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Figure 1: Our signatures characterize a point x by the birth (leftmost) and death (second left) of the topological features (here,
non-trivial loops) in the neighborhood of x in a provably stable way. We show how to compactly encode these events in a vector
without losing the stability properties. This is useful in a variety of contexts, including shape segmentation and labeling (as
shown on the right) using linear classifiers such as SVM.

Abstract

Comparing points on 3D shapes is among the fundamental operations in shape analysis. To facilitate this task,
a great number of local point signatures or descriptors have been proposed in the past decades. However, the
vast majority of these descriptors concentrate on the local geometry of the shape around the point, and thus are
insensitive to its connectivity structure. By contrast, several global signatures have been proposed that successfully
capture the overall topology of the shape and thus characterize the shape as a whole. In this paper, we propose
the first point descriptor that captures the topology structure of the shape as ‘seen’ from a single point, in a
multiscale and provably stable way. We also demonstrate how a large class of topological signatures, including
ours, can be mapped to vectors, opening the door to many classical analysis and learning methods. We illustrate
the performance of this approach on the problems of supervised shape labeling and shape matching. We show that
our signatures provide complementary information to existing ones and allow to achieve better performance with
less training data in both applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

Shape analysis and comparison lie at the heart of many prob-
lems in computer graphics, including shape retrieval and
classification [FK04], shape labeling [KHS10], shape inter-

polation [KMP07], and deformation transfer [SP04], among
many others. In recent years, a large number of approaches
have been developed for these tasks, which are often based
on devising new signatures or descriptors. Such descrip-
tors facilitate comparison tasks by encoding the information
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about the structure of the shapes in a way that is easy to in-
dex and analyze.

The nature of such signatures may be very different : they
can be global, summarizing the whole shape, or local, char-
acterizing only a subset of the shape, such as a neighborhood
of a point; they can capture different types of information
(geometry, topology), they can be intrinsic or extrinsic, and
also volumetric or just defined on the surface. While there is
clearly no ideal signature that would be suitable for all tasks,
the three key characteristics that are required for a success-
ful descriptor are: invariance to a relevant deformation class
(rigid motions, intrinsic isometries), stability to small pertur-
bations outside of this class, and informativeness, i.e. being
able to successfully distinguish points or shapes that are suf-
ficiently different. Although the first characteristic is often
easy to ensure, the other two require either extensive exper-
imentation or non-trivial analysis, and may even be in con-
flict with each other. Therefore, most successful descriptor-
based approaches combine multiple signatures, which them-
selves are often multi-dimensional, with various learning ap-
proaches [KHS10,BBGO11]. In this setting, another desired
characteristic of a signature is to provide complementary in-
formation to the one present in other descriptors.

In this paper, we propose to use the recent developments
in algebraic topology to build new multiscale signatures for
points on the surface of a 3D shape. This is in contrast to
the many existing local descriptors that concentrate on the
geometry of the shape around a given point and are thus in-
sensitive to the local or global connectivity structure. More-
over, while a number of local or global descriptors have been
proposed for shape analysis and comparison based on topo-
logical features, ours is the first local-to-global topological
descriptor that is provably stable under small shape pertur-
bations. In particular, our signatures are defined intrinsically
(i.e. with respect to the distances on the surface of the shape),
and are stable with respect to non-isometric shape changes.
They can also be computed from a broad class of functions,
leading to a high modularity.

Our topological signatures make heavy use of the so-
called persistence diagrams (PDs), which have been recently
employed in a number of tasks in computer graphics and
vision [CCSG∗09b, SOCG10, LOC14]. These diagrams are
easy to compute and enjoy many nice theoretical properties,
and in particular characterize topological features in a stable
and informative way.

However, since PDs are not naturally represented as vec-
tors, they are not easy to work with in general, as simple
quantities, like distances or means, are difficult to derive and
compute. This means that using classical learning methods is
currently very cumbersome with PDs. To alleviate this prob-
lem and enable large-scale computations with PDs, we pro-
pose a map that sends each diagram to a vector in Rd , in
which all computations, including devising kernels for com-
parison, can be defined and easily done. We show that this

map preserves the stability properties of the PDs and opens
the door to using topological signatures alongside other de-
scriptors. We illustrate the performance of our approach on
the problems of supervised shape labeling and shape match-
ing, where we show that our signatures provide complemen-
tary information to existing ones and can sometimes allow
to achieve better performance with less training data.

Main contributions. In summary, our main contributions
are two-fold: first, we define a new set of multiscale and
provably stable topological signatures for points on shapes.
Second, we demonstrate how a large class of topological sig-
natures, including ours, can be mapped to vectors, on which
standard learning and classification techniques can be used.
Our work is, to our knowledge, the first bridge between topo-
logical persistence theory and large-scale machine learning.

2. Related Work

Over the past several decades a great number of signatures
or descriptors have been proposed for shape analysis. The
full review of all the related work is unfortunately not possi-
ble given the space constraints of our paper. We therefore re-
view the work that is most closely related to ours: local point
signatures that have been used to characterize the neigh-
borhoods of points on surfaces and topological signatures,
which have been proposed to capture the connectivity struc-
ture of shapes in a provably stable way.

