
)

∥

∥

∥

∥

where p = (1,1)T , and n = (1,r/k)T is the line direction with
slope r/k, where r is the estimated rank of the functional map,
and k is the size of the square functional map. This weight matrix
is originally applied to partial shape matching in [RCB∗17], and
we use it as a mask matrix to regularize the functional map. In
our tests, η is set to the default value 0.03 as suggested in the
original paper. This mask is illustrated on Fig. 5. Note that it
exhibits the desired funnel-like structure for the lower part of the
spectrum, but not the upper part.

We also compare three different settings:

• Initialization. The wave kernel signatures (WKS) [ASC11] are
used to construct Edesc,Emult, and Eorient in Eq. (15). Then we
optimize the functional map w.r.t. the energy defined in Eq. (15)
with three different masks, namely, the standard, slanted, and our
resolvent mask.

• ICP refinement. After initialization, we use ICP [OBCS∗12] to
refine the computed functional maps.

• BCICP refinement. After initialization, we use the recently pro-
posed BCICP algorithm [RPWO18] to refine the computed func-
tional and pointwise maps, using the open-source implementa-
tion and default parameters provided by the authors.

Measurements. In our experiments, we measured the quality of the
functional maps and the recovered point-wise maps:

• Point-wise maps. Since most shapes contain left-right symme-
tries, which are indistinguishable for intrinsic methods, in each
dataset, we considered both the ground-truth direct and symmet-
ric correspondences. To measure the accuracy of a computed
map, we used the following measures:

– per-vertex error: for each vertex we accept the ground-truth
direct and symmetric correspondences and take the minimum

Given descriptor

Ground-truth map

o
u

rs
slanted

standard

k = 20 k = 75 k = 150 k = 250

Figure 8: Given one pair of WKS descriptors, as visualized on the

left top, we use different Laplacian mask terms to optimize for a

functional map with size k. The ground-truth map is visualized on

the bottom left. We can see that our mask is much more stable over

different size k.

as the error of this vertex. This measure reflects the accuracy
of the map regardless of the symmetry.

– direct error: we compute the average per-vertex error to the
direct ground-truth correspondences only. This measure re-
flects both the accuracy and the smoothness of the map.

• Functional maps. We can evaluate a functional map by the qual-
ity of its recovered point-wise map, or by measuring the penalty
from a given mask. Specifically, for a given functional map C

and a mask matrix M , we can measure the total penalty as
∑i j [M ]i j [C]2i j .

5.1. Effect of functional map size

For the functional maps pipeline, a set of corresponding descriptors
is given as input. We then optimize a k×k functional map by mini-
mizing an objective function based on Eq. (15). Therefore, we have
to solve for k2 variables. If k is a smaller value, e.g., k < 50, the op-
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Figure 9: For each dataset, we compare the quality of the functional maps between the standard mask (blue curves), the slanted mask (yellow

curves), and our resolvent mask (red curves) with the same set of parameters, where a single pair of descriptors is used to optimize a 100-

by-100 functional map. The comparison is made in three different settings: comparing the initialization directly (dotted lines), comparing

the initialization with ICP refinement (dashed lines), and with the BCICP refinement (solid lines). Specifically, these curves are measured on

300 FAUST shape pairs and 284 TOSCA pairs. The average direct errors are reported in the legends.

timization problem is easier to solve since the number of variables
is small. However, if k is too small, the information that is encoded
into the optimized functional map is limited to the low-resolution
of the spectrum of the shapes, and hence it will be hard to transfer
detailed information. On the other hand, if k is too large, solving the
optimization problem is potentially more time-consuming. Even
more importantly, this optimization problem can become under-
constrained when the number of variables exceeds the constraints
stemming from the input descriptors. In this case, we need effective
regularizers to regularize the functional maps. In real experiments,
the choice of the parameter k is a key hyper parameter.

