
Functional Characterization of Intrinsic and Extrinsic Geometry
ETIENNE CORMAN*
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We propose a novel way to capture and characterize distortion between pairs
of shapes by extending the recently proposed framework of shape differ-
ences built on functional maps. We modify the original definition of shape
differences slightly and prove that, after this change, the discrete metric is
fully encoded in two shape difference operators and can be recovered by
solving two linear systems of equations. Then, we introduce an extension of
the shape difference operators using offset surfaces to capture extrinsic or
embedding-dependent distortion, complementing the purely intrinsic nature
of the original shape differences. Finally, we demonstrate that a set of four
operators is complete, capturing intrinsic and extrinsic structure and fully
encoding a shape up to rigid motion in both discrete and continuous settings.
We highlight the usefulness of our constructions by showing the complemen-
tary nature of our extrinsic shape differences in capturing distortion ignored
by previous approaches. We additionally provide examples where we recover
local shape structure from the shape difference operators, suggesting shape
editing and analysis tools based on manipulating shape differences.

CCS Concepts: •Computing methodologies→ Shape analysis;

Additional Key Words and Phrases: Shape differences, Laplacian, embed-
ding, triangle mesh

ACM Reference Format:
Etienne Corman,∗ Justin Solomon,∗ Mirela Ben-Chen, Leonidas Guibas, and
Maks Ovsjanikov. 2016. Functional characterization of intrinsic and extrinsic
geometry. ACM Trans. Graph. VOLUME, NUMBER, Article NUMBER
(MONTH 2016), 17 pages.
DOI: XXXX

1. INTRODUCTION

One classic approach to comparing surfaces separates metrics of
similarity into intrinsic and extrinsic measurements. Intrinsic quanti-
ties are those that can be expressed exclusively in terms of distances
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along the surface, whereas extrinsic quantities are those that must
be defined using surface normal vectors and/or an embedding into
space. A crowning result of classical differential geometry describes
local geometry in terms of two quantities: the first and second fun-
damental forms, which capture the intrinsic Gaussian and extrinsic
mean curvatures, respectively [Bonnet 1867].

Considerable research in geometry processing has been dedicated
to measuring intrinsic and extrinsic curvature in an attempt to repli-
cate this attractive characterization of shape. From a practical stand-
point, however, this task remains challenging for potentially noisy or
irregular meshes considered in geometry processing. After all, sur-
face curvature is a second-derivative quantity whose approximation
on a piecewise-linear mesh requires discretization and mollification
to deal with noise. Measurement of curvature aside, algorithms for
recovering geometry from discrete curvatures remain difficult to
formulate for many discretizations.

In this paper, we formulate an alternative characterization of
surface geometry suited for analysis, comparison, and synthesis
tasks in the discrete setting. Several desiderata inform our design; a
suitable framework for representing shape should

—capture and distinguish intrinsic and extrinsic geometry,
—express shape properties in a multiscale fashion to distinguish

noise and fine-scale detail from large-scale structure,
—come from a smooth theory of shape,
—provide insensitivity to tessellation,
—be naturally expressible on continuous surfaces and on triangle

mesh discretizations, and
—admit an inverse operator for reconstructing the embedded shape.

In short, we wish to pass from pointwise embeddings to a “dual”
space featuring a more democratic treatment of intrinsic and extrin-
sic shape properties. The themes of multiscale, dual expressions
of correspondence is a central tenet of the recent functional maps
framework [Ovsjanikov et al. 2012], which we aim to leverage in
our work.

We approach this task by extending the theory of shape differ-
ences, introduced by Rustamov et al. [2013] for purely intrinsic
comparisons of shape structure. Rather than defining a shape in
isolation, their construction characterizes shape by considering the
distortion or difference of the target shape from a fixed source shape
given a functional map between them [Ovsjanikov et al. 2012].
Shape differences are couched in the language of functional analy-
sis, indirectly measuring changes in angles and distances through
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the effects of these changes on inner products of functions and
their gradients, which allows for straightforward discretization via
piecewise-linear finite elements (FEM). They also naturally enjoy a
multi-scale property, via truncation to a reduced basis, such as the
Laplace–Beltrami eigenfunctions. This property is particularly use-
ful in distinguishing features at different levels of detail via simple
multi-scale basis computation and projection.

We modify and extend this framework to derive a shape represen-
tation that is complete, encoding both the intrinsic and the extrinsic
distortion without loss of information in both the continuous and dis-
crete cases. To this end, we begin by reexamining the discretization
of shape differences on triangle meshes. We modify the original def-
inition of discrete area-based shape difference and prove an analog
of a continuous property mentioned in [Rustamov et al. 2013] that
shape differences fully capture intrinsic structure. Inspired by this
fully-discrete result, we proceed to ask whether shape differences
also can capture extrinsic structure. Toward this goal, we define
an additional pair of shape differences on a thickened surface that
captures extrinsic geometry.

We show that our full set of differences is sufficient to reconstruct
a shape up to rigid motion in the discrete setting, under mild assump-
tions. This provides an invertibility property: We can take different
embeddings of a mesh with fixed topology in R3, convert those
embeddings to shape differences, and convert back to embeddings
without losing any information. We additionally provide convex
techniques for recovering geometric information like triangle areas
and edge lengths in the case that a shape difference is truncated to
low-frequency components or noisy. In this case, the inverse shape-
difference-to-shape-embedding problem is underconstrained, but we
show empirically that our machinery recovers reasonable estimates.

To summarize, our main contributions are:

—Theoretical discussion establishing that properly modified shape
difference operators from [Rustamov et al. 2013] fully encode the
intrinsic metric of a triangle mesh. Notably, these operators enjoy
a direct connection to smooth theory—providing some degree of
tessellation invariance—as well as multiscale approximation in
the Laplace-Beltrami basis.

—A novel set of shape differences aimed at capturing and charac-
terizing extrinsic or embedding-dependent information, with an
associated observation that generically this set of shape differ-
ences is complete and encodes shapes up to rigid motion.

—A set of approaches for recovering geometric structure and an
embedding from the shape differences with theoretical guarantees
of recovery in the presence of complete information, which we
apply to shape editing operations based on manipulating shape
differences.

We demonstrate the usefulness of these contributions on a variety
of tasks, ranging from the exploration of cloth simulation data us-
ing our novel extrinsically-sensitive shape difference operators to
the accurate transfer of intrinsic functions like geodesic distances,
and finally to recovering shape embedding even in the presence of
approximate or truncated functional correspondences.

2. RELATED WORK

Representation and manipulation of extrinsic and intrinsic structure
is a vast theme pervading the geometry processing literature. We
refer to [Botsch et al. 2010] for discussion of the basic questions of
representation and interaction with continuous differential geometry.
Here, we highlight research linked to our particular approach.

Functional maps. We study relationships between surfaces
through the lens of functional maps, introduced in [Ovsjanikov et al.
2012]. Functional maps express maps between surfaces through
linear operators transporting functions on one surface to functions
on another. Beyond the technique proposed in the original paper,
many algorithms exist for computing functional maps, e.g., via spar-
sity [Pokrass et al. 2013], joint diagonalization [Kovnatsky et al.
2013], consistency [Huang and Guibas 2013], supervised learn-
ing [Corman et al. 2014], matrix completion [Kovnatsky et al. 2015],
or estimation from a point-to-point map [Corman et al. 2015].

Our goal of using functional maps to characterize local and global
geometry builds upon the machinery of shape differences [Rustamov
et al. 2013]; see §4 for a summary. Rustamov and colleagues [2013]
show that in the case of smooth surfaces, shape differences fully
encode intrinsic geometry. They do not, however, pursue a corre-
sponding analysis for the discrete case. Furthermore, their work
focuses solely on intrinsic geometry and hence cannot character-
ize extrinsic bending, critical for describing differences between
nearly-isometric shapes like articulated bodies and cloth.

Shape-from-Laplacian. Recovering structure from intrinsic
shape differences is closely linked to recovering structure from
Laplacian operators. Both in the continuous [Rosenberg 1997] and
discrete [Zeng et al. 2012] cases, the Laplace-Beltrami operator
fully encodes intrinsic surface geometry, namely the Riemannian
metric for smooth manifolds and edge lengths for discrete meshes.
For triangle meshes, de Goes and colleagues [2014] provide convex
machinery for recovering the intrinsic structure of the mesh; their
encoding of intrinsic structure using only Laplacian matrices is more
compact than our pair of area and conformal shape differences, at
the cost of a nonlinear objective sensitive to incomplete information.