Local shape signatures Most early efforts for designing
point signatures on 3D shapes, have concentrated on descrip-
tors that are invariant under rigid motions [CJ97]. Spin im-
ages [JH99] and Shape Context [BMP00, FHK∗04] are two
well-known examples of such local signatures. Several au-
thors have proposed to devise descriptors by considering the
shape at multiple scales, in order to gain informativeness and
robustness. Examples of such methods include work by Li
and Guskov [LG07], who consider a series of increasingly
smoothed versions of a given shape, and Integral Invariant
features [MHYS04,PWHY09] that are obtained by convolv-
ing an indicator function of the shape interior with a se-
ries of Gaussians of increasing width. Similarly, Yang et al.
[YLHP06] and Kalogerakis et al. [KSNS07] have proposed
methods for computing multi-scale versions of principal cur-
vatures, which can be used as local point signatures invari-
ant under rigid motions. Finally, other descriptors, which are
more closely related to ours, such as the Shape Diameter
Function (SDF) [GSCO07, SSCO08] have been proposed to
measure the local thickness of a shape around a point.

In order to better deal with shapes that can undergo non-
rigid deformations such as articulated motion of humans
or animals, descriptors that are invariant to intrinsic isome-
tries have also been proposed. Such signatures are typically
based solely on geodesic distances or on derived quantities
such as the Laplace-Beltrami operator, and include intrinsic
variants of shape context [HSKK01, IPH∗07,GSCO07], and
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diffusion-based descriptors such as the Heat Kernel Signa-
ture (HKS) [SOG09, BK10] or the Wave Kernel Signature
(WKS) [ASC11] among others.

Among these approaches, perhaps most closely related
to ours are descriptors based on studying the distributions
of geodesic distances on a surface around a point. These
include the geodesic centricity and eccentricity functions
[HSKK01, IPH∗07] measuring respectively the average and
the maximum geodesic distance to a given point on the
mesh. However, unlike such techniques which either sum-
marize the distance function to a point with a single num-
ber, or even summarize all pairwise distances with a his-
togram [MFG12], we propose a multi-dimensional signature
which is both more informative and provably stable.

Topological Signatures Our work is also largely based
on the recent advances in Topological Data Analysis (TDA),
and in particular its use of the theory of persistent homol-
ogy [ELZ02, ZC05], which is related to the earlier notions
of size functions used by Frosini et al. for shape analy-
sis [VUFF93]. One of the major strengths of this frame-
work is that it allows to summarize the structure of a fam-
ily of topological spaces in a compact and provably stable
way with so-called persistence diagrams (PDs). These dia-
grams have been shown to be stable in a very general set-
ting [CCSG∗09a], and have recently been used for tasks in-
cluding clustering [CGOS13], deformable shape segmenta-
tion [SOCG10] and as signatures for global shape compari-
son and retrieval [FL99,CZCG05,CCSG∗09b,LOC14]. Dey
et al. [DLL∗10] also used PDs of the Heat Kernel function as
a tool for selecting feature points on the shape on which they
compute classical descriptors. PDs have also been widely
used in the context of data analysis [Car09], where their
most relevant application in regard to the subject of this pa-
per has been to describe the local topological structure of
a space in the neighborhood of a point [BCSE∗07]. Unfor-
tunately, none of the proposed signatures quite satisfy the
aforementioned desired characteristics, being either tied to
the entire shape, or to the sole local neighborhood of a point,
and are often too costly to build and to compare in prac-
tice. Even if the computational cost for comparing PDs has
been greatly optimized and reduced [CdFJM14], they are
not naturally represented as vectors, which makes it difficult
to apply classical learning and classification approaches to
them directly. To overcome this issue, Bubenik [Bub12] has
proposed an approach that sends PDs to L2 piecewise linear
functions. Unfortunately, these functions can be very costly
to encode, since discretizing them can lead to vectors of very
large sizes.

We build upon this line of work in two fundamental ways:
first, we propose a provably stable multiscale topological
signature to describe the shape from the point of view of
a single point; second, we demonstrate how a large class of
topological signatures based on persistence diagrams can be

mapped to vectors, which opens the door to many classical
analysis and learning methods.

3. Signature definition

In this section, we intend to state both intuitively and for-
mally the definition and stability properties of our signature.
Section 3.1 and Section 3.2 define the persistence diagrams
that we use as an intermediate tool. Section 3.3 explains how
our signature is built from these PDs and Section 3.4 de-
scribes stability in a more formal way.

3.1. Persistence diagrams as point descriptors

Following previous work on the subject, we model shapes
as compact smooth surfaces in R3. In order to provide a
multiscale description of the structure of a shape X from
the point of view of a single point x ∈ X, we consider the
evolution process of a geodesic ball centered at x, whose ra-
dius r grows from 0 to infinity (See Figures 2 and 3). Along
the way, we track the evolution of its topology, including
its connected components (dimension 0), holes (dimension
1), and enclosed voids (dimension 2). As we are dealing
with surfaces, the 0D topology is always trivial, whereas the
2D topology has limited information as mentioned in Sec-
tion 3.2. Therefore, we can restrict ourselves to tracking the
holes (1D topology) only. The number of such holes, given a
specific radius, is exactly the so-called Betti number β1. In-
tuitively, a hole is either a boundary component of the ball,
or a handle or tunnel (like in the torus) included in it. An-
other interpretation is to consider the shape as a geographic
landscape. Then every boundary hole that appears during the
growing process is associated to a specific bump, or moun-
tain, of the landscape.