To quantify the stability and the effectiveness of the proposed
resolvent mask, we conduct the following test: for each of the test
pairs, we only use one pair of corresponding WKS descriptors. We
then fix this descriptor pair and optimize for functional maps with
different sizes ranging from 20 to 250. We randomly select 50 pairs
of FAUST and 50 pairs of TOSCA, and report the average error
over the tested shape pairs w.r.t. different functional map size in
Fig. 7. We can see that the standard mask fails to regularize the
functional map with a large size: the average per-vertex error is
three or four times larger than ours. At the same time, the slanted
mask has a better performance than the standard one in the per-
vertex measure. However, the slanted mask has large direct errors,
which suggests that the smoothness is not well preserved. We be-
lieve this is due to the fact that the orientation-preserving regular-
izer starts to fail to disambiguate the symmetry as the functional
map size k increases. In this case, the slanted mask cannot help
the orientation-preserving operator, while our mask can strengthen
the functionality of the orientation-preserving operator and leads
to maps with much lower per-vertex and direct error. In summary,
even with limited constraints from a single pair of WKS descrip-
tors, increasing the number of variables does not significantly affect
the performance of our mask. Fig. 8 shows an illustrative example.

This test shows that our mask is much more stable and can better
regularize larger functional maps even in very challenging cases
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Figure 10: Changing the number of input descriptors. We use dif-

ferent numbers of descriptors to optimize a 100-by-100 functional

map with different masks. The results are reported for 300 FAUST

shape pairs. As the number of descriptors increases, the results im-

prove for all the masks.

with little input information or constraints. Also, it suggests that
with this new mask, we no longer need to tune the parameter k as
much as needed by the standard mask to achieve a better result.

5.2. Evaluation on shape matching

In this experiment, we compare our resolvent mask to the stan-
dard and the slanted mask on a larger FAUST and TOSCA dataset
in three settings: the initialization, with ICP refinement, and with
BCICP refinement. To make a fair comparison between different
masks, the weights for different terms (the αi in Eq. (15)) are fixed
across different test pairs and different test masks.

In this test, for each test pair, we use one pair of WKS descriptors
to optimize a 100-by-100 functional map. As reported in Fig. 9, our
mask leads to 40.4%, 43.1%, and 16.3% improvement w.r.t the set-
tings of the initialization, with ICP refinement, and with BCICP re-
finement respectively, over the best of the standard and the slanted
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Source Standard Slanted Ours

Ground-truth

Initialization
+

IC
P

Figure 11: Example. Comparing the quality of the initial maps and

after ICP refinement via texture transfer. (One pair of descriptors

is used to optimize a 50-by-50 functional map)

Source Standard Slanted Ours Ground-truth

Figure 12: Example. Comparing the quality of the ICP refined

maps via color transfer. (One pair of descriptors is used to opti-

mize a 100-by-100 functional map)

mask on the FAUST dataset regarding the average direct error. Sim-
ilarly, for the TOSCA dataset, ours achieves 34.2%, 42.3%, and
24.8% improvement respectively over the best of the standard and
the slanted mask.

Fig. 10 shows a test on the FAUST dataset, where we use dif-
ferent number of carefully curated input descriptors based on WKS
[ASC11] using parameters from [RPWO18] to compute 100-by-
100 functional maps. As the number of input descriptors increases,
more constraints are added to regularize the functional map. There-
fore, for all the masks, and all the test settings, the results improve.
Observe that when the number of variables is small (as shown in
Fig. 7 for small k) or the number of descriptor constraints is large
(as shown in Fig. 10 for large descriptor number), all masks per-
form well since the problem is well-constrained. However, when
this is not the case, our resolvent mask can still regularize the
functional map better than the other two. For completeness, in Ap-
pendix D we also include results with the BCICP refinement. We
remark that this refinement is very computationally and memory
intensive due, in part, to requiring all-pairs geodesic distances, but
can, as such, improve upon even very poor quality maps.

Fig. 11 shows a qualitative example of using a single descriptor
pair to optimize for a 100×100 functional map. The first row shows
the quality of the initial maps with different masks, and the second

Source Standard Slanted Ours

Figure 13: Example. Here we show a challenging pair of a lion and

a cat and the results are refined by BCICP. We can see that, when

the initial maps are in a low quality and the BCICP refinement

fails to improve the initial maps, our new mask still gives a more

reasonable map. (Twenty pairs of descriptors are used to optimize

a 50-by-50 functional map)
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Figure 14: Left: changing the parameter γ (as defined in Eq. (6));
Right: changing the relative weight w between the imaginary part

and the real part (see the original definition in Eq. (13)). The results

are based on 50 TOSCA pairs.

rows the quality of the corresponding maps refined by ICP. We can
see that our resolvent mask outperforms the other two masks. Also
the quality of our initial map is close to the ICP refined map, which
shows that with our mask, we do not rely on the post-processing
refinement as much as the other two. Fig. 12 shows another ex-
ample of the results refined by ICP. Fig. 13 shows a challenging
non-isometric example with results refined after BCICP.