The theoretical and practical contributions proposed in this paper
provide considerable insight beyond the fundamental mathematical
contributions in these other works. Specifically, the convex opti-
mizations in [Zeng et al. 2012; de Goes et al. 2014] operate in the
case of complete, noise-free information. They cannot be used for
projection-style problems, e.g. finding the closest set of edge lengths
to a noisy input Laplacian approximation or to finding an intrinsic
structure consistent with a truncated spectral approximation of the
full operator. Additionally, we show how to use related machinery
to encode extrinsic bending rather than only edge lengths.

Encoding extrinsic geometry. A natural question is whether
intrinsic structure can be used to reconstruct a surface embedding
up to a global rigid transformation. Numerous examples of iso-
metric smooth surface pairs disprove this notion in the continuous
case [Kreyszig 1959]. While exact isometries of triangle meshes
are rare for surfaces without bundary with the exception of in-
ward/outward “popping” of valence-three vertices, near-isometries
can often arise and have significant differences in the embedding,
making shape recovery from intrinsic data like edge lengths a nu-
merically ill-conditioned problem; these near-isometries appear be-
cause small variations in the input edge lengths can lead to large
changes in the resulting embedding. Nevertheless, Boscaini and
colleagues [2015] provide an algorithm for recovering a surface
embedding in R3 from shape differences or equivalent structures.
They apply the SMACOF algorithm [Leeuw et al. 1977] for multidi-
mensional scaling to generate an extrinsic embedding that repli-
cates shape differences in a least-squares sense. As an alterna-
tive, [Panozzo et al. 2014] propose an algorithm for embedding
from local approximations of the metric tensor; we will use an
extension of this algorithm in §7.3. Both of these methods, how-
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ever, operate using only intrinsic information and are subject to the
ambiguity and instability caused by isometry invariance.

Adding extrinsic information to a shape representation allows
it to be embedded in R3 up to rigid motion. In theory, the Gauss–
Codazzi equations fully characterize surfaces from the first and
second fundamental forms [Bonnet 1867] (see [Carmo 1976, pg.
236]). In geometry processing, [Eigensatz et al. 2008] reconstructs
surfaces from prescribed principal curvatures, while [Fröhlich and
Botsch 2011] use nonlinear optimization methods to recover shape
from dihedral edge lengths. These methods and many subsequent
techniques employ nonlinear least-squares fits with few guarantees
or characterization of their behavior. Wang, Liu, and Tong [2012]
propose a linear technique for embedding meshes from their edge
lengths, dihedral angles, and axes of rotation across mesh faces.

In this paper, we make use of offset surfaces to introduce ex-
trinsic information to the shape difference representation. Offset
surfaces have appeared in geometry processing for some related
tasks, including cage generation [Ben-Chen et al. 2009] and shape
optimization for printing [Musialski et al. 2015]. While techniques
like [Jung et al. 2004] are needed to generate “clean” offset surfaces
for geometry editing purposes, in our case self-intersection and re-
lated artifacts are acceptable since the offset surface is not used for
display but rather for geometric computation. [Cohen-Steiner and
Morvan 2003; Hoffmann et al. 2014] provide curvature theories for
discrete surfaces using offset geometry.

3. OVERVIEW

Our two main goals are to modify and extend the definition of the
shape difference operators of Rustamov [2013] so as to capture
extrinsic distortion and to facilitate shape inference, i.e. to recover
the metric and potentially the embedding of a target shape, given a
base shape and a collection of shape differences.

We achieve these goals in several stages. The main ingredient
for constructing both smooth and discretized shape differences is
the computation of inner products between functions. So, rather
than working directly with shape differences, we largely focus on
matrices of functional inner products, which can be constructed
on a single shape rather than a pair. Hence, after reviewing the
smooth construction of shape differences (§4.1), we reexamine the
discretization of intrinsic inner products on triangle meshes and
show how a simple modification of the area-based inner product
fully encodes intrinsic geometry in an easily-inverted fashion (§4.2).

We then capture extrinsic shape structure by introducing two op-
erators built from intrinsic inner products on offset surfaces of a
base shape (§5). We accompany our construction with theoretical
characterization of the new information provided by extrinsic prod-
ucts (§5.3) and conclude by making explicit how our constructions
involving inner product matrices apply to the construction of dif-
ferences between shapes (§6). In this section, we also consider how
truncating shape differences written in the Laplace–Beltrami basis
affects the linear systems we pose.

With our new definitions and analysis in place, we propose op-
timization procedures for recovering intrinsic and extrinsic shape
structure from the shape difference operators, potentially expressed
in a reduced basis (§7). While the basic machinery for recovering
metric information from shape differences is purely linear, we pro-
pose the use of more general convex optimization tools that add
resilience to noise and incomplete information by explicitly en-
forcing the triangle inequality and/or smoothness. We conclude by
demonstrating the ability of our constructions to capture and char-
acterize extrinsic distortion ignored by previous approaches (§8.1).
We furthermore apply our methods to recovering the metric and

shape embedding and to facilitating novel shape editing operations
via manipulating shape difference operators (§8.4).

4. STRUCTURE OF DISCRETE INNER
PRODUCTS

By examining the derivation of formulas for computing shape differ-
ences, we can reveal how they are related to local surface geometry.
This analysis not only elucidates the information encoded in a given
shape difference but also will inform our design of algorithms for
recovering shape embeddings from shape differences.

4.1 Smooth Shape Differences

In the continuous case, Rustamov et al. [2013] consider two inner
products between functions f, g ∈ C∞(M) defined over a two-
dimensional surface M ⊂ R3:

〈f, g〉MA :=

∫
M

f(x)g(x) dµ(x)

〈f, g〉MC :=

∫
M

〈∇f(x),∇g(x)〉 dµ(x).

This pair of operators is preserved if and only if M undergoes iso-
metric deformation, showing that they fully determine the intrinsic
geometry of M . The product 〈·, ·〉MA is the “area-based inner prod-
uct” on M , encapsulating its distribution of local area elements,
and the product 〈·, ·〉MC is the “conformal inner product” on M ,
encapsulating local angle measurements.

Suppose F : C∞(M) → C∞(N) is a linear functional map
taking functions on M to functions on N . Given any inner prod-
uct 〈·, ·〉M on M and a corresponding inner product 〈·, ·〉N on N ,
the Riesz Representation Theorem guarantees the existence of an
operator D〈·,·〉 : L2(M) → L2(M) such that 〈F (f), F (g)〉N =

〈f,D〈·,·〉g〉M for all f, g ∈ L2(M) [Brezis 2010]. The area-based
shape difference betweenM andN with respect to F is the operator
DA := D〈·,·〉A and the corresponding conformal shape difference is
the operator DC := D〈·,·〉C .

In our discussion of discrete problems, we will first focus on
discretizing and analyzing the inner product functions 〈·, ·〉MA and
〈·, ·〉MC , since these can be understood without relating M to a sec-
ond surface N . We then transition from inner products to shape
differences in §6. In the discrete case, the latter is a consequence
of basic linear algebra rather than the Riesz Representation Theo-
rem; essentially if a matrix P defines an inner product 〈v,w〉P :=
(Pv)>(Pw), then we can refactor to write 〈v,w〉P = v ·Dw where
D = P>P .

4.2 Discrete Inner Products

Each quantity above is straightforward to discretize in the language
of finite elements over a triangle mesh; see [Brenner and Scott 2007;
Sayas 2008; Strang and Fix 2008] for general introductions to this
approach. To this end, suppose M is represented using a connected,
orientable, and manifold triangle mesh with vertices V and triangles
T . We model functions as vectors f ∈ R|V | interpolated to triangle
interiors in piecewise-linear fashion.

We will begin our fine-grained examination of shape differences
by posing functional inner products on these meshes in terms of dis-
crete geometry. Our ultimate goal is to show that before truncation in
a low-frequency basis, the area-based and conformal inner product
matrices completely encode the intrinsic structure of meshed geom-
etry. This property is also stated in [Rustamov et al. 2013] in the
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Fig. 1. Notation for the conformal product C.

continuous case; their discretization, however, does not admit such
completeness due to the use of lumped area weights, as explained
below.