Thus, a good idea to start with would be the computation
of β1, or even the Euler characteristic χ of the geodesic ball,
for every radius. This would give us an integer-valued func-
tion defined over the radii for every center point x. However,
it turns out that such functions, in addition to being difficult
to store, are not stable as a slight variation in the position of
the center point x, or a slight perturbation of the shape, would
induce big differences in infinity norm between them. Even
if we turn these integer-valued functions into real-valued
vectors by storing the radii for which β1 changes, they are
actually still not stable as jumps can still occur.

This is why our tracking is a little bit different and adds
more information. It is performed by computing the values
of the radius r for which the number of holes in the ball
changes, and by pairing the values corresponding to the same
hole. More precisely, to each hole are associated two values:
the one at which it appears, called the birth value, and the
one at which it gets filled in, called the death value. When a
hole does not eventually get filled in, it is called an essential
hole because it is a topological feature of the entire shape X,
and as such its death value is set to +∞.
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Figure 2: Geodesic balls centered at the black point are displayed in red. The persistence diagram corresponding to this family
is shown in the far right. Note that each point can be easily associated with a shape part. The pink, blue, light blue, black and
green points correspond to the middle, index, ring, pinky and thumb respectively. As the center point is close to the tip of the
middle finger, one can see that its point in the PD is much closer to the diagonal than the other fingers. Notice that for this
shape, there are no essential holes.

Figure 3: Same process as Figure 2 but with a different center point. Note the difference in the PD (far right). The colors in
the diagram correspond to the same parts of the hand as in Figure 2. There is, however a new point in red, which corresponds
to the hand base (palm), which was not present in the PD of the previous shape.

Figure 4: Left: base point shown in black. Middle: the 0, 1 and 2-dimensional persistence diagrams of the family of com-
plements (0D) and the family of geodesic balls (1D and 2D). The duality theorems establish the correspondence between the
inessential points of the 0D and 1D diagrams. They also match the essential point of the left-most PD (in red) with the essential
point of the right-most PD. On this example, the 1-dimensional PD has no essential point, but if it had one, we would not be
able to capture it in the 0-dimensional PD.

Given a base point x, we can therefore store the 1D
topological information associated to the growing family of
geodesic balls {B(x,r) | r ∈R+} in the so-called persistence
diagram (PD). In this diagram, every hole has two coordi-
nates, the abscissa being the birth value and the ordinate be-
ing the death value. Thus, the 1D persistence diagram of the
function B(x, ·) is encoded as a multi-set of points, that are
all above the diagonal ∆ : y = x in the extended plane R2

.
Note that we need to give multiplicities to the points as dif-
ferent holes can appear and disappear at the same radii. As

we are storing only the 1D topological information (holes),
we refer to these diagrams as 1D persistence diagrams.

We illustrate two such trackings for two different black
center points in Figures 2 and 3. The growing process is
shown from left to right with geodesic balls colored in red.
If we consider Figure 2, we can see that in the first (left-
most) image, the geodesic ball has no non-contractible cy-
cles (holes) as it is simply connected. In the second image,
the geodesic ball contains one inessential hole (at the tip
of the middle finger). In the third one, there are no non-
contractible holes again as the previous one is now filled
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in. In the fourth image, there are three inessential holes (the
three other fingers). In the fifth one, there are no holes (no-
tice that the thumb created a hole that was born and filled in
between the fourth and fifth images). In the last image, the
geodesic ball contains the entire shape, which has spherical
topology and, as such, contains no essential holes. There-
fore, the PD contains no points at infinity. Note that since the
black base point is close to the tip of the middle finger, one
of the points in the PD is both born and dead significantly
earlier than the other ones.

The distance to the diagonal has a specific meaning in the
PD. Indeed, if a point is very close to or is on the diagonal,
it means that the corresponding hole was filled in quickly af-
ter being born in the growing process. Within the landscape
interpretation, this can be interpreted as a bump of small to-
pographic prominence, which can be considered as topolog-
ical noise. The vertical distance of a point to the diagonal is
exactly the prominence of the corresponding bump. On the
contrary, the more salient a bump, the longer its prominence
and thus the further away from the diagonal its point.

As illustrated in Figures 2 and 3, persistence diagrams
characterize the topology of the shape centered around a
point at multiple scales. They are intrinsic, as they only use
geodesic distances on the shape (as opposed to other de-
scriptors which use the ambient Euclidean metric in R3) and
as such are invariant to both intrinsic and extrinsic isome-
tries. Moreover, PDs are also stable with respect to small
non-isometric perturbations of the shapes —see Section 3.4.
In particular, the diagrams remain close to each other (with
their natural metric, the so-called bottleneck distance) for
slight variations of the center point or of the shape.

