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Abstract
We consider the problem of non-rigid shape matching, and specifically the functional maps framework that was recently pro-
posed to find correspondences between shapes. A key step in this framework is to formulate descriptor preservation constraints
that help to encode the information (e.g., geometric or appearance) that must be preserved by the unknown map. In this pa-
per, we show that considering descriptors as linear operators acting on functions through multiplication, rather than as simple
scalar-valued signals, allows to extract significantly more information from a given descriptor and ultimately results in a more
accurate functional map estimation. Namely, we show that descriptor preservation constraints can be formulated via commu-
tativity with respect to the unknown map, which can be conveniently encoded by considering relations between matrices in the
discrete setting. As a result, when the vector space spanned by the descriptors has a dimension smaller than that of the re-
duced basis, our optimization may still provide a fully-constrained system leading to accurate point-to-point correspondences,
while previous methods might not. We demonstrate on a wide variety of experiments that our approach leads to significant
improvement for functional map estimation by helping to reduce the number of necessary descriptor constraints by an order of
magnitude, even given an increase in the size of the reduced basis.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—[Geometric algorithms, languages, and systems]

1. Introduction

In this paper we study the problem of non-rigid shape matching,
which consists in trying to find a good correspondence between two
shapes that might undergo a non-rigid transformation, such as artic-
ulated motion of humans. This problem has many applications such
as deformation transfer [SP04], shape interpolation [KMP07] and
even statistical shape modeling [HSS∗09] among myriad others. A
wide variety of methods has been used to tackle this problem over
the years [VKZHCO11], primarily by restricting the search space
either using feature-point correspondences [BBK06], or using a re-
duced model, such as conformal or isometric shape deformations.

In this paper, we concentrate on the functional map framework
introduced in [OBCS∗12], which has been widely adopted since
its introduction due to its efficiency for representing and comput-
ing correspondences, which in the most basic case reduces to solv-
ing a linear system of equations. A key step in this framework,
first introduced in the original article [OBCS∗12] and then used
in most follow-up works, including [PBB∗13, COC14, LRB∗16]
among others, is to formulate function preservation constraints,
which typically encode information (e.g., geometric or appearance)
that must be preserved by the unknown map. These constraints
are typically enforced simply by requesting that the function val-
ues must be globally preserved by the functional map. This means,

however, that the constraints formulated using this approach often
lead to underconstrained, badly defined optimization problems, es-
pecially when the number of linearly-independent descriptor func-
tions is smaller than the number of basis functions, used to repre-
sent the map itself. This is especially problematic in the presence of
non-rigid, possibly noisy deformations, for which obtaining a large
set of informative, linearly independent descriptor functions can be
very challenging.

Our main contribution is to notice that the standard approach for
enforcing function preservation does not extract all of the informa-
tion from a given descriptor. For example, the level-sets of the given
function (i.e., the indicator functions of regions of constant value)
are not necessarily preserved when using the basic function preser-
vation constraint. This has two consequences: on the one hand, as
mentioned above, this requires many descriptor functions to obtain
a good approximation of a functional map, and on the other, per-
haps more importantly, a solved-for functional map will not nec-
essarily correspond to a point-to-point map, as it might not respect
the “structural” properties of function preservation, as described in
Section 5.1 in more detail. Indeed, one of our main motivations is
to introduce constraints that would help guide the optimization pro-
cess towards functional maps that are closer to point-to-point maps,
without introducing additional computational complexity.
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We show that much more information can be encoded into func-
tion (or descriptor) preservation constraints, while maintaining the
overall linear system nature of the functional map framework, mak-
ing it attractive from the computational standpoint. In particular,
we show that when function preservation is encoded via commu-
tativity with an underlying map, rather than simply via function
value preservation, the resulting maps are both more accurate, and
moreover can be obtained by using only a handful of descriptors
(sometimes as few as 2-3), compared to hundreds required by the
standard approach. We demonstrate on a wide range of experiments
that our method helps to obtain better correspondences, largely re-
moves the dependency of the descriptor number on the size of the
reduced basis, and helps to obtain functional maps that are closer
to point-to-point maps in a theoretically well-justified way.