Consider a single triangle T onM , and suppose f and g are affine
functions on T ; in other words, f and g are evaluated in the interior
of T via barycentric interpolation of the three scalar values f1, f2, f3

and g1, g2, g3 defined on the vertices of the triangle. Multiplying
these functions and integrating reveals that the inner product of f
and g on T is given by

〈f, g〉TA =
µ(T )

12

(
f1 f2 f3

) 2 1 1
1 2 1
1 1 2

 g1

g2

g3

 ,

where µ(T ) is the area of T and fi, gi denote the values of f, g on
vertex vi. As a sanity check, taking fi = gi = 1 ∀i recovers the area
of T . This is the exact L2 inner product of f and g defined over the
meshed surface using piecewise-linear interpolation, without mass
lumping commonly introduced in finite element discretizations; this
distinction is critical for our construction.

Taking inner products over all of M requires summing over trian-
gles T . If f, g ∈ R|V |, then 〈f, g〉MA is given by f>Ag, where

Avw =
1

12
·

 2
∑
T∼v µ(T ) when v = w∑

T∼e µ(T ) when e = (v,w)
0 otherwise,

(1)

where T ∼ v denotes iteration over triangles adjacent to v and
T ∼ (v,w) denotes iteration over triangles adjacent to edge (v,w).
This |V |×|V | “Galerkin mass matrix”A is nondiagonal but positive
definite, integrating products of piecewise linear functions exactly.
See e.g. [Strang and Fix 2008, Chapter 10, (32)] for an example of
its appearance in finite elements.

We can think of A as a linear operator A(µ) : R|T | → R|V |×|V |
that constructs the area-based functional inner product matrix A
given a vector µ ∈ R|T | of triangle areas. We can show that A(·) is
invertible in the following sense:

PROPOSITION 1. Suppose M has a boundary or at least one
interior vertex with odd valence. Then, A(µ) uniquely determines
µ, recoverable via a linear solve.

The proof of this proposition and others below is in the appendix. A
proposition of this nature does not hold if masses are lumped down
the diagonal ofA. This observation is intuitive in that a triangle mesh
has approximately two times the number of triangles as vertices.

If f and g are piecewise-linear functions on M , then their gra-
dients are piecewise-constant and expressible using one vector per
triangle. Taking dot products of these gradients and integrating over
M shows that 〈f, g〉MC = f>Cg, where

Fig. 2. A mesh for which C(`2;µ) is not invertible when µ = 1.

Cvw=
1

8
·


−
∑
u∼v Cuv when v = w

µ(T )−1(`2vw−`2v−`2w)
+µ(T ′)−1(`2vw−`′2v −`′2w)

when v ∼ w
0 otherwise.

(2)

Notation for the v 6= w case is shown in Figure 1; e ∼ v denotes an
edge e adjacent to vertex v, and `uv is the length of the correspond-
ing edge. This matrix is the familiar cotangent Laplacian matrix cast
in terms of edge lengths and triangle areas; this form also appears
e.g. in [Boscaini et al. 2015]. Comparing (1) and (2), scaling the
edge lengths of a mesh by some factor α will correspondingly scale
A by α2 while C will be left unchanged; unless otherwise noted, we
scale meshes in our experiments to have unit surface area to remove
dependence on global scaling.

A crucial observation that we make here is that if the triangle
areas encoded in µ are fixed then the mapping C(`2;µ) : R|E| →
R|V |×|V | taking squared edge lengths `2 ∈ R|E| to a conformal inner
product matrix C is linear. Note also that C is fully determined by
its values Cvw for v ∼ w. Thus, if we represent the list of inner
productsCvw as a vector c in R|E| then for a fixed set of area weights
µ, there exists a matrix Bµ such that c = Bµ`

2. The entries of Bµ
are, of course, given in eq. (2). In the pipeline that we propose below,
we will first recover the triangle areas and then use those to recover
edge lengths from the corresponding inner products. The following
proposition shows that “generically” the matrix Bµ is invertible, i.e.,
the set of weights µ for which Bµ is singular has measure 0 in R|T |.

PROPOSITION 2. Assume that the mesh M is manifold without
boundary. Then, for almost all choices of areas µ, the map C(`2;µ)
uniquely determines `, which is recoverable via a linear solve.

This proposition implies that the linear map C(`2;µ) is invertible
for a small (possibly zero) perturbation of any set of area weights µ.
Nevertheless, there exist cases in which the squared edge lengths are
not recoverable via inversion of the linear map C(`2;µ) for a fixed
set of area weights. One example of such a shape is shown in Figure
2, consisting of two tetrahedra glued at their bases. In this case, all
the triangles have equal area weights, and it can be seen that the
resulting linear system is singular. We also remark that the condition
of no boundary is necessary in the Prop. 2 above, as it is possible
to construct meshes for which the map C(`2;µ) is singular for all
choices of µ (e.g., a pair of triangles glued along a shared edge). For
all the meshes that we tried in practice (§8), we have observed that
the resulting system is both invertible and typically well-conditioned.
We leave the formulation of the necessary and sufficient conditions
on the mesh and the weights µ for the invertibility of C(`2;µ) as a
question for future work.

5. ENCODING EXTRINSIC STRUCTURE

Intrinsic inner products capture the metric tensor (first fundamental
form) of a surface, so to complete our representation we show how a
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Fig. 3. Two potential ways to encode extrinsic mesh structure.

related structure can be used to encode its second fundamental form.
In keeping with previous discussion, we will use additional inner
product matrices to derive a multiscale representation of this missing
information. While there exist many possible ways to measure ex-
trinsic distortion, this “functional” language facilitates a connection
between continuous and discrete characterizations and unifies our
treatment of intrinsic and extrinsic distortion.

These added structures complement the area-based and conformal
products by making our representation of a shape unique up to rigid
motion. In addition to providing a lossless representation of surface
geometry in the presence of complete information, we demonstrate
how the new products can capture and encode geometric relation-
ships that are not captured by purely intrinsic analysis.

5.1 Extrinsic Alternatives

In discrete language, the inner product matrices A(µ) and C(`2;µ)
determine the edge lengths of a triangle mesh but not its dihedral
angles, illustrated in Figure 3(a). Additionally providing dihedral
angles is sufficient to recover a mesh up to rigid motion. There
are many expressions of extrinsic shape that potentially encode
these angles; before presenting our final solution, we mention a few
straightforward alternatives to explain why they are less desirable.

At the most basic level, any technique encoding one value per
edge of a triangle mesh could be used to represent dihedral angles.
For instance, since the angles are in a vector θ ∈ R|E|, we could
use an analog of Proposition 2 to store them in the matrix C(θ;µ).
That is, from a mechanical perspective Proposition 2 shows we
can take one value per edge in a vector θ ∈ R|E| and generate a
matrix C(θ;µ) without losing information. One could plausibly re-
place edge lengths in θ—the original intention of this construction—
with dihedral angles; this roughly corresponds to taking products
of functional gradients under the second fundamental form h as∫
h(∇f,∇g) dA. The resulting matrix is not positive semidefinite,

however, which prevents a smooth analog from the Riesz Repre-
sentation Theorem (which applies only to positive definite inner
products) and causes numerical issues due to departure from the
cone of semidefinite matrices. Dihedral angles also are known only
up to a period of 2π, providing potential for ambiguity in the expres-
sion of the vector θ.

In an attempt to bring back the positive definiteness enjoyed
by the intrinsic formulation, we might attempt to encode the edge
lengths of a dual mesh, shown in Figure 3(b). These lengths indi-
rectly encode dihedral angles up to sign but are unable to distinguish
between inward and outward folding directions, as shown in the fig-
ure. Obvious techniques for disambiguating the inward and outward
folds generally accompany edge lengths with signs, reintroducing
the problems discussed in the previous paragraph.

An alternative construction might define extrinsic shape differ-
ences via the Gauss map, or map from a surface into the unit sphere
based on normal direction; see [Meyer et al. 2003] for an example
in geometry processing. While the Gauss map is used in classical
differential geometry to derive extrinsic properties of surfaces, we

` decreases
` increases

Fig. 4. Edge lengths change according to curvature of the offset surface.

find it to be unstable within the shape difference framework. In
particular, the image of the Gauss map is composed of many over-
lapping spherical triangles that change rapidly from vertex to vertex.
Projection of this information into low-frequency Laplace-Beltrami
bases tends to remove the majority of the meaningful geometric sig-
nal. In a sense, however, we can view the offset surface construction
proposed below as a means of smoothing out this construction.

Before proceeding, we should remark that strictly speaking it may
not be necessary to provide extrinsic information at all. According
to a classical result by Gluck [1975], almost all triangulated simply
connected closed surfaces are rigid. Although this result might imply
that triangle edge lengths are, in general, sufficient to reconstruct
the mesh up to rigid motion, this is only true if the metric is known
exactly; moreover, it is highly nontrivial to recover an embedding
even if one is known to exist. When the edge-lengths are perturbed
or are approximated, the corresponding embedding might either
not exist or be very far from the desired shape. As we show below,
the presence of explicit information about the extrinsic distortion
can greatly help in both direct and inverse problems and provides
complimentary information to the intrinsic distortion measured by
prior methods.