5.3. Analysis of the complex resolvent mask

As shown in Fig. 5, the funnel-shape of our resolvent mask aligns
well with the ground-truth functional map, which leads to a bet-
ter performance over the standard and the slanted mask. To further
analyze the properties of our mask, we also conduct the following
experiments: We test the range of the parameter γ, and the rela-
tive weight between the complex and the real part to construct the
resolvent mask. Moreover, we investigate the correlation between
the mask penalty added on a functional map and the corresponding
recovered point-wise map.

5.3.1. Different parameters for the complex resolvent mask

In this section, we empirically tune the parameters in our resolvent
based mask. First, we explore different values of γ. Recall that γ

controls the funnel-like structure of the mask. Thus, it is expected
that tuning γ can influence the functional map quality.
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Figure 15: Correlation between the mask penalty on a functional

map and the accuracy of the corresponding point-wise map. For

a TOSCA isometric pair, we sample 700 functional maps of size

50-by-50 with different quality (normalized to the same scale). We

measure the penalty of different masks, as an indicator of the qual-

ity of the functional map. We also measure the average geodesic er-

ror (w.r.t. the direct measurement) of the recovered point-wise map

of the corresponding functional map. The correlation between the

functional map penalty and the point-wise map quality is visualized

as a scatter plot with 700 samples. Compared to the standard and

the slanted mask, our resolvent mask applies a smaller penalty to

functional maps with good underlying point-wise maps and more

heavily penalizes functional maps with bad underlying point-wise

maps.

On Fig. 14, we report results for 100 FAUST pairs, where the
result of the standard mask is colored blue, and ours is colored red.
As is shown on the left, when γ lies between 0 and 1, our mask
always outperforms the standard mask over both the initialization
(solid lines) and after the ICP refinement (the dashed lines).

Note that the case γ = 1 corresponds to the resolvent of the
Laplacian. Thus, the fact that our mask outperforms the standard
one for γ = 1 experimentally justifies the usage of the resolvent
of the Laplacian, rather than the Laplacian itself. Note also that, as
suggested in Sec. 4.4, the resolvent mask performs poorly for γ> 1.

Finally, we explore the relative contribution of the real and imag-
inary parts of the resolvent mask in order to analyze the utility of
the two components of our mask construction. For this, we analyze
the accuracy of the computed pointwise maps when allowing MRe

and MIm to have different weights, (1−w) and w for w ∈ [0,1],
respectively. As shown in Fig. 14 (right), the convex shape of the
red curve (where the weight w changes) demonstrates that both the
real part and the imaginary part contribute to the improvement over
the standard mask. Note that our mask with any convex combina-
tion between the real part and the imaginary parts outperforms the
standard mask. In practice we always use the equal weight w = 0.5.

5.3.2. Correlation between the mask penalty and map

accuracy

To justify that our resolvent mask is a better regularizer than the
standard and the slanted ones, we also measure how the mask
penalty relates to the accuracy of the corresponding point-wise
map shown in Fig. 15. In this experiment, we generate 700 differ-
ent point-wise maps with different levels of accuracy, then convert
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Figure 16: Changing the relative weight α4 of the mask term. We

choose 68 different values for α4 in the range of 0 and 10 for this

test.

Table 1: Average error on 284 TOSCA pairs of different masks,

each mask using its own optimal weight from Fig. 16. Specifically,

we set α4 to 10−2, 10−4, 10−3 for the standard, slanted, and our

mask respectively.

Mask
type

Average error (×10−3)
per-vertex measure direct measure

Ini + ICP + BCICP Ini + ICP + BCICP
standard 87.26 65.97 41.22 178.8 130.8 76.87
slanted 64.66 50.76 37.45 166.9 131.5 100.0
ours 55.52 43.82 32.48 124.5 90.6 62.33

them to a functional map representation and measure the penalty
added by different masks w.r.t. the average geodesic error computed
from the pointwise maps. Each scatter point in Fig. 15 shows such
a test sample.