2. Related work

Non-rigid shape matching is among the best-studied problems in
digital Geometry Processing, and the full overview of related tech-
niques is beyond the scope of our paper. Therefore, below we dis-
cuss the works that are most closely related to ours, especially those
based on the functional map framework, and refer the interested
reader to the recent surveys on shape matching for a more in-depth
overview of the field [VKZHCO11].

Most early methods designed to find correspondences between
shapes undergoing non-rigid transformation have concentrated
on establishing mappings that minimize some distortion energy,
such as conformality (locally angle preservation) [LF09, KLF11,
APL15], or approximate intrinsic isometries (preserving geodesic
distances) (e.g., [BBK06, TBW∗09, OMMG10] among many oth-
ers). Both the theoretical formalism and the computational methods
associated with these approaches are mature and can often result in
high-quality mappings whenever the deformations follow the pre-
scribed models. However, such methods often lack flexibility, mak-
ing it hard to introduce additional information, in the form of ex-
pected geometric or appearance properties (descriptors) that should
be preserved by the map, and are badly-suited in the presence of
more general non-rigid deformations.

Another, more recent, set of techniques has been proposed to
obtain soft, or approximate correspondences rather than point-to-
point maps [SNB∗12,OBCS∗12]. This includes both maps between
probability densities [Mém11, SNB∗12, SPKS16] and region-level
maps [CK15, GSTOG16], which can be used in a multi-scale way
to obtain accurate (sometimes even pointwise) correspondences.
These techniques are often more robust in the presence of geo-
metric and structural variability, and in many cases allow to inject
domain-specific knowledge, such as expected descriptor preserva-
tion into the computational pipeline.

Most closely related to our work are the methods based on the
functional map framework, initially introduced in [OBCS∗12], and
later extended significantly in follow-up works (e.g., [PBB∗13,
RCB∗16, LRB∗16] to name a few). These methods are based on
the notion that it is often easier to obtain correspondences between
functions, rather than points, by first using a reduced functional ba-
sis and second by formulating many linear constraints that allow
to recover the functional map by solving a least squares system.

An approach that tackles the problem of extracting a good point-
to-point correspondence from a functional map can be found in
[RMC15]. This framework has a particular advantage of being flex-
ible and allowing to easily incorporate constraints including preser-
vation of geometric quantities (descriptors), while at the same time
being able to incorporate deformation models (e.g., isometries) via
commutativity with various operators.

Despite this flexibility, one notable difficulty of using the func-
tional map representation is that typically a large number of con-
straints is necessary to obtain a good solution. This includes us-
ing many descriptor preservation constraints [OBCS∗12], even in
the case of partial maps [RCB∗16] (where for example, the au-
thors use 352-dimensional descriptors). Unfortunately, obtaining a
large set of high-quality robust and informative descriptor func-
tions can be challenging [COC14], and moreover noisy descriptor
functions can severely affect the resulting quality of the functional
map. This is especially problematic since in the original formu-
lation [OBCS∗12], which has been also used in follow-up works,
the number of descriptor preservation constraints is tightly linked
to the size of the reduced basis, meaning that in order to obtain
better correspondences more constraints are necessary, even in the
absence of noise. Thus, several previous methods have tried to use
regularization to improve the conditioning of the functional map
computation, e.g., via sparsity [KBBV15].

In this paper we argue, that the previously proposed approach
for function preservation constraints in the functional map frame-
work does not extract all of the available information from a given
function. By drawing a link between theoretical guarantees un-
der which functional maps correspond to point-to-point maps, we
show that it is possible to formulate the descriptor preservation
constraints in a way that is both more informative, and results in
higher quality functional maps even as the number of basis func-
tions increase. Remarkably, we show that this is possible without
sacrificing the overall linear least squares computational advan-
tage of this framework. Our approach is general and can be used
within any other method based on the functional map represen-
tation (e.g., [OBCS∗12, PBB∗13, RCB∗16, LRB∗16]), by simply
changing the way that constraints are formulated and solved for.