5.2 Offset Surfaces

Our construction of an extrinsic shape representation is an extension
of the dual mesh idea from §5.1 that does not suffer from sign am-
biguity. Instead, we are able to rely upon the positive definiteness
of inner product matrices directly to encode both intrinsic and ex-
trinsic information. In short, rather than encoding a metric and its
derivative, we encode a metric and a slightly deformed metric, both
of which admit natural positive definite representations.

The intuition for our construction is illustrated in Figure 4. Sup-
pose we wish to recover the embedding of the blue torus. As dis-
cussed in the previous section, it may be difficult to reconstruct the
torus purely from its list of edge lengths. Instead, suppose we gen-
erate an offset surface by displacing each vertex and face along its
outward normal a fixed distance t. The operation is extrinsic, since
the mesh moves through the surrounding space, modulating edge
lengths ` based on the curvature of the surface. The edge lengths in
the interior of the torus shrink while the edge lengths on the exterior
expand, effectively distinguishing the bend direction.

In the continuous case, we can formalize the effect of offsetting a
surface as follows:

PROPOSITION 3. Suppose M is a compact orientable Rieman-
nian 2-manifold without boundary. Consider a family of immersions
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Bottom layer Top layer

Fig. 5. Topology of offset mesh.

Ft : M → R3 satisfying

∂Ft
∂t

(p) = n(p) ∀(p, t) ∈M × R+,

where n denotes the outward unit normal of M0 := F0(M) when
t = 0. If gij := 〈 ∂Ft

∂xi
, ∂Ft
∂xj
〉 is the metric of the embedded surface

and hij := 〈 ∂Ft
∂xi

, ∂n
∂xj
〉 is its second fundamental form, then

∂gij
∂t

∣∣∣∣
t=0

= 2hij |t=0 and
∂µ

∂t

∣∣∣∣
t=0

= Hµ,

where H := (gijhij)t=0 is the mean curvature at t = 0 and
µ :=

√
det g|t=0. Furthermore, for any smooth φ,ψ : M → R,

∂

∂t
g(∇φt,∇ψt) = −2h(∇φt,∇ψt),

where φt := φ ◦ F−1
t , ψt := ψ ◦ F−1

t , and gradients are along
Mt := Ft(M).

Results of this nature are fairly well-known for offset surfaces; see
e.g. [Patrikalakis and Maekawa 2009] for related discussion. More
informally, the proposition shows that the second fundamental form
of M is encoded through the change in metric while the surface is
being offset along its normal directions.

When M is an oriented triangle mesh, there are many potential
constructions of discrete offset surfaces, and several likely would
suffice for the proofs in this paper. For mathematical simplicity, we
choose the construction in Figure 5. On the left we show triangles
of the original mesh M in blue. On the right, we define the topology
of the offset mesh in red, which contains a vertex for every vertex
of M and every triangle of M . For a fixed constant t > 0, we
place the vertices distance t above M along its face/vertex normals;
any reasonable definition of a unit-length vertex normal suffices.
Offset vertices associated with triangles are placed directly above
the barycenter of the triangle.

5.3 Recovery of Embedding

In the end, we encode the geometry accompanying a fixed triangle
mesh topology using four structures: the intrinsic area-based and
conformal inner product operators and the same operators for the
offset surfaces with fixed normal offset distance t > 0. We denote
the offset surface of M as Mt. In this section, we show—at least
before truncation—that these four difference matrices are sufficient
for fully reconstructing a shape.

The challenge of reconstructing a triangle mesh from its edge
lengths arguably comes from the fact that there are many ways to

Mesh (blue) and offset (red) Thickening

Upward-facing Mesh edge Downward-facing

Fig. 6. Canonical thickening (top right) of a triangle mesh (top left); types
of tetrahedra in the thickening (bottom).

glue together two adjacent triangles by fixing different dihedral
angles. Rigidity may imply that only one such embedding exists, but
it is not obvious from local relationships. Contrastingly, an oriented
tetrahedral mesh is easy to reconstruct from its list of edge lengths
simply by gluing individual tetrahedra face by face.

Hence, our intuition for why a mesh plus its offset are enough
to reconstruct the mesh comes from a volumetric perspective. This
intuition is confirmed by Proposition 3 and the Gauss–Codazzi
equations [Bonnet 1867; Carmo 1976], since offset geometry pro-
vides extrinsic curvature information, which in turn determines an
embedding. We chose the topology of the offset mesh (Figure 5)
specifically to allow for a canonical “thickening” of the offset slice
into a tetrahedral mesh, shown in Figure 6. Using mesh-based shape
differences, we can recover the edge lengths of the bottom and top
layers of the thickening. By construction of the offset mesh, we are
able to recover the lengths of the interior edges of the thickening,
effectively proving the following proposition:

PROPOSITION 4. Suppose a mesh M satisfies the criteria in
Propositions 1 and 2. Given the topology of M , the area-based
and conformal product matrices A(µ) and C(`2;µ) of M , and the
area-based and conformal product matrices At(µt) and C(`2t ;µt)
of Mt, the geometry of M can (almost always) be reconstructed up
to rigid motion.

A formal argument for this proposition is in the appendix.

5.4 Discussion

We pause to summarize the theoretical development in the previous
sections. We began by reconsidering the construction of inner prod-
ucts and shape differences from first-order finite elements. When
area elements are not lumped, we showed that inner product matri-
ces fully determine the edge lengths of a mesh and that they can
be recovered by solving two linear systems of equations: one for
recovering the triangle areas, and the other for recovering the edge
lengths. Moreover, generically, both systems are non-singular.

In both the continuous and discrete cases, these intrinsic measure-
ments are not enough to distinguish isometric shapes. Even worse,
the space of near-isometric shapes can be very large. Hence, we
propose generating an offset surface Mt from a mesh or surface M .
In the continuous case, the geometry of Mt determines the extrinsic
structure of M by encoding its second fundamental form. In the
discrete case, combining edge lengths of M with edge lengths of
Mt fully determines M up to rigid motion. The main development
is that we can completely determine a shape using functional inner
products via the constructions above.

Our theoretical contributions deal with the noise-free, non-
truncated case. Roughly, they show that if intrinsic/extrinsic shape
differences were computed from an embedded mesh M with fixed
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topology, then the embedding of M almost always can be covered
from those differences up to rigid motion. We evaluate sensitivity
to noise and the possibility of recovering geometry from truncated
shape differences empirically in §8.

6. FROM INNER PRODUCTS TO SHAPE
DIFFERENCES

With the goal of working with quantities that exist when meshes are
not in vertex-for-vertex correspondence, we shift from working with
matrices of inner products to shape differences. This shift is needed
to propose algorithms in §7 for estimating the dense structure of a
target mesh given a source mesh and an approximate relationship
between the source and the target, represented as a functional map
computed e.g. using assorted correspondence techniques.

6.1 Discrete Shape Differences

We begin by considering two meshes M and N in vertex-for-vertex
correspondence, with areas µM , µN ∈ R|T | and squared edge
lengths `2M , `

2
N ∈ R|E|. Based on the continuous definitions in

§4.1, the “full” area-based and conformal shape difference between
meshes M and N are [Rustamov et al. 2013, §5, “option 1”]

DA = A(µM )−1A(µN )
DC = C(`2M ;µM )−1C(`2N ;µN ).

(3)

A straightforward corollary of the discussion in §4.2 is that these
two differences completely determine the edge lengths and triangle
areas of N given the geometry of M . Notice the first relationship
is still linear in µN and the second in `2N , so reconstruction still
amounts to solving a linear system.

Similarly, the extrinsic differences are simply the shape differ-
ences between the offset surfaces:

DE
A = A(µMt)

−1A(µNt)
DE
C = C(`2Mt

;µMt)
−1C(`2Nt

;µNt).
(4)

The discussion in §5.3 implies that the tuple (DA,DC ,D
E
A ,D

E
C ) is

sufficient to reconstruct N up to rigid motion given M .