However, 1D persistence is costly to compute [Mor08]
and PDs are not naturally amenable to standard learning al-
gorithms as there is no simple way to compare the diagrams
associated with two different points. This is an important
problem as signature comparison is a key and recurring step
in many shape processing and analysis algorithms. In the
rest of the paper, we show how both these issues can be ad-
dressed. First, we show that by using duality theorems, the
computation of 1D persistence can be reduced to the zero-
dimensional case, which is significantly easier to deal with in
practice (Section 3.2). Second, and perhaps more fundamen-
tally, we provide a simple method for mapping the PDs to
vectors in Rd , which preserves their stability properties and
allows simple processing and comparison (see Section 3.3).

3.2. Duality

As mentioned earlier, computing the complete 1D persis-
tence of shapes is costly. More precisely, if the surface is
given by a triangle mesh with O(m) edges and faces, the
worst-case running time is of the order of O(m3) [Mor08].
Notice that this running time is the same for every center
point. To overcome this difficulty in the case of 2D surfaces,

one can use classical duality theorems [CSEH09, dMVJ11].
These theorems establish the correspondence between k-
dimensional persistence, for k ∈ {0,1,2}. In particular, they
show the equivalence between the inessential holes of the
family of balls and the inessential connected components
(0D persistence) of the family of complements of these balls.
This means that, within every geodesic ball, every hole is
associated to a connected component of the ball’s comple-
ment. As connected components are much easier to track
than holes (the complexity of computing 0D persistence di-
agrams is nearly linear), it is preferable to use them instead.
Notice that, as we study the family of complements, the birth
values are now bigger than the death ones (as the radius is
decreasing), leading to points under the diagonal. As an il-
lustration, consider the family of the complements in Fig-
ure 2 (displayed in blue). Connected components of the blue
sets are related to the holes of the red ones.

However, notice that the duality result for essential holes
only associates them with essential holes of the comple-
ments. The essential connected components of the family of
complements of balls are associated with the essential en-
closed voids (2D topology) of the family of balls (See Fig-
ure 4). Thus, we cannot get access to the essential holes (the
global loops or handles on the shape) with 0D persistence.
This means that, although we gain a significant speedup in
computational complexity, we lose some information when
using duality, and in particular we do not track essential
holes of 1D persistence.

3.3. Mapping to vectors

Even if we have an easy way to compute part of the 1D per-
sistence, using the PDs directly turns out to be ineffective
in practice as comparing two diagrams is not an easy task.
More precisely, their natural metric, the so-called bottleneck
distance, is costly to compute, as it requires to compute op-
timal matchings (see Section 3.4). As in our applications we
deal with triangle meshes with 15k points on average, the
computation of all of the pairwise distances between PDs
will take a very large amount of running time if a single com-
parison is too costly. Moreover, there is no space partition
data structure such as a KD-tree that we can use to speed-
up proximity queries in nearest-neighbor tasks: all pairwise
distances would need to be computed.

Besides, kernel-based learning techniques such as Sup-
port Vector Machines (SVM) require the definition of ker-
nels on the space of signatures, for which the bottleneck
distance is not well-suited due to its connection to the `∞-
norm, in contrast to the usual Euclidean distance. Indeed,
the canonical kernels defined on metric spaces require the
metric to be negative definite. It is known [Cut09] that the
canonical metrics on PDs, such as the bottleneck distance,
are not. This is why mapping the PDs to vectors, for which
the comparison is much simpler and the definition of kernels
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is made possible, is of great interest, as it provides a connec-
tion between persistence and machine learning.

To map the PDs to Rd , we treat the diagrams themselves
as finite metric spaces, and consider their distance matrices.
To be oblivious to the row and column orders, we look at the
distribution of the pairwise distances (similar to the well-
known D2 signature in graphics), between points on each
diagarm. For stability reasons, we also compare these pair-
wise distances with distance-to-diagonal terms and sort the
final values.

Another solution would be to keep only the sorted dis-
tances to the diagonal. Indeed this also leads to a stable sig-
nature that has a significant meaning (as every value would
correspond to the prominence of a bump) whereas pairwise
terms cannot be easily related to intuituve geometric aspects
of the shape. However, this signature would lack discrimi-
nativitive power as shown in Figure 5. Moreover, in prac-
tice, for every source point on a shape, we also add in the
PD an extra point representing the unique 2D homological
feature of the shape. This extra point has an infinite ordi-
nate and an abscissa equal to the eccentricity of the source
point. Adding it does not affect the stability result, which is
stated in any dimension. In particular, this allows distance-
to-diagonal terms to naturally appear in the signature with
our mapping (see next paragraph). Finally, one may also add
in our signature the distance-to-diagonal of this extra point
as, again, this would not affect stability.

Figure 5: We consider two source points on a synthetic ex-
ample and their corresponding PDs. Clearly, keeping only
the sorted distances to the diagonal would not discriminate
the two source points whereas looking at the distribution of
the distances would allow to successfully distinguish them.