To summarize, our main contributions include:

• A novel approach to formulating function (e.g., descriptor)
preservation constraints within the functional maps framework.
• Theoretical analysis demonstrating that our method results in de-

sired point-to-point maps, in the presence of perfect descriptors.
• Both theoretical guarantees and experimental evidence that our

constraints allow to extract strictly more information from de-
scriptor functions compared to previous approaches.

We evaluate our method on a wide variety of data, and show that
using our simple modification can result in significant improvement
in the quality of functional maps and reduce the number of neces-
sary descriptor constraints by an order of magnitude.

3. Overview

The rest of the paper is organized as follows: in Section 4 we in-
troduce the notation and give an overview of the basics of the func-
tional maps framework and the associated pipeline for computing
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pairwise shape correspondences. Section 5 describes our proposed
modification to this pipeline and discusses the main properties of
the constraints that we introduce. We start by giving a general mo-
tivation and theoretical justification for our constraints in Section
5.1 and then describe how they can be introduced into the func-
tional map estimation pipeline in Section 5.2. We list some of the
properties of these constraints in Section 5.3, in particular prov-
ing that our approach is strictly more informative than the standard
method for function preservation, and that it provably allows us to
extract more information from the same given descriptors. Section
6 is dedicated to the experiments, which demonstrate that our con-
straints result in more accurate functional maps, and allow to obtain
high quality maps with significantly fewer descriptors. Finally we
conclude with Section 7 by mentioning some interesting challenges
and directions for future work.

4. Overview of the Functional Maps Framework

In this section we describe the general setting of non-rigid shape
matching, introduce the main notation that will be used in the rest
of the paper, and give an overview of the functional map framework
introduced in [OBCS∗12], including the main computational steps
required for estimating functional maps in practice. We concentrate
in particular on the way that various constraints, and especially the
function preservation constraints are encoded in this pipeline, as
this forms the basis of our contribution described in the following
Section 5.

4.1. Setup

The main goal in the problem of shape matching is to try to find
a correspondence or a mapping between a pair of shapes M and N
that represent similar physical objects, for which one would expect
a natural correspondence to exist. For example, M and N can repre-
sent the same cat or human shape in two different poses. Through-
out our discussion we will assume that in the continuous setting,
these shapes can be modeled as smooth surfaces (two-dimensional
manifolds) embedded in R3, and that in the discrete setting they are
stored as triangle meshes, having nM and nN vertices respectively.

The simplest and most common approach is to represent a solu-
tion to the shape matching problem as a correspondence T : N→M
that maps each vertex in N to a vertex in M according to some qual-
ity criterion. Such a correspondence can also be written as a matrix
Π of size nN × nM , that has exactly one 1 on each line, and zeros
everywhere else. When the number of points nN = nM and the map
T is a bijection then Π is a standard permutation matrix. If we allow
convex combinations of vertices (or equivalently probability distri-
butions) as solutions, as in [SPKS16], then we can relax the binary
0,1 constraint to allow the entries of Π to lie in the interval [0,1]
with the additional constraint that all lines of Π sum to 1.

Another, more general relaxation that was considered in
[OBCS∗12] is via linear mappings between real-valued functions
defined on the shapes. Thus, given a function f defined on shape
M, f : M → R, we can use T to transfer f onto N through com-
position to define g = f ◦T . Here, g : N→ R and g(y) = f (T (y)),
for any point y on N. For any fixed T , the mapping between func-
tions f 7→ g is linear, and thus can be represented as a matrix in

the discrete setting. If functions are represented as discrete vectors,
then using the notation above, we can simply write: g = Π f , if
the functions are expressed as vectors with respect to the standard
basis. Note that any real-valued matrix Π corresponds to a valid
linear functional map, even if it does not represent a correspon-
dence between points or probability distributions. This means that
this representation is complete and no additional constraints have
to be imposed on the estimated matrix.