We can observe that, compared to the standard and the slanted
mask, the new mask induces a lower penalty on functional maps
with a good quality (i.e., smaller average geodesic error), and pe-
nalizes a functional map with larger error more heavily. This further
confirms that using our resolvent mask is more likely to produce a
better functional, and ultimately better pointwise map.

5.4. Parameters

In our tests, we use γ = 0.5 and w = 0.5 to construct our resolvent
mask, and use the default value η = 0.03 to construct the slanted
mask. When comparing the three masks in the initialization setting,
i.e., to optimize the energy defined in (15), the weights αi are set
to the same values as reported in [RPWO18] but in a relative way
(see Appendix D for more details). As for the comparison of the
ICP and BCICP refinement settings, the same default parameters
and the same number of iterations are used for different masks.

Fig. 16 shows the results of the changing the weight of the mask
term, i.e., α4, while keeping the rest weights fixed on 50 TOSCA
shape pairs. We can see that, for all different choices of the weight,
our resolvent mask is always better than the standard mask. When
the weight is small enough, it seems the slanted mask can achieve
a faster decrease of the error than ours. However, the range of the
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Figure 17: Example. Comparing the quality of the initial maps

computed with different masks and after ICP refinement via texture

transfer. Each mask uses its own optimal weight from Fig. 16.

effective weight is smaller than ours besides that the construction
is purely heuristic and lacks a theoretical justification.

On the other hand, Fig. 16 also suggests that different masks
have their own preferred choice of the weight α4. Therefore, in-
stead of fixing α4, we set it independently w.r.t. the optimal values
on a subset reflected in Fig. 16. Specifically, for the standard mask,
we set α4 = 10−2, for the slanted mask, we set α4 = 10−4, and
for ours, we set α4 = 10−3. The corresponding average errors on
the complete TOSCA dataset are reported in Table 1. We can see
that, even when the parameters are carefully tuned for the other two
masks, our resolvent mask still achieves the best accuracy. Fig. 17
shows a qualitative example.

5.5. Application to non-isometric shape pairs

Source

S
tandard

S
lanted

O
u

rs

Figure 18: Example. Comparing the quality of the initial maps

computed with different masks of four SHREC shape pairs via tex-

ture transfer.

To show the usefulness of our resolvent mask on non-isometric
shape pairs, we test the 20 FourLeg shapes from the SHREC 2007
dataset [GBP]. Specifically, we use 10 pairs of descriptors con-
structed from 4 landmarks to optimize a 120-by-120 functional
map using the standard, the slanted, and our resolvent mask. For a
fair comparison, we use the same parameters as the previous tests:
we set γ = 0.5 for our resolvent mask, and set η = 0.03 for the
slanted mask. Fig. 18 shows a qualitative example. We can see that
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Figure 19: For 380 SHREC shape pairs, we plot the average error

for each pair with different masks, where the result of the standard,

slanted and our mask is colored in blue, yellow, and red respec-

tively. Therefore, in the case where the red curve is below the blue

or the yellow points, our mask leads to a lower error for these pairs.

Source Standard Slanted Ours

Figure 20: Failure case. Here we show a challenging shape pair

from SHREC, where all the three masks fail to produce a good map.

our resolvent mask gives the best initialization. We also measure
the accuracy of the 380 point-wise maps among the 20 shapes on
the given landmarks (21 ground-truth landmarks are given for each
shape). The average error for the standard, slanted, and our mask
is 0.114, 0.122, and 0.107 respectively. Fig. 19 reports the average
error for each shape pair. We observe that resolvent mask gives a
better result than the standard mask on 68.4% out of 380 pairs, and
outperforms the slanted mask on 69.5% pairs. The limited quanti-
tative improvement of our mask over the other two masks is due to:
(1) for the shape pairs where our mask significantly outperforms
the other two, e.g., as shown in Fig. 18, the map quality is mea-
sured on only 21 landmarks, where the average error does not fully
reflect our improvement. (2) for some extremely challenging pairs,
e.g., a failure case shown in Fig. 20, all the maps from different
masks have a poor quality, and thus the “relative improvement” on
the average error is not informative. Moreover, we also computed
the average error in the case where the mask term is removed from
the total energy, i.e., set α4 = 0. In this case, the average error over
the complete dataset is 0.112. We can see that, the standard and
the slanted mask can have a negative effective in this case, while
our resolvent mask still works to improve the map quality to some
extent.