6.2 Source-Truncated Correspondence

More commonly, suppose Φ ∈ R|V |×k contains the orthonormal
Laplace–Beltrami basis of M , truncated to k functions. Assuming
M andN are still in vertex-for-vertex correspondence, we can write
“reduced” shape differences as

DΦ
A = Φ>A(µN )Φ

DΦ
C = diag(−{λMi })+Φ>C(`2N ;µN )Φ,

(5)

where the eigenvalues of the Laplacian on M are λMi . These differ-
ences no longer determine angles and edge lengths exactly but still
encode a multiscale notion of geometry that is valuable for under-
standing the relationships between M and N ; extrinsic differences
can be defined analogously from the offset surface. We can still
define linear systems for computing µN and `2N fromDA,DC , µM ,
and `2N using these relationships, although they are unlikely to be
full-rank for small k; we provide regularizers in the next section.

These truncated differences essentially correspond to remov-
ing rows and/or columns from the full shape differences after
writing them in the Laplace–Beltrami eigenbasis. Such a compu-
tation can be useful for multiscale analysis of surface deforma-
tions, in which vertex-for-vertex correspondence is known but high-
frequency changes may not be useful to analyze. What remains,

however, is to consider the case when M and N are not in vertex-
for-vertex correspondence and both have incomplete bases.

6.3 Source- and Target-Truncated Correspondence

Suppose we are given truncated bases ΦM ∈ R|VM |×kM and
ΦN ∈ R|VN |×kN for the eigenspaces of M and N , respectively,
and a functional map matrix F ∈ R|VN |×|VM | taking functions writ-
ten in the ΦM basis on M to functions in the ΦN basis on N .
Following [Rustamov et al. 2013, §5], we define shape differences
in this case as

DΦM ,ΦN

A = F>F

DΦM ,ΦN

C = diag(−{λMi })+F>diag(−{λNi })F.
(6)

Whereas the truncated shape differences in (5) contain a limited
window of values from the full shape difference matrix, in this final
case the non-truncated entries of the shape difference matrices also
undergo some change. This is because even if a function on M is
in the column space of ΦM , it will not be transported fully to N by
the functional map F due to removal of high frequencies.

These shape differences are discretizations of analogous linear
operators in the smooth setting. For this reason, even though the
differences in (6) no longer satisfy exact equality relationships like
those in (5) for recovering areas µN and squared edge lengths `2N
from shape differences and the geometry of M , we will pose ap-
proximate relationships

DΦM ,ΦN

A ≈(ΦM )>A(µM←N )ΦM

DΦM ,ΦN

C ≈diag(−{λMi })+ΦM>C(`2M←N ;µM←N )ΦM .
(7)

The unknown variables µM←N and `2M←N can be thought of as
pullbacks of the metric of N to that of M , in the sense that they
attempt to assign areas and edge lengths to the topology of M to
mimic inner products onN . The first condition is linear in µM←N ∈
R|TM | and the second in `2M←N ∈ R|EM |.

Since the shape differences in (6) are the most realistic test cases,
we will assume in our experiments that truncated shape differences
are computed in this fashion unless noted otherwise. That is, we
will assume that we are given a source- and target-truncated shape
difference. The experiments in §8.2 verify that this approximation is
reasonable as long as kM and kN are sufficiently large.

7. RECOVERY OF INTRINSIC AND EXTRINSIC
STRUCTURE

Having established theoretical aspects of intrinsic and extrinsic
shape differences, we now provide algorithms for recovering a shape
N given a base shape M and shape differences to N and its offset.
First, we recover triangle areas from the base and offset surfaces
from corresponding area-based shape differences. With these areas
fixed, we then recover edge lengths, which were shown in §5.3 to
completely determine the surface.

Both steps can be carried out using linear solves when shape
differences are not truncated. When dealing with truncated or inexact
functional maps, we augment the optimization with constraints
ruling out unreasonable structures. We also show how to apply
existing techniques for recovery of an embedding from edge lengths
of the surface and its offset.

7.1 Triangle Area Computation

We first show how to recover areas of triangles given an area-based
shape difference. Our approach is an extension of the basic linear
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technique outlined in the proof of Proposition 1, extended to deal
with truncation and noise.

Following §6, suppose DA is the area-based shape difference
between M and N in the Laplace–Beltrami basis ΦM . Recall that
our goal is to pull the geometry ofN back to the mesh ofM . Hence,
the area-based difference from M to the reconstructed target shape
N ∗ should satisfy D∗A = Φ>MA(µN )ΦM . If the reduced basis ΦM
on M has k functions, this linear system for µN has k2 equations
and |T | unknowns. So, we need at least k ∼

√
|T | to have a well-

posed system.
The quality of the solution found by solving this system without

regularization depends on two factors: the quality of DA and the
conditioning of the resulting linear problem. We find that both limi-
tations are improved considerably by introducing a nonnegativity
constraint, leading to the following optimization problem for µN :

minµN
‖Φ>MA(µN )ΦM −DA‖2Fro

s.t. µN (T ) ≥ 0 ∀ triangles T. (8)

We solve this and other convex programs using the Mosek tool-
box [MOSEK ApS 2015]. We additionally add a regularizing vis-
cosity term ε‖µN − µM‖22 for small ε > 0, under the assumption
that triangle areas should change minimally unless there is evidence
to do otherwise; we set ε = 10−4 in all the experiments in this
paper. This regularizer allows the problem to be solved when DA
is truncated, which would otherwise make it underdetermined, and
regardless improves stability when DA is noisy.

7.2 Edge Length Computation

Now that we can compute triangle areas, we can recover edge
lengths. As in the last section, we start from Proposition 2 to pro-
pose a basic linear system for squared edge lengths and then provide
regularization techniques for dealing with inexact or truncated dif-
ferences.

The conformal shape difference encodes the transformation of the
cotangent Laplacian through the deformation. Again borrowing from
§6, the geometry of N can be pulled back to M via the following
linear condition on squared edge lengths `2N given fixed areas µN :

diag(−λMi )DC = Φ>MC(`2N ;µN )ΦM . (9)

Solving this linear system of equations for `2N depends critically
on the approximated areas µN ; numerical or discretization error
from the method in §7.1 invalidates this step, regardless of the
quality of DC . To provide resilience to this issue and to noise in
DC , we add constraints to this system ruling out unrealistic edge
lengths `2N .

To define a triangulation, the squared edge lengths `2N must be
nonnegative; furthermore,

√
`2N (T ) must respect the triangle in-

equality in each mesh triangle T . We enforce the latter constraint
via the following proposition:

PROPOSITION 5. The symmetric matrix E defined by

E =
1

2

 2x1 x3 − x1 − x2 x2 − x1 − x3

x3 − x1 − x2 2x2 x1 − x2 − x3

x2 − x1 − x3 x1 − x2 − x3 2x3


is positive semidefinite if and only if x1, x2, x3 are nonnegative and
their square roots satisfy the triangle inequality.

We also can link squared edge lengths to the computed triangle
areas µN (T ). This link is provided by the submatrices Ek defined

as

Ek =
1

2

(
2xi xk − xi − xj

xk − xi − xj 2xj

)
,

where {i, j, k} = {1, 2, 3}. With this definition in place, we lever-
age the following proposition:

PROPOSITION 6. E is positive semidefinite if and only if xk ≥ 0
for all k ∈ {1, 2, 3} and det(E3) ≥ 0. Moreover, if E � 0, then
det(Ek) = 4µN (T )2.

Enforcing constraints derived from these relationships in the com-
putation of edge lengths from a shape difference leads to the follow-
ing optimization problem:

min`2
N
‖Φ>MC(`2N ;µN )ΦM − diag(−λMi )DC‖2Fro

s.t. `2N ≥ 0
det(E3(T )) = 4µN (T )2 ∀ triangles T.

This problem, however, is large and non-convex due to the determi-
nant constraint. A convex relaxation is possible by noticing that the
cone of symmetric positive semidefinite matrices with determinant
≥ 1 is convex; this observation derives from the convexity of the
function A 7→ − log(detA)) [Boyd and Vandenberghe 2004]. So,
the former problem can be relaxed to a convex problem:

min`2
N
‖Φ>MC(`2N ;µN )ΦM − diag(−λMi )DC‖2Fro

s.t. `2N ≥ 0
det(E3(T )) ≥ 4µN (T )2 ∀ triangles T.

(10)

The determinant constraint is handled using the rotated quadratic
cone optimization in the Mosek toolbox [MOSEK ApS 2015].
While (10) contains a relaxation of the full set of constraints, we
find empirically that this relaxation generally is tight; we leave it to
future work to prove conditions for “exact recovery” akin to those
in [Dym and Lipman 2016] for mesh alignment problems.