The key aspect of the functional map representation proposed
in [OBCS∗12] is to use a reduced basis to encode the functional
map, instead of working in the full spaces RnM and RnN . Thus, sup-
pose we are given some set of basis functions on shapes M and N,
encoded as matrices ΦM ,ΦN respectively, having sizes nM × kM
and nN × kN for some kM � nM and kN � nN , where each col-
umn corresponds to a basis function on the corresponding shape.
Then, the functional map matrix can be written as C = ΦN

+
ΠΦM ,

where + denotes the Moore-Penrose pseudoinverse. For example,
if the basis functions are orthonormal with respect to the stan-
dard inner product then C = Φ

T
NΠΦM , whereas if the basis func-

tions are orthonormal with respect to a weighted inner product,
so that Φ

T
NANΦN = InN where AN is a matrix of weights, then

C = ΦN
T ANΠΦM .

The expression above assumes that the initial correspondence
matrix Π is known. In practice, however, the shape matching prob-
lem consists precisely in trying to recover this correspondence for
a given pair of shapes. For this the authors of [OBCS∗12] have pro-
posed a pipeline, which was further extended in several follow-up
works [PBB∗13, COC14, RCB∗16], and which consists of the fol-
lowing general steps (1) Computing a fixed set of the basis func-
tions, ΦM ,ΦN , (2) Estimating a set of pairs of descriptor (also
called “probe”) functions f (p),g(p), where p ∈ {1, ...,P} such that
the unknown functional map C should satisfy C f (p) ≈ g(p) for each
p, (3) Solving the linear system of equations to estimate the un-
known functional map C, and (4) Recovering a point-to-point cor-
respondence from a given functional map matrix C. Note that the
calculations in step (2) are done in the given functional basis, which
significantly reduces the dimension of the considered space (the
number of unknowns) and therefore makes the problem scalable,
since the matrix C is of size kN × kM .

In practice, the most commonly-used basis in functional map
computations is given by the eigenfunctions, corresponding to the
smallest eigenvalues of the Laplace-Beltrami operator, which has a
multi-scale effect, since the eigenfunctions are ordered from low-
frequency (smoothest) to high-frequency according to the eigenval-
ues. By far the most common discretization of this operator is the
classical cotangent-weight scheme [PP93,MDSB03], which allows
to represent it as a matrix L = A−1W , where A is a diagonal matrix
of area weights and W is a sparse matrix of cotangent weights. In
this case the eigenfunctions can be found by solving the generalized
eigenvalue problem Wφ = λAφ, and the matrix of eigenfunctions Φ

satisfies the relation Φ
T AΦ = Id, and Φ

+ = Φ
T A.

Functional Map Estimation The key aspects in estimating func-
tional maps therefore consists in formulating pairs of function
preservation constraints f (p),g(p) and solving the linear system of
equations to recover the unknown matrix C. The pairs of probe
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functions f (p),g(p) can represent descriptors such as Gaussian or
mean curvature, or multi-scale descriptors such as the Heat or Wave
Kernel signatures [SOG09, ASC11] for some range of parameter
choices (i.e., each f (p),g(p) corresponds to a parameter, such as
time in the HKS). Alternatively function preservation constraints
can also represent knowledge of parts or feature points that are
known to match, in which case the functions can be either indi-
cators of given parts, or derived quantities, such as distance func-
tion to a feature. Once all of the function preservation constraints
are computed, they can be stacked into matrices F,G whose corre-
sponding columns represent the pairs of functions expressed in the
given (Laplace-Beltrami) basis. Then, the optimal functional map
is found by solving the following system in the least squares sense:

Copt = argmin
C
‖CF−G‖2 +α‖∆NC−C∆M‖2. (1)

Here, ∆N ,∆M are diagonal matrices of eigenvalues of the Laplace-
Beltrami operator and α is a small scalar weight. In other words,
the optimal functional map C can be computed so that it preserves
the given functions and commutes with the Laplace-Beltrami op-
erator itself. This latter constraint is associated with the standard
assumption that the sought map should be approximately intrinsi-
cally isometric.

Limitations Although simple and efficient, the pipeline described
above has several limitations: first the number of linearly indepen-
dent function preservation constraints must be sufficiently high to
ensure that the least squares system leads to a good approxima-
tion of the functional map. Without additional assumptions, such
as sparsity, in most cases this implies that the number of descrip-
tors must be approximately equal to the number of basis functions
(which typically ranges between 80-100). Unfortunately, obtaining
a large number of descriptor functions that are robust, informative
and linearly independent can often be difficult. Moreover, as de-
scribed below, this basic method for enforcing descriptor preserva-
tion does not extract the full information from the given functions,
leading to sub-optimal results. Finally, and perhaps most impor-
tantly, this approach does not have constraints or regularizers that
would lead to the solution to point-to-point maps, which can affect
the overall accuracy of the correspondence estimation pipeline.