6. Conclusion, Limitations and Future Work

In this paper, we proposed a new regularizer, the resolvent Lapla-
cian commutativity, for the functional map pipeline. We first ana-
lyzed the limitations of the original Laplacian commutativity term
and theoretically justified the effectiveness of our proposed new
term. This new regularizer can significantly improve the quality
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of the computed functional maps and the corresponding recovered
point-wise maps before or after refinement.

However, our method also has several limitations that we would
like to overcome in future work. First, our proposed regularizer is
well justified on isometric and non-isometric shape pairs, but not on
partial shapes, where the ground-truth functional maps can have a
different structure. Therefore, it would be interesting to extend the
analysis to partial shape pairs. Second, besides the funnel pattern,
in our experiments, we also observed the slanted-diagonal structure
of the ground-truth functional map of some non-isometric shape
pairs as discussed in [RCB∗17]. It would be interesting to consider
this feature into the mask constructions for further improvement for
non-isometric datasets. Thirdly, the role of the (a, b) introduced in
Eq. (5) is not well studied, and we would like to leave this explo-
ration as future work. Finally, we believe that it would be interest-
ing to study and potentially apply data-driven techniques to learn
the optimal operators for enforcing commutativity across diverse
shape pairs.
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Appendix A: Pullbacks are Bounded

Lemma 1 Let Φ : M → N be a diffeomorphism between con-
nected compact oriented Riemannian manifolds. Then, the associ-
ated pullback Φ∗ is bounded as a map L2(N )→ L2(M).

Proof Let dM and dN denote the volume forms of M and N ,

respectively. Since C∞ is dense in L2, it is enough to show that
there exists a constant B > 0 such that, for any f ∈C∞(N ),

∫
M

(

Φ∗
f
)2

dM≤ B

∫
N

f
2
dN . (16)

By virtue of being a diffeomorphism, Φ is invertible. Using the
pullback of Φ−1, we can express the left-hand side of the desired
inequality as an integral over N .

Begin by considering
[(

Φ−1
)∗

dM
]

, the pullback of the volume

form of M. Since volume forms are top degree forms, there exists
u ∈C∞(N ) such that

[(

Φ−1
)∗

dM
]

= udN (17)

Φ is either orientation preserving or orientation reversing. In the
former case, u > 0. In the latter, u < 0. In either case, the left-hand
side of the desired inequality can be recast as

∫
M

(

Φ∗
f
)2

dM=
∫
N

((

Φ−1
)∗

Φ∗
f
)2

|u|dN

=
∫
N

f
2|u|dN .

(18)

It remains to bound this expression.

∫
N

f
2|u|dN ≤ sup

x∈N
|u(x)|

∫
N

f
2
dN (19)

Since N is compact and u is continuous, the supremum is achieved
and is finite. This concludes the proof.

Appendix B: Bounded Frobenius Norm for γ > 1/2

In this appendix, we prove a sufficient condition for the Frobenius
norm based energy to be defined in the continuous case. We be-
gin by introducing an infinite dimensional analog of the Frobenius
norm, which is provided by the Hilbert-Schmidt norm.

Definition 2 (Hilbert-Schmidt Norm) Let A :H1 →H2 be a linear
operator between Hilbert spaces. Let A† denote the adjoint of the
operator A. Then, the Hilbert-Schmidt norm of A is given by:

‖A‖2
HS = Tr

(

A
†
A
)

=
∞

∑
i=1

〈ei,A
†
Aei〉 , (20)

where {ei}
∞
i=1 is any orthonormal basis of H1. This norm is also

known as the Schatten 2-norm.

The following lemma is the main result of this appendix.

Lemma 2 Let ∆1 and ∆2 be Laplacians on compact, connected,
oriented surfaces M1 and M2, respectively. Let C12 : L2(M1)→
L2(M2) be a bounded operator. If γ > 1/2, then:

∥

∥C12Rµ

(

∆
γ
1

)

−Rµ

(

∆
γ
2

)

C12
∥

∥

2
HS

<∞ , (21)

where µ is any complex number not on the non-negative real line.