As in §7.1, we can additionally regularize by adding ε′‖`2N −
`2M‖22 to the objective; our experiments use ε′ = 10−4.

7.3 Global Extrinsic Reconstruction

At this point, we have presented algorithms for recovering edge
lengths for the entire canonical thickening defined in §5.3. As sug-
gested in the proof of Proposition 4, if these edge lengths are com-
puted without error, the thickening can be reconstructed greedily;
then, the embedding of N from M is the inner envelope of this
thickening.

In reality, the squared edge lengths in `2N likely exhibit numerical
error. For this reason, we employ the algorithm in [Panozzo et al.
2014] for reconstructing a triangle mesh given its edge lengths. We
adapt their approach to take into account the tetrahedra defined by
the offset surface, by using the same ARAP-style deformation en-
ergy, defined on each triangle facet of each tetrahedron, and using
the same alternating optimization strategy. We note, in particular,
that this approach does not require embedded surfaces to be man-
ifold, and can easily incorporate edges shared by more than two
triangles, which only changes the computation of the gradient of the
energy. Hence this allows us to reconstruct the entire set of triangles
in the canonical thickening rather than the inner or outer surfaces
only. We provide the thickening of M as a starting point for their
alternating optimization algorithm. Whereas their method is subject
to isometric ambiguity when embedding manifold meshes, recon-
structing the entire thickened structure reduces ambiguity and more
reliably provides an extrinsically correct embedding.
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Fig. 7. PCA on collections of shape differences reveals the axes of variability within a collection; each shape on the left is colored the same as its corresponding
points in the plots. The area-based and conformal differences are unable to distinguish the inward and outward bumps in the top example, leading to clusters of
four points.

Fig. 8. Human models from Figure 7 sorted by the first PCA dimension for area-based shape differences (top) and area-based differences including an offset
surface (bottom). The differences without offsets distinguish body type, while the differences with offsets distinguish pose.

8. EXPERIMENTS

In this section we illustrate the utility of the constructions presented
above in a variety of practical application scenarios. We start by
showing how the extrinsic shape differences can be useful for shape
exploration and analysis, by complementing the information pro-
vided by the intrinsic differences of Rustamov et al. [2013]. We
then show how our metric and shape recovery methods can be used
to both infer shape structure and ultimately recover the embedding
from approximate, truncated shape differences.

8.1 Shape Space

An example application of shape differences that does not rely
on exact reconstruction of local geometry involves the extraction
of variability within a collection of related shapes. Suppose we
choose an arbitrary base shape and compute its shape difference
matrices with the remaining shapes in a collection. Then, a simple
low-dimensional description of shape variability is to do PCA on
the collection of matrices, resulting in the embedding of each shape
as a point in PCA space.

We use PCA experiments to illustrate the power of our proposed
extrinsic differences. For instance, Figure 7 illustrates embeddings
of two-parameter shape collections into the plane using the proce-
dure above (kM = 50, kN = 100). The top row illustrates the need
for extrinsic differences most clearly. Here, we generate cubes with
smooth bumps, smoothly varying from an inward bump to an out-
ward bump. Intrinsic shape differences are identical for inward and
outward bumps, leading to PCA embeddings that cluster sets of four
shapes together. Adding extrinsic information disambiguates the
embedding problem, separating the clustered points. Similarly, the

extrinsic area-based shape difference best separates the parametric
human models evenly among the two axes (57.2% variability along
the principal axis, 38.3% along the secondary axis); interestingly,
conformal shape differences among offset surfaces do not exhibit
much variability for this particular class of surfaces.

Figure 8 highlights how intrinsic and extrinsic shape differences
can measure different properties of shape. We sort the collection
of human models by the one-dimensional embeddings (x-axis) of
intrinsic (top) and extrinsic (bottom) area-based shape differences
(kM = 50, kN = 100). The intrinsic shape differences distinguish
the body type of the model and are invariant to the pose of the
arms and legs; this ordering reflects the property that articulated
deformations of humans are nearly isometric. Complementing this
embedding, the extrinsic differences distinguish pose and are less
sensitive to body type. This property is also visible in Figure 7
since the area-based embeddings without and with the offset are
transposed from one another.

Figure 9 shows a similar experiment applied to shapes from indi-
vidual frames of animation sequences. Both intrinsic and extrinsic
shape differences are able to recover the cyclic structure of a gal-
loping horse animation; this indicates that the galloping motion
contains both intrinsic and extrinsic deformation modes. Contrast-
ingly, the intrinsic differences severely underperform in recovering
an animated sequence of deforming cloth. The physics of cloth
naturally avoids intrinsic stretching and shearing, maintaining the
initial developable structure. Thus, intrinsic shape differences pro-
vide little-to-no information, while the extrinsic differences capture
the evolution of the animation.

From a wider perspective, the experiments in this section reveal
the value of explicitly representing both intrinsic and extrinsic de-
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Fig. 9. PCA on shape differences applied to recovering the sequence of animated frames for a simulated piece of cloth (top) and galloping horse (bottom).

formation in navigating datasets of 3D surfaces. A sizable fraction
of geometry processing algorithms, including the original work on
shape differences, focuses on shape exploration based exclusively
on intrinsic structure. Yet, motions like the deformation of a piece
of cloth cannot be captured by this representation. While cloth de-
formation may be an extreme example, based on these results we
advocate inclusion of both intrinsic and extrinsic structures in shape
analysis rather than discarding the extrinsic information.

8.2 Effects of Truncation

The propositions in this paper show that discrete shape differences
completely encode geometric structure when they are written in a
full basis. For many applications, however, we approximate shape
differences in a truncated low-frequency spectrum. While the effects
of this truncation are difficult to characterize mathematically, in this
section we evaluate the effects of this approximation numerically.

There are two potential sources of truncation error in the twice-
truncated differences discussed in §6.3: The choice of kM and the
choice of kN . As mentioned in §6.3 these two parameters have
slightly different effects; decreasing kM corresponds to removing
rows or columns of the shape difference matrices, while decreasing
kN can affect the values of the entries.

Figure 10 illustrates the results of an experiment varying kM and
kN for intrinsic shape differences and using the pipeline described
in §7 to recover areas and edge lengths; recall that this technique
extracts areas and edge lengths on N using calculations on M . We
choose a pair of meshes with a ground-truth map to avoid additional
error due to map approximation (|VM | = |VN | = 1000).

Each color plot shows the relative error of assorted quantities
extrapolated from the truncated shape differences: face areas (µ),
edge lengths (`), truncated eigenvalues ({λ}kNi=1), full eigenvalues
({λ}|V |i=1), and entries of the Laplacian (∆). We assume kN ≥ kM ,
providing the upper-triangular structure of the plots; the vertical
axis represents kM (range: kM ∈ [60, 500]) and the horizontal axis
represents kN (range: kN ∈ [60, 500]). We choose ε so that the
viscosity regularizer contributes < 10% of the optimal objective.

These plots show that even truncated shape differences can be
used to extract per-face and per-edge information about the mesh
using our pipeline. Even with 15% of the Laplacian eigenvectors,
we can relatively reliably extract the face areas and edge lengths

of the target mesh. Even on challenging tasks like recovering the
full spectrum of the target mesh—beyond the eigenvalues used to
compute the shape difference—our algorithm has some success.

The choice of kN is particularly important. Intuitively, this phe-
nomenon might be explained by the fact that modulating kN changes
the values in the shape difference matrices rather than just their size.
The top row of the matrix also exemplifies a pattern we observed
across our experiments; below a certain value for kM , there is not
enough information to get a meaningful indication of local geometry
from the shape difference matrices.

8.3 Intrinsic Recovery

The experiments in §8.2 illustrate a remarkable observation, that we
are able to recover local information about the target of a shape dif-
ference from a truncated shape difference. That is, the nonnegativity
and semidefinite constraints proposed in §7 paired with regulariza-
tion are sufficient to avoid the null space of the truncated linear
systems for recovering areas and edge lengths.

As the cotangent Laplacian of a triangle mesh (with or without
area weights) is an intrinsic structure,we can use our computed
vectors µ and ` to pull back the Laplacian operator from N to M .

This technique is illustrated in Figure 11. In this experiment, we
compute shape differences from a 100 × 200 functional map to
compute µ and ` on the source surface; we then use (2) to construct
a new Laplacian operator on M using µ and ` pulled back from
N and show eigenfunctions of the resulting operator. Not only do
the eigenvalues of the pulled-back Laplacian better approximate
the Laplace–Beltrami eigenvalues of N , but qualitatively the eigen-
functions of the pulled-back Laplacian exhibit more structure in
common with the eigenfunctions of N . Boxed examples in Fig-
ure 11 show particularly striking differences between the source and
reconstructed eigenfunctions.