5. Novel Approach for Functional Correspondences

5.1. Motivation

One of the primary motivations behind our approach to function
preservation within the functional maps framework is a classical
result that states that any non-trivial linear functional map C cor-
responds to a point-to-point map if and only if it preserves point-
wise products of functions C( f · h) = C( f ) ·C(h) for any pair of
smooth functions f ,h : M→ R (See for example Corollary 2.1.14
of [SM93] for a proof). Here f ·h represents a function whose value
at every point x equals to the product f (x)h(x). Intuitively, this is
because a functional map that preserves products of functions must
satisfy C( f 2) =C( f )2. If f is an indicator function of a region then
f 2 = f and this latter condition implies that C( f ) =C( f 2) =C( f )2

which means that C( f ) must itself be an indicator function of a
region. Thus, the preservation of products of functions is directly

related to guiding general functional maps to correspond to point-
to-point maps in both the continuous and the discrete setting. Here
non-trivial means that C(1M) = 1N , where 1M is the constant func-
tion equal to one everywhere on M. This constraints is indeed triv-
ial, because 1 ◦ T = 1 for any T . We also note that without this
trivial constraint, the preservation of products of functions is still a
very strong condition on a functional map and guarantees a partial
correspondence coming from a generalized composition operator
(See Example 2.1.10 on p. 21 of [SM93] for a discussion).

Perhaps the simplest way to introduce this result and intuition
into the pipeline described above is by taking multiple pairs of
descriptor functions f (p1),g(p1) and f (p2),g(p2) for which we ex-
pect C f (p1) ≈ g(p1), C f (p2) ≈ g(p2), and producing new function
preservation constraints f (p3),g(p3) via f (p3) = f (p1) · f (p2) and
g(p3) = g(p1) ·g(p2). There are however, several issues with such an
approach: first, it is not clear how many additional constraints are
necessary and what pairs of descriptor functions should be taken.
Secondly, any noise in the descriptors will be amplified when pairs
of such functions are taken. Thus, we take a slightly different ap-
proach as described below.

To motivate our construction further, consider a pair of descrip-
tors f (p),g(p) that are “fully discriminative,” in the sense that for
every point x ∈ M there exists a unique point y on N such that
g(p)(x) = f (p)(y). Given such a pair of descriptors, we would ex-
pect to recover the underlying point-to-point map using a single
function (descriptor) preservation constraint. However, if we sim-
ply enforce C f (p) = g(p), then even in the full basis we will not
be able to recover the underlying map, since the function preserva-
tion constraint only leads to kN linear equations instead of the re-
quired kMkN equations. This is because the simple function preser-
vation constraint does not preserve the individual level-sets of the
function values, which should be expected from a map. A simple
method might be to decompose a single pair of descriptor func-
tions f (p),g(p), into multiple function preservation constraints by
introducing new functions by considering level-sets (or Gaussians
around certain values, as in [OMPG13], Section 4.1), but this again
can result in more noise and additional parameters.

5.2. Our constraints

In this paper, we propose a different approach to function preser-
vation constraints. Namely, we start with the observation that
in the full basis, given a pair of corresponding probe functions
f (p),g(p), we would expect the mapping matrix Π to be such that
Πi, j · ( f (p)

j − g(p)
i ) = 0 for all i, j, which is equivalent to saying

that indicator functions of regions of constant values of f (p) and
g(p) are preserved. This corresponds to the intuition that the level-
sets of functions must be preserved along with the values of the
functions themselves. This constraint can be rewritten via commu-
tativity as ΠDiag( f (p)) = Diag(g(p))Π, where Diag(v) is the ma-
trix that contains the values of the vector v along the diagonal and
is zero elsewhere. This form also makes apparent the relation be-
tween preservation of level sets and function products. Indeed, if
h : M → R is any function on M, then its pointwise product with
f (p) is obtained, in the discrete formulation, via the matrix vector
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product Diag( f (p))h. Therefore, ΠDiag( f (p)) = Diag(g(p))Π im-
plies ΠDiag( f (p))h=Diag(g(p))Πh, which implies that the associ-
ated linear mapping C between functions must satisfy C( f (p) ·h) =
g(p) ·C(h) for any h : M → R, which corresponds exactly to the
product rule.