Proof Operators with finite Hilbert-Schmidt norm are known as
operators of Hilbert-Schmidt class. It can be shown (see [RS80])
that linear combinations of Hilbert-Schmidt class operators are of
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Hilbert-Schmidt class. Moreover, the product of a bounded opera-
tor and a Hilbert-Schmidt class operator is also of Hilbert-Schmidt
class. Thus, it is sufficient to show that Rµ(∆

γ) has finite Hilbert-
Schmidt norm for γ > 1/2.
Denote the eigenfunctions and eigenvalues of ∆ by {ψk}

∞
k=0 and

{λk}
∞
k=0, respectively. We assume that the eigenvalues are num-

bered in the usual non-decreasing order.
Rµ(∆

γ) is diagonal in the eigenbasis of ∆ and has eigenvalues
1/(λγ

k
−µ). Thus, the Hilbert-Schmidt norm of Rµ(∆

γ) is given by:

‖Rµ(∆
γ)‖2

HS =
∞

∑
k=0

〈ψk,Rµ(∆
γ)†Rµ(∆

γ)ψk〉

=
∞

∑
k=0

1
∣

∣λ
γ
k
−µ

∣

∣

2

(22)

We will establish the convergence of this series for γ > 1/2 using
the comparison test with the series ∑

∞
k=1

1
kp . This series is well-

known to converge if and only if p > 1.
Since the λk are non-negative and increasing with k towards ∞, the
following inequality holds for all large enough k:

1

4λ
2γ
k

≤
1

∣

∣λ
γ
k
−µ

∣

∣

2 ≤
2

λ
2γ
k

. (23)

By Weyl’s law, there exists a constant B > 0 such that λk ∼ Bk for
large k [MP49]. Then, the inequality becomes

1
4B2γ

1
k2γ

≤
1

∣

∣λ
γ
k
−µ

∣

∣

2 ≤
2

B2γ

1
k2γ

. (24)

Thus, by the comparison test, the series for ‖Rµ(∆
γ)‖2

HS converges
if and only if γ > 1/2. This concludes the proof.

We conclude this appendix with two remarks on the above re-
sult. First, note that we have shown a result slightly stronger than
required by the statement of the lemma. In fact, we only needed
to show that the series for ‖Rµ(∆

γ)‖2
HS converges if γ > 1/2. The

"only if" part was optional. We have done this to illustrate that the
above proof strategy is guaranteed to fail for γ ≤ 1/2. Specifically,
it is no longer sufficient to assume that C12 is merely a bounded op-
erator. One also cannot simply assume C12 to be of Hilbert-Schmidt
class, as this rules out the important case of C12 = Id, which is
bounded, but not Hilbert-Schmidt.

As a final remark, note that an analogous proof strategy can be
applied to the Schatten p-norm, which can be seen as the lp gen-
eralization of the Hilbert-Schmidt norm. There, the kth term of the
series would be 1/|λγ

k
−µ|p and convergence would be guaranteed

for γ > 1/p. Thus, one can find p large enough so that Rµ(∆
γ) has

a well-defined Schatten p-norm for any given γ > 0.

Appendix C: Comparison to heat mask

Besides our resolvent-based commutativity term, another natu-
ral bounded option would be to use the commutativity with the
heat operators, which are also bounded linear functional operators,
which can act as regularizers on functional maps. This would lead

Figure 21: Visualization of the heat mask with different time-scale

parameter T .
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Figure 22: Changing the time-scale parameter T of the heat mask.

Here we test the performance of the heat mask (yellow curve) with

different T and report the average direct error of 50 random FAUST

isometric shape pairs. The average error of the standard mask

(blue dashed line) and the average error of our resolvent mask (red

dashed line) are included for comparison.

to the following mask matrix:

Mheat(i, j) = exp(−T Λ2(i))− exp(−T Λ1( j)), (25)

where T is the scalar time parameter. Fig. 21 visualizes the heat
mask with different values of T on an isometric shape pair. In
Fig. 22 we compared the performance of the heat mask with dif-
ferent values of T ranging from 10−3 to 500 on FAUST isometric
shape pairs. We can see that, as a bounded operator, the heat mask
has a better performance than the standard mask. When T = 5, it
gives the best performance among the tested values. The heat mask
with T = 5 (in Fig. 21) has a similar funnel structure, but still does
not achieve the quality of the results we obtain with the mask based
on the resolvent operators.