Thus, our mapping is done by computing a component
for every pair of points in the PD. Given two points x,y, we
compute the minimum m(x,y) between the distance that sep-
arates them and their respective distances to the diagonal ∆:

m(x,y) = min{‖x− y‖∞, d∆(x),d∆(y)},

where d∆(·) denotes the `∞-distance to the diagonal. We
take the minimum with distance-to-diagonal terms and we
use the infinity norm for stability reasons. We then sort these

values in decreasing order in a vector. Since two PDs may
not have the same number of points, leading to vectors of
different sizes, we give every vector the size of the largest
vector by adding null coordinates. Figure 6 illustrates the
mapping. To sum up, for every point in the shape, we com-
pute its PD and then we derive its signature by taking the
sorted vector of all pairwise terms m(x,y) in the PD. Thus,
each shape leads to a collection of vectors of possibly differ-
ent sizes.

x1

x2

x3
x4




‖x1 − x3‖∞
‖x2 − x3‖∞
‖x1 − x2‖∞

d∆(x4)
d∆(x4)
d∆(x4)




Figure 6: Mapping of a PD to a vector, where d∆(·) denotes
the distance to the diagonal ∆.

The size of such vectors can be quadratic in the number of
points in the diagram, thus quadratic in the number of points
in the shape in the worst practical case of triangle mesh in-
puts. In practice, we truncate the vectors, getting rid of the
last coordinates, which are also the lowest ones. Note that
this is equivalent to getting rid of pairwise terms which in-
clude either a point very close to the diagonal or two points
which are very close to each other. Thus, by truncating, we
either get rid of topological noise or get rid of too small dis-
tances. In the second case, it does not mean that we do not
consider anymore the two points as only their mutual dis-
tance is removed, while their distances to the other points
are kept. In practice, we truncate the vectors according to
some estimated upper bound on the number of relevant holes
which are present in the family of balls (for instance this
number would be 5 for a human shape - two legs, two arms
and the head - thus we would only keep around 5(5-1)/2=10
components in the vectors).

In order to make the signatures independent of the scale,
we consider the diagrams in log-scale (meaning that we ap-
ply the function log(1+ ·) on every birth and death value).
As an illustration, Figure 7 shows the signatures of all the
points of a specific shape, plotted as points in 3D after a
MultiDimensional Scaling (or MDS) on their distance ma-
trix. The color of each signature point is given by a ground
truth segmentation provided with the input data set. Two re-
marks are in order at this stage: first, notice that there is some
continuity between vectors with identical labels, which sug-
gests that the signatures vary continuously along the shape;
second, and consequently, there is no natural grouping of the
signatures into clusters, so unsupervised segmentation using
traditional clustering algorithms such as k-means is likely
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to be ineffective. These observations suggest rather to use
supervised learning algorithms in segmentation applications
—see Section 5.

Figure 7: Example of MDS. One can easily observe the
continuity between vectors of different labels. The color of
each point refers to the same label as the colors displayed
on the hand shape.

Finally, notice that the definition of our signature holds
more generally for compact metric spaces, so our signature
can be used on a much wider class of spaces than 3D shapes,
and in potentially many applications. In particular, our map-
ping of PDs to vectors could be used on the global signatures
of [CCSG∗09b], or even for characterizing objects of differ-
ent nature, like images as in [LOC14]. Moreover, note that
our family of growing balls can be seen as the sublevel sets
of a distance function to the base point. Indeed, one could
also compute PDs with sublevel sets of other functions, lead-
ing to a high modularity of our signature. In Section 4, we
give the algorithm to compute PDs from the sublevel sets of
an arbitrary function.

3.4. Stability of our signature

As mentioned before, the main advantage of considering
topological signatures is that they enjoy stability properties,
meaning that the difference between two signatures cannot
be too large if the signatures are computed from nearby
points or on nearby shapes. This stability is a key feature
in applications.

Recall that the construction of our signature proceeds in
two stages. Below we present the stability theorems of each
stage independently. We begin by stating the stability of the
constructed PDs, which requires to introduce their natural
metric called the bottleneck distance d∞b . Stability is ex-
pressed in terms of perturbations of the center point and of
the overall shape, as measured by metric distortions of corre-
spondences. We then state the stability of the derived vectors
in the Euclidean and `∞-norms, in terms of perturbations of
the PDs in the bottleneck distance. Note that this second sta-
bility result holds generally, in particular when our mapping
from PDs to vectors would be applied to the global signa-
tures, such as the ones defined in [CCSG∗09b]. The state-

ments given in full generailty and their proofs are provided
in [COO15]. Here, we only mention their simplest versions,
which are sufficient for our purposes.

Bottleneck distance. Let PD1 and PD2 be two multi-sets of
the extended plane R2

. Let P∆ denote the orthogonal projec-
tion onto the diagonal ∆, and let B be the set of all bijections
between D1 = PD1 ∪ P∆(PD2) and D2 = PD2 ∪ P∆(PD1).
Clearly, |D1|= |D2|. Given a bijection b : D1→ D2, we de-
fine the cost of a pair (p1, p2), p2 = b(p1), as cb(p1, p2) =
‖p1− p2‖∞ if either p1 or p2 is on the diagonal, and 0 oth-
erwise.