Figure 12 illustrates an application of recovering edge lengths
from truncated shape differences. Without constructing an embed-
ding, we use pulled-back edge lengths to compute two commonly-
used intrinsic functions: single-source geodesic distances and the
wave kernel signature [Aubry et al. 2011]. Our edge lengths enable
computation of these functions on the source mesh using the metric
of the target, given a functional map between them. As a baseline,
computing these functions on the target and pulling them back to
the source using the functional map (right column) is less accurate;
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Fig. 10. Effects of truncation on computation of mesh structure. See §8.2 for discussion.
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Fig. 11. Our machinery can be used to pull back Laplacian operators from a target mesh to a source. Here, we use a truncated functional map (100 Laplace–
Beltrami basis functions on source, 200 on target) to compute revised edge lengths on the source mesh. Eigenfunctions of the Laplacian before and after edge
length adjustment are shown with eigenvalues; boxed columns provide examples where the eigenfunction changes structure significantly.

this is due to truncation of the functional map, which removes high
frequencies e.g. at the center point of the geodesic function.

8.4 Reconstruction

Figures 13, 14 and 15 illustrate experiments in which geometry is
reconstructed after estimating local structure from shape differences.
To highlight our method’s effectiveness on extrinsic motion, we
show behavior on human shapes and cloth simulation data.

Figure 13 applies our method to reconstructing models of hu-
mans from shape differences. From a coarse human base mesh
(|VM | = |VN | = 502; kM = 100, kN = 200 in truncated ex-
periments), we recover various poses. We compare reconstructions
using only the intrinsic shape difference (right of each pair) to re-
constructions using intrinsic and extrinsic differences together (left
of each pair); we also compare using a truncated basis for shape
differences (second column) to using a full basis (third column).
As a baseline, we compare to [Boscaini et al. 2015], which uses
only intrinsic geometry (rightmost column). Reconstruction from
intrinsic information shows considerable artifacts due to the non-
uniqueness of the solution of the embedding problem. Our provably
complete intrinsic/extrinsic description is much more stable and
close to the solution. The truncation of the basis, discussed in §8.2,
tends to smooth out the sharp creases as they are represented as high
frequency features.

In Figure 14, we interpolate between frames of an animation
sequence (|VM | = |VN | = 1089, kM = 100, kN = 200). After
running a cloth simulation with coarse time steps, we compute
the shape difference between subsequent frames (t ∈ [0, 1]). We

then use the method in §7.3 to construct plausible motion between
the frames by interpolating linearly between the computed shape
differences (t = 0.5). We further extrapolate the motion beyond the
t ∈ [0, 1] range to t = 1.5, effectively exaggerating the deformation
between the frames. As expected, the extrinsic shape differences
allow for reconstruction of largely isometric cloth motion.

Figure 15 illustrates a more challenging experiment (|VM | =
669, |VN | = 1089, kM = 60, kN = 180). In this case, we recon-
struct the same cloth simulation sequence but vary the topology of
the source and target meshes. Now it is impossible to pull back the
deformation exactly to the new mesh topology, but we still recon-
struct plausible motion, with the notable exception of artifacts near
the boundary of the patch.

8.5 Timings

Figure 16 shows timings by stage for our pipeline, applied to
meshes of various sizes and topologies. We employ a simplistic
single-threaded implementation in MATLAB, using the Mosek tool-
box [MOSEK ApS 2015] in the CVX library for convex optimiza-
tion [Grant and Boyd 2014]; for this reason, the timings should be
viewed as relatively pessimistic upper bounds. The “offset metric”
meshes have more elements than their intrinsic counterparts thanks
to the construction illustrated in Figure 6. The meshes in our experi-
ments have relatively few vertices; an obvious and important next
step for research will be to develop optimization techniques that can
scale to larger models.
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d = 0 d = 0.0163 d = 0.0421
Source geodesic Target geodesic Exact pullback Reconst. pullback Func. map pullback

d = 0 d = 0.0417 d = 0.1594
Source WKS Target WKS Exact pullback Reconst. pullback Func. map pullback

Fig. 12. Our technique can be used to recover the pullback metric and therefore compute geodesic distances without direct access to the target mesh. We
compare three geodesic pullbacks on the source mesh: the exact pullback using point-to-point correspondence, the geodesic computed by reconstruction of the
metric from the shape differences, and the pullback of the geodesic function using a functional map. For each pullback we compute the L2 distance d to the
exact version. Our method achieves better reconstructions than the direct usage of a functional map.

dH = 0.036 dH = 0.054 dH = 0.013 dH = 0.030 dH = 0.058

dH = 0.083 dH = 0.140 dH = 0.023 dH = 0.116 dH = 0.147

dH = 0.064 dH = 0.110 dH = 0.0153 dH = 0.105 dH = 0.132
Source Target Intrinsic+Extrinsic Intrinsic only Intrinsic+Extrinsic Intrinsic only [Boscaini et al. 2015]

Truncated Truncated Full Full Full

Fig. 13. Mesh recovery from a source mesh and shape differences, with (left) and without (middle) the extrinsic shape difference. Intrinsic mesh recovery
using a concurrent method (right). The distance to the target dH is measure by the Hausdorff distance on the prealigned point cloud.

9. DISCUSSION & CONCLUSION

In this paper, we introduced a new way to express intrinsic and
extrinsic shape information through functional shape differences.
Not only do we prove that discrete shape differences can be used to

recover shape, but we also extend to characterizing shapes up to rigid
motion rather than isometry. Our four shape differences together—
two intrinsic and two extrinsic—comprise a powerful description
of shape that applies to a wide range of variability, including not
only non-isometric shapes but also models obtained from physical
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0.5 1 1.5
Source Target Interpolation Factor

Fig. 14. Mesh recovery and interpolation from a source mesh and the intrinsic/extrinsic shape differences. The target meshes come from a cloth simulation
sequence.

0.5 1 1.5
Source Target Interpolation Factor

Fig. 15. Mesh recovery and interpolation. The source mesh has different connectivity than the target. The target meshes come from a cloth simulation sequence.

simulation and animation. We also show that the inverse problem of
recovering shape structure from shape differences can be meaningful
even in the under-determined truncated case.

While this work offers the possibility of direct application in
pipelines for shape search, embeddings of shape space, and approx-
imate reconstruction, it also suggests myriad avenues for future
research. On the theoretical side, a better understanding of the effect
of Laplace–Beltrami eigenfunction truncation may provide better
guidance for the minimal-sized shape differences needed to recon-
struct a shape; spectral truncation is a common part of the geometry
processing pipeline, so any relevant theory would have the potential
to affect understanding of many existing algorithms.

On the practical side, the primary limitation of our proposed re-
construction methods is the introduction of semidefinite constraints
in computing the squared edge lengths `; multi-scale or lighter-
weight optimization methods would enable application to larger-
scale meshes. Furthermore, the regularization proposed for recovery
of µ and ` in §7 is very generic and can be ineffective for noisy or
highly truncated shape differences. Application of machine learn-
ing techniques may allow for the characterization of edge length

and triangle area distributions specific to a given class of shapes,
considerably reducing the search space for our recovery algorithms.

Figures 17 and 18 show examples illustrating these potential
avenues for improving our pipeline. Figure 17 shows how recon-
struction can fail when shape differences are over-truncated; stronger
regularizers might fill in missing information when truncated shape
differences are insufficient to recover edge lengths to high precision.
Figure 18 shows results of shape reconstruction in the presence of
noise. Here, we add noise directly to the shape difference matrix
so that it no longer corresponds to an embedded surface. At some
point, increasing kN does not improve the reconstruction result,
because noise in the entries dominates added high-frequency shape
information.
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Fig. 16. Performance measured on a 2015 iMac 3.3GHz.
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Fig. 17. Example of failure in mesh recovery from a source mesh and shape differences. As the size of the shape difference increases more details are added to
the reconstructed deformation. At kM = 100 and above we achieve a high-quality reconstruction.
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APPENDIX

A. PROOFS OF PROPOSITIONS

Proof of Proposition 1

Equation (1) gives A as a linear function of µ(·). Hence, we must
show that this formula is invertible.