Appendix D: Change the descriptor size

Fig. 23 shows the average direct error of 300 FAUST shapes with
different number of input descriptors. The descriptors are used to
optimize a 100-by-100 functional map for each test pair. The results
with ICP/BCICP refinement are also included.

We also compare to the results obtained directly using the code
and the dataset provided by the authors of [RPWO18] (see Table 2).
The reproduced results that are reported in Table 2 are consistent
with the values reported in the Table 1-2 ("WKS + directOp +
BCICP") in the paper, and Table 2-3 ("WKS + directOp") in the
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Figure 23: The average geodesic error v.s. the number of descrip-

tors used for functional map estimation on the FAUST dataset. Note

that our mask leads to better initialization, which results in better

maps, even after the ICP and BCICP refinement.

Table 2: We also compare our results to the exact setting

of [RPWO18] on the same set of shape pairs of FAUST dataset. The

average direct geodesic error over 300 shape pairs are reported

and our mask leads to better results.

Avg. direct error (×10−3)
Ini +ICP +BCICP

[RPWO18] 175.5 121.2 58.2
Ours 72.7 53.5 42.0

supplementary materials of [RPWO18]. Note that [RPWO18] split
the dataset into isometric and non-isometric categories, and here
we report the results altogether.

Recall that the total energy to optimize is E
(

C12
)

= α1Edesc +
α2Emult +α3Eorient +α4Emask. We would like to highlight the fact
that the parameters in [RPWO18] are not set in the same way as
in our work. In particular, in [RPWO18] the standard Laplacian
mask is used, and the weight αi are set to fixed values α∗

i . While in
our test, we used the proposed resolvent Laplacian mask, and the
weight αi are set to α∗

i /Ei(Cini), where Ei(Cini) is the correspond-
ing energy term acting on the initial functional map Cini.

Our approach allows a better control over the relative contribu-
tion of the different terms in the energy and we observed that it
typically works better in practice as well. Specifically, in our set-
ting, the relative weight of each term αiEi(C) are fixed across dif-
ferent shape pairs. In this case, if we change the mask construc-
tion, we can conclude that the improvement indeed come from our
proposed resolvent mask. However, in the comparison to the ex-
act setting of [RPWO18], since only α∗

i is fixed over different test
pairs, the relative weight of each term α∗

i Ei(C) can have different
scale since different test pairs may have different scale of eigenval-
ues, descriptors and etc. Therefore, the improvement from Table 2
is not obtained in a well controlled setting, since the improvement
can also come from the change of the relative weight of different
energy terms as well as from our resolvent mask.

Thus, in addition to the new Table 2, we also emphasize that
in Fig. 23 we provide a more fair and controlled comparison
to [RPWO18] in which 10 pairs of descriptors are used. Note that,
in all the tests across the paper, we used the above discussed way to

fix the relative weight of the mask term w.r.t. the rest terms to make
sure the improvement indeed comes from our new resolvent mask.

Appendix E: Stability under remeshing and refinement
n = 6890 n = 200 n=300 n=500 n=1000 n=3000 n=5000 n=6890

Source

Target

S
tandard

O
u

rs

Figure 24: First row: The target shape is fixed, while the source

shape is remeshed and downsampled to resolution ranging from

200 to 5000 (the original target shape without remeshing is shown

in the last column); Second row: we use the standard mask to opti-

mize a 100-by-100 functional map with 3 descriptors. The recov-

ered pointwise maps are visualized on the corresponding target

shape; Third row: similar to the second row but using our resol-

vent mask.

Fig. 24 illustrate the stability of our resolvent mask under
remeshing and refinement. Specifically, we fix the source shape,
and remesh and downsample the target shape to different resolu-
tions ranging from 200 to 5000. Note that the original source shape
(first row, first column) and the original target shape (first row, last
column) have the same triangulation. The downsampled meshes
(using QSlim) are shown in the first row with the number of vertices
reported in the above.

We then compute a 100-by-100 functional map between the
source shape and the downsampled target shape using the stan-
dard Laplacian mask (the corresponding point maps are shown in
the second row) and our resolvent mask (in the third row). We can
see that, our resolvent mask is more stable than the standard mask
across different mesh resolution and irregular/inconsistent triangu-
lation.
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