The bottleneck distance d∞b between PD1 and PD2 is:

d∞b (PD1,PD2) = infb∈B maxp1∈D1 cb(p1,b(p1))

Intuitively, for PDs computed on similar points in differ-
ent shapes, the bottleneck distance measures how the distri-
butions of the features around the points are close from one
shape to the other.

Correspondences and metric distortion. A correspon-
dence C between two sets X and Y is a subset of X×Y whose
projections onto X and Y are surjective, that is:

∀x ∈ X ,∃y ∈ Y : (x,y) ∈C
∀y ∈ Y,∃x ∈ X : (x,y) ∈C

Assume X and Y are equipped with metrics dX and dY re-
spectively. The metric distortion εC of C is:

εC = sup(x,y),(x′,y′)∈C |dX (x,x′)−dY (y,y′)|

As metric distortions measure how far two shapes are
from being isometric, one can relate the bottleneck distance
of their PDs to metric distortions in the following theorem.

Stability for PDs.

Theorem 3.1 Let S1 and S2 be two shapes, p1 ∈ S1, p2 ∈ S2.
Let PD1 and PD2 be the PDs associated to the center points
p1 and p2 as described in Section 3.1. Let C be a correspon-
dence between S1 and S2 of metric distortion ε such that
(p1, p2) ∈C. Under some mild conditions on the shapes and
ε (stated in [COO15]), one has:

d∞b (PD1,PD2)≤ 20ε (1)

Compared to previous stability results for topological sig-
natures, such as the ones from [CCSG∗09b, CdO13], this
result applies to signatures derived from single points on a
shape rather than from the entire shape itself, which adds a
level of difficulty in the analysis.

In practice, our inputs are finite metric spaces and come
from triangle mesh samplings of the manifolds and an asso-
ciated graph distance (such as the shortest path along edges).
As the proof of the theorem does not use the triangulation of
the shape, one can easily extend Theorem 3.1 to these fi-
nite metric spaces approximating the shapes in the Gromov-
Hausdorff distance [BBI01]. Furthermore, the proof holds
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Figure 8: We compute the most common label for each face
in a set of 100 nearest neighbors computed from a training
set. No smoothing is applied but the segmentations on this
pair of shapes are still reasonable (around 80 percent accu-
racy). However, this accuracy can decrease to 60 percent in
other categories, thus we need a more elaborate algorithm
for segmentation.

more generally for a broad class of functions, of which dis-
tance functions are but a small excerpt — then, the gen-
eral statement involves an extra term depending on the so-
called functional distortion of spaces, and also for smooth
compact Riemannian manifolds and PDs of arbitrary dimen-
sions. See [COO15] for the formal statement and proof.

Stability for vectors. We now turn our focus to the signa-
tures themselves. All we need to show is that the mapping
defined in Section 3.3, preserves the stability property:

Theorem 3.2 Let PD1 and PD2 be two persistence diagrams,
with N1 and N2 points respectively. If N = max(N1,N2), and

X and Y are the
(

N(N−1)
2

)
-dimensional vectors obtained re-

spectively from PD1 and PD2 as described in Section 3.3,
then:

C(N) ‖X−Y‖2 ≤ ‖X−Y‖∞ ≤ 2 d∞b (PD1,PD2)

where C(N) =
√

2
N(N−1) . Again, see [COO15] for the proof.

The dependence on N can lead to very small constants
C(N) in the worst case, which is not desireable as in practice,
the vectors have sizes varying between 50 and 500. However,
two remarks are worth considering at this point.

Firstly, this constant disappears using the infinity norm,
which is useful when using kNN classifiers. We show how
such a kNN segmentation allows to achieve reasonable per-
formance in Figure 8, even though the use of more elaborate
algorithms like SVM leads to better results. It is interesting
as such a simple task would be impossible with PDs, as ex-
plained in Section 3.3.

Secondly, this constant can be reduced by truncating the
vectors, as stability is preserved whatever the number of
components kept. In return, the signatures are less discrimi-
native, but we show this loss is acceptable in our application.
This is an important feature for two reasons: first, because by
reducing the dimension of the vectors we actually reduce the
constant C(N) in the previous equation; second, because en-
tries of the vectors that include points close to the diagonal

Figure 9: Our signature is computed on nearly isometric
shapes. The first component is shown on the human shape,
the second component is shown on the planes and the third
one is shown on the centaurs. One can see that it respects
the correspondence due to its stability.

may not be significant and descriptive at all, so we can get
rid of them without compromising the stability.

As an illustration of this stability property, we display
components of our signature on shapes in various poses
shapes in Figure 9. Theorems 3.1 and 3.2 ensure that corre-
sponding points have similar signatures. Note that the com-
ponents of our signature characterize parts of the shape that
are difficult to relate to the other classical descriptors in the
literature —apart from the first component, which roughly
corresponds to the eccentricity, see the end of paragraph 4
in Section 3.3). Nevertheless, this is not too much of an is-
sue, as our primary goal is to derive a stable and powerful
descriptor without placing imporatnce on its interpretation.

4. Computation

In the applications that we consider, the input shapes are rep-
resented as triangle meshes. As our PDs are obtained only
from the pairwise geodesic distances between points on the
shape, they are still well-defined in this discrete setting.