First we show how to recover the area of a single triangle on M .
By the second row of (1), given A we have the sum of triangle areas
adjacent to any edge of M . If M has a boundary, we then know the
areas of the boundary triangles. Otherwise, take v with odd valence,
and enumerate its adjacent triangles as T1, . . . , Tk for odd k. Since
we know the sums of adjacent areas, we have a linear system to
recover µ(T1), . . . , µ(Tk):

1 1
1 1

. . .
. . .
1 1

1 1



µ(T1)
µ(T2)

...
µ(Tk)

 =


A12

A23

...
Ak1

 .

Consider carrying out forward substitution on the matrix. In each
iteration, only the bottom row changes, from (1, 0, . . . , 0, 1) to
(0,−1, 0, . . . , 0, 1), then to (0, 0, 1, 0, . . . , 0, 1) and so on with al-
ternating sign. When k is odd, in the last step the 1 is augmented to
a 2, making the final row (0, . . . , 0, 2). In other words, the matrix
reduces to an upper triangular matrix with nonzero diagonal, which
is invertible.

Hence, in either case we can recover µ(T ) for at least one T . The
remaining areas can be computed by flood filling outward from T ;
given the area on one side of an edge and the sum of the adjacent
areas, the adjacent area is recovered by subtraction.

Proof of Proposition 2

By construction C(`;µ) takes squared edge lengths ` and outputs
the matrix C. Extracting elements of C corresponding to edges on
M yields a linear operator B : R|E| → R|E| with matrix

Bij =
1

8

 µ(Ti)
−1 + µ(T ′i)

−1 if i = j
−µ(T )−1 if i, j are edges of T
0 otherwise.

Here, indices i, j refer to edges on M ; for a given edge i, we label
its adjacent triangles Ti and T ′i . Remark that B can be written as a
weighted sum: B =

∑
k

1
8
µ(Tk)−1Bk, where each Bk is a matrix

such that:

Bkij =

 1 when i = j, and i belongs to triangle k.
−1 when i, j are edges of triangle k.
0 otherwise.

It is easy to see that the intersection of the kernels of all Bk is
empty, since Bk is non-singular when restricted to the values on
edges of triangle k. Moreover, by considering the determinant of B
as a multivariate polynomial with real coefficients, we conclude that
B is either singular for any choice of values of µ(Tk)−1, or for a set
of coefficients which has measure zero.

To complete the proof we note that if B is singular for any choice
of values of µ(Tk)−1, then the matrix pencil B =

∑
k akB

k is
singular (i.e., B is singular for any choice of coefficients ak). Using

ACM Transactions on Graphics, Vol. XXXX, No. XXXX, Article XXXX, Publication date: XXXX 2016.



Functional Characterization of Intrinsic and Extrinsic Geometry • 15

N
o

no
is

e

dH = 0.128 dH = 0.073 dH = 0.065 dH = 0.036 dH = 0.023
Source Target kN = 100 kN = 200 kN = 300 kN = 400 Full

N
oi

sy
sh

ap
e

di
ff

dH = 0.161 dH = 0.161 dH = 0.112 dH = 0.109 dH = 0.134
Source Target kN = 100 kN = 200 kN = 300 kN = 400 Full

Fig. 18. Impact of the basis truncation on from a source mesh and noisy shape differences. In this experiment, we fix the number of basis functions on the
source shape to kM = 100 and reconstruct the embedding for various kN . Top row: With no additional noise, the quality of the embedding increases with
kN . Bottom row: With added noise, larger kN—which normally yields better transfer of high frequency deformation—does not increase the quality of the
reconstruction. The noisy shape differences do not correspond to an actual embedding.

Lemma 3.4 from [Muhic and Plestenjak 2009] and the fact that
Bk are symmetric, we see that in that case for every choice of ak,
there must exist a vector x such that xTBkx = 0 for every Bk,
and Bx = 0. Now, given the values of x on some triangle, this
means that its values on the adjacent triangle are either uniquely
determined by the corresponding two equations (one linear, one
quadratic), or these equations cannot be satisfied. By inspecting the
resulting equalities, it is easy to see that at least two of the values
on every triangle must be equal, and by considering any closed loop
of triangles, these equations cannot be consistent for every choice
of weights ak. Thus, B cannot be a singular matrix pencil, and
therefore B is invertible for almost any choice of values µ(Tk)−1.

Proof of Proposition 3

The results come from direct computation (assume the following
expressions are evaluated at t = 0):

∂gij
∂t

=
∂

∂t

〈
∂Ft
∂xi

,
∂Ft
∂xj

〉
by definition of gij

=

〈
∂n

∂xi
,
∂Ft
∂xj

〉
+

〈
∂Ft
∂xi

,
∂n

∂xj

〉
by definition of Ft

= 2hij by definition (and symmetry) of hij .

∂µ

∂t
=
∂
√

det g

∂t
by definition of µ

=
det g

2
√

det g
gij

∂gij
dt

by the chain rule

=
√

det ggijhij from the previous result
= Hµ by definition of H,µ.

∂

∂t
g(∇φt,∇ψt) =

∂

∂t

[
gijg

ikgj`
∂φt
∂xk

∂ψt
∂x`

]
by definition of∇

=
∂

∂t

[
gij

∂φt
∂xi

∂ψt
∂xj

]
by multiplying g and g−1

=
∂gij

∂t

∂φt
∂xi

∂ψt
∂xj

since the rest is constant

= −gik ∂gk`
∂t

g`j
∂φt
∂xi

∂ψt
∂xj

by differentiating g−1

= −2gikhk`g
`j ∂φt
∂xi

∂ψt
∂xj

by the first result

= −2h(∇φt,∇ψt) by definition of∇.

Proof of Proposition 4

The previous propositions show that µ, ν, µt, and νt are (almost
always) sufficient to recover the edge lengths of the base and offset
surfaces. The remaining edges of the canonical thickening are be-
tween the inner and outer layers and are recoverable essentially by
convention. Specifically:

—The edges along surface normals are length t by definition.
—The bottom edge lengths of the “upward-facing” tetrahedra (Fig-

ure 6) are known because they are on the base surfaces. The
remaining edges of these tetrahedra can be computed because the
upward-facing tetrahedron is generated via normal offset from
the barycenter of the base triangle by a distance t.

—“Mesh edge” tetrahedra are adjacent to “upward-facing” tetrahe-
dra and outer faces of the thickening and hence have edge lengths
fixed by their neighbors’ construction.

—Similarly, “downward-facing” tetrahedra have one normal edge
of length t, and the remaining edges are on the outer surface or
adjacent to an “upward-facing” tetrahedron.

The embedding of a single oriented tetrahedron is fixed up to rigid
motion given its edge lengths, so the proposition follows by gluing
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the tetrahedra of the canonical thickening according to the topology
of the construction.

Proof of Proposition 5

We denote (e1, e2, e3) the canonical basis and the indices {i, j, k} ∈
{1, 2, 3}.

If
√
xk ≤

√
xi +

√
xj , then there exist three points (v1, v2, v3)

which define an embedding of a triangle. Let E be the matrix with
columns v3 − v2, v1 − v3 and v2 − v1 then E = E>E. The matrix
E is therefore positive semidefinite.

Since E is symmetric positive semidefinite, the Cauchy-Schwartz
inequality holds. Expanding the expression (ei + ej)

>E(ei + ej)
yields

(ei + ej)
>E(ei + ej) = xi + xj + 2e>i Eej

≤ xi + xj + 2
√
xixj

≤ (
√
xi +

√
xj)

2.

At the same time, a direct computation shows (ei + ej)
>E(ei +

ej) = xk which implies that
√
xk ≤

√
xi +

√
xj .

Proof of Proposition 6

Starting with the second statement, direct computation of the deter-
minant shows

4 det(Ek) =
(
x1 x2 x3

)−1 1 1
1 −1 1
1 1 −1

x1

x2

x3

 .

When the xi’s are squared triangle edge lengths, this is a formulation
of Heron’s area formula.

The first statement is proved using a well-known theorem on
positive block matrices (property of Schur complements) [Boyd and
Vandenberghe 2004]: E � 0 if and only if E3 � 0 and

2x3 −
(
x2 − x1 − x3

x1 − x2 − x3

)>
E−1

3

(
x2 − x1 − x3

x1 − x2 − x3

)
≥ 0.

Notice that

Ek

(
1
1

)
= −1

2

(
xj − xi − xk
xi − xj − xk

)
,

and hence the first condition is met whenever x3 ≥ 0. Moreover,
E3 is a 2 × 2 matrix and therefore is positive semidefinite if and
only if x1 ≥ 0, x2 ≥ 0 and det(E3) ≥ 0.
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