Our constraints in the reduced basis As discussed above, in the
functional map framework, the key map estimation step is done in
the reduced basis. Thus, we introduce our constraints by following
the idea of commutativity with an operator based on the descriptor,
as discussed in the previous paragraph. However, in the reduced
basis the commuting matrices will not remain diagonal. For a given
pair of descriptor functions f (p),g(p), we therefore create matrices
X (p) = Φ

+
MDiag( f (p))ΦM and Y (p) = Φ

+
N Diag(g(p))ΦN . Finally,

we add the corresponding constraints to the system into Eq. 1 by
requiring the unknown map C to satisfy in the least squares sense:

∑
s
‖CX (p)−Y (p)C‖2, (2)

where the summation is across the available descriptors, and we use
the Frobenius matrix norm.

5.3. Properties

As mentioned above, the descriptor preservation constraints alone
do not extract all of the information that is present in a given de-
scriptor. In particular even if the descriptors are perfect and identify
each vertex uniquely, the classical constraints CF = G may still not
be sufficient to identify each vertex. As a toy example, if nM = 2,
nN = 2 and f = (1,2) and g = (1,2), then there is a unique point-
to-point map that preserves these functions. However, using only

the constraint Π

(
1
2

)
=

(
1
2

)
could also lead to the solution

Π1 =

(
0 0.5
2 0

)
. Thus, we can see that although Π1 preserves

the descriptor functions, it fails to preserve the values pointwise: it
fails to map vertices that have a value to vertices that have a sim-
ilar value. Π1 does not preserve the commutativity constraint, and
indeed Π1 is not a permutation matrix.

Below we show that the above phenomenon cannot happen if Π

is enforced to be a doubly stochastic matrix: i.e., having entries that
all lie in the interval [0,1] and whose rows and columns sum to 1:

Theorem 1 Let f ∈ Rn and g ∈ Rn be such that the multiset of
values contained in f and in g are the same. Let Π be an n× n
matrix such that ∀i, j,0 ≤ Πi, j ≤ 1 and ∑k Πi,k = 1, ∑k Πk, j = 1.
Then Π f = g implies Πi, j = 0 whenever f j 6= gi.

Proof : We proceed by induction on the values of f . Let L =
max( f ) = max(g). By assumption, the sets I f = {k| fk = L} ⊂
{1, . . . ,n} and Ig = {k|gk = L} ⊂ {1, . . . ,n} must have the same
cardinality. Moreover, each gk for k ∈ Ig can only be obtained from
combinations of fk for k ∈ I f . Thus, Πk,k′ = 0 if k ∈ Ig and k′ /∈ I f .
These constraints also imply Πk,k′ = 0 if k /∈ Ig and k′ ∈ I f , because
each column of Π should sum to 1.

Unfortunately, enforcing a matrix to be a stochastic matrix in-
volves inequality constraints that do not translate well in the re-

duced basis: e.g., the projection of a stochastic matrix in the re-
duced basis may not remain stochastic. Thus, it is not easy to re-
strict to such matrices in the reduced basis. Instead, rather than en-
forcing inequality constraints we propose to introduce the commu-
tativity with respect to the operators derived from the descriptor
functions as described above. In our toy example, the commutativ-
ity constraint would be

Π

(
1 0
0 2

)
=

(
1 0
0 2

)
Π

We can see that enforcing such a constraint eliminates the wrong
solution Π1.

Recall that any functional map that corresponds to a point-to-
point map should satisfy Π1 = 1, which would thus be a natural
constraints to use in our optimization. Interestingly our new com-
mutativity constraint along with the additional regularization, re-
quiring the map to preserve the constant function Π1 = 1, implies