The input can be seen as a graph with n nodes {v1 ... vn},
whose shortest-path distance is denoted by d. Given a fixed
node x, we let fx be the distance function to this node. More
precisely, fx(y) = d(x,y) for any node y in the graph.

Since we only care about the 0D persistence of the
ball complements, we keep only the 1-skeleton graph of
the mesh, and we compute shortest-path distances using
Dijkstra’s algorithm [CLRS01] and its implementation by
Surazhsky et al. [SSK∗05]. Note that we could refine the
construction by computing exact geodesic distances within
the triangle mesh, however this is far more costly and the
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gain in practice is not significant. The procedure for com-
puting the persistence diagram associated to fx is the clas-
sical 0D persistence algorithm [EH10], applied to the filtra-
tion of the input graph by the superlevel sets of fx, where
each edge appears at the same time as its vertex with lower
fx-value. After sorting the nodes of the graph by decreasing
fx-values, the procedure applies a variant of the Union-Find
algorithm [CLRS01], in which special care is taken for the
choice of representative node v(e) for each connected com-
ponent e, in order to avoid a quadratic time complexity. We
recall the procedure in Algorithm 1 for completeness. Notice
that it can be used for any function f defined on the nodes.

Algorithm 1: Compute PD

Input: graph G = (V,E) with |V |= n, f : V → R

1 Sort the vertices of G s.t. f (v1)≥ f (v2)≥ ·· · ≥ f (vn);
2 Initialize union-find data structure U and v : U →V ;
3 for i = 1 ... n do
4 LetN be the set of neighbors v j of vi in G s.t. j < i;
5 ifN = ∅ then

// vi local maximum of f in G ⇒
create new cc

6 Create a new entry e and attach vi to it;
7 Set v(e) = vi;
8 else

// assign vi to adjacent cc with

highest f-value
9 Let ei = null;

10 for v j ∈N do
11 Let e j = U .find(v j);
12 if ei = null or {ei 6= e j and

f (v(ei))< f (v(e j))} then
13 Set ei = e j;
14 Attach vi to entry ei;

// merge all adjacent cc into ei

15 Let v = v(ei);
16 for v j ∈N do
17 Let e j = U .find(v j);
18 if e j 6= ei then
19 Create pair [ f (v(e j)), f (vi)] in PD;
20 U .union(ei,e j);
21 Set v(ei∪ e j) = v;

Output: PD

Computing the distance function fx for every node x takes
O(n2 logn) time in total on a graph with n vertices and O(n)
edges, as is the case here. Then, building the PDs of all func-
tions fx takes O(n2 logn) time in total, and it is dominated by
the cost of sorting the vertices according to their fx-values.
Finally, given the PD of a particular distance function fx,
computing the resulting signature for x takes quadratic time
in the number m of points in the PD. As m can have the same
order of magnitude as n, mapping all the PDs to vectors takes

O(n3) time in total in the worst case. However, it turns out
in practice that m depends only on the topology of the shape
and remains constant (at most 50 in our examples), so the
whole mapping only takes linear time. Let us also mention
that the code for PDs and the one for mapping them to vec-
tors are simple and written with less than 100 lines of C++
code. No specialized library is required, and it is also highly
parallelizable, which makes it really easy to reproduce.

In practice, computing the signatures of all points on a
triangle mesh with 10k-15k nodes takes between 3 and 5
minutes on a single Xeon E5530 2.4GHz processor. For the
shapes that we considered in our experiments, the longest
running time was 15 minutes for a mesh with 30k nodes.
Notice that this is the running time needed for the compu-
tation of the complete set of signatures. In shape analysis,
one uses subsets of the training mesh vertices with fixed size
instead of the whole set.

5. Applications

5.1. Shape Matching

We use our signature for shape matching as this application
allows to demonstrate how the main property of our signa-
ture, stability, can be used in practice. As our signature can
be seen as a multivariate field defined on shapes, we decide
to use the framework of functional map [OBCS∗12], and in
particular the supervised learning approach. The exact pro-
cedure is fully described in [COC14].

We use 4 training shapes for several categories of the
shape matching benchmark TOSCA [BBK08] and com-
pute optimal descriptor weights following the procedure de-
scribed in [COC14]. We then use these weights to com-
pute the optimal functional map on test shape pairs, by us-
ing 300 eigenvalues of the Laplace-Beltrami operator. We
run this procedure two times to end up with two functional
maps: one computed with the original set of classical probe
functions (which includes all of the classical descriptors de-
scribed in [KHS10] plus more recent ones like HKS and
WKS) and the other computed with the same set plus our
signature. We obtain large positive weights for our signa-
ture, which indicates that it strongly influences the induced
optimal functional map. Once the map is computed, it is also
interesting to look at the induced correspondence. Figure 10
displays three error curves for every category. These plots
represent, given an unnormalized radius r, the percentage y
of the points that are mapped by the correspondence at a dis-
tance at most r from their ground-truth image. One can see
how our signature strongly improves these error rates in all
categories.

We also show in Figure 11 the shape parts on which points
get closer to their ground-truth image after adding our sig-
nature. One can see that they correspond to flat, ‘feature-
less’ parts of the shape, that are very difficult to characterize
with classical descriptors whereas the multiscale definition
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Figure 10: The blue curve represents the correspondence induced by the ground-truth functional map. The yellow one repre-
sents the correspondence induced by the optimal functional map without our signature and the red one represents the corre-
spondence induced by the optimal functional map with our signature. The categories are, from left to right and top to bottom:
horse, wolf, dog, cat, human and centaur.

Figure 11: Yellow parts are the ones which are the most improved with our signature. Dark blue means no improvement. For
every shape, it is clear: firstly that there is a positive improvement almost everywhere and secondly that the best improvements
are obtained on the flat parts of the shapes.

of our signature allows the corresponding probe functions to
be much more discriminative.

5.2. Shape Segmentation

To demonstrate the performance of our signature, we also
use it for the problem of supervised 3D shape segmentation
and labeling. We refer the reader to [KHS10] for the full
description of the method.

We use the Princeton benchmark [CGF09] for both train-
ing and test shapes. This benchmark contains several dif-
ferent ground truth segmentations for each shape. On each
shape that we use in the training set, we use the same ground
truth segmentation as Kalogerakis et al. [KHS10] (that is
the segmentation with lowest average Rand Index to all other
segmentations for that shape).

To show the improvement obtained when using our signa-
ture, we first consider the segmentation produced by using
the method with 5 training shapes per category and the sub-
set of features used in [KHS10]. Table 1 (second column)
shows the Rand Index given as a percentage (segmentation
quality defined in [CGF09], lower is better) obtained with-
out using our signature. In the same table (third column,

SB5+SD) we report the Rand Index obtained by using the
same pipeline, but augmented with our signature, which on
average has 15-20 dimensions. We recall (see Section 3.2)
that our signature cannot get access to essential hole (han-
dles). This explains why the improvement is low in cate-
gories for which the segmentation characterizes handles (e.g.
Cups). Other algorithms can be used to compute the full 1D
homology [Mor08] but they are more costly. We also be-
lieve that the bad result in the Glasses category is due to
the fact that there are no prominent bumps on the Glasses
shapes leading to nearly equal signatures almost everywhere
that fool the classifier in the training process. Apart from
that, note that in 18 out of 19 categories, we obtain an of-
ten significant improvement in the results. We also compare
these results with the method of [KHS10], which uses 6 and
19 training shapes (SB6 and SB19, respectively fourth and
fifth columns of Table 1). Note that in 12 out of 19 cate-
gories our results are better than SB6 and in 4 out of 19 cate-
gories better than SB19, even though we used fewer training
shapes, fewer features in each training shape, and no expen-
sive penalty matrix optimization. Overall, this table shows
that we can get close to the optimal results (where all-but-
one shapes are used for training, leading to a huge amount
of running time) with less data and features and demon-
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SB5 SB5+PDs SB6 SB19
Human 21.3 11.3 14.3 11.9

Cup 10.6 10.1 10.0 9.9
Glasses 21.8 25.0 14.1 13.7
Airplane 18.7 9.3 8.0 7.9

Ant 9.7 1.5 2.3 1.9
Chair 15.1 7.3 6.1 5.4

Octopus 5.5 3.4 2.2 1.8
Table 7.4 2.5 6.4 6.2
Teddy 6.0 3.5 5.3 3.1
Hand 21.1 12.0 13.9 10.4
Plier 12.3 9.2 10.0 5.4
Fish 20.9 7.7 14.2 12.9
Bird 24.8 13.5 14.8 10.4

Armadillo 18.4 8.3 8.4 8.0
Bust 35.4 22.0 33.4 21.4
Mech 22.7 17.0 12.7 10.0

Bearing 25.0 11.2 21.7 9.7
Vase 26.4 17.8 19.9 16.0

FourLeg 25.6 15.8 14.7 13.7

Table 1: Rand Indices computed over the segmentation
benchmark. Results obtained with 5 training shapes with-
out our signature (SB5), and with our signature (SB5+SD),
compared to results of Kalogerakis et al. [KHS10] using sig-
nificantly larger training sets (see text for details).

strate that our signature provides complementary informa-
tion to the existing descriptors, and can potentially be useful
in shape segmentation and labeling scenarios.

6. Conclusion

In this article, we introduce a new signature that compactly
encodes topological information on the shape at different
scales in a standard vector that enables the use of large-scale
supervised machine learning methods. It represents the first
connection between topological persistence and machine
learning to our knowledge. Our signature comes from
topological tools, called the persistence diagrams, that are
stable to perturbations of the shape. Moreover, we show
that our signature provides complementary information
to the other classical descriptors, allowing high quality
results with less training shapes in a shorter computation
time than previous methods for shape segmentation, and
strongly better correspondences in shape matching. In the
future, we are planning to use of other distances, such as
diffusion distances, rather than the geodesic distance, in the
construction of our signature. This could possibly lead to
signatures that would be more robust to topological noise.
Secondly, as persistence diagrams are very general tools,
our signature can be used for objects of different nature than
shapes, like images, and for tasks including shape retrieval
and classification. The study of our mapping of PDs to
vectors in various problems is another very interesting

direction for future work.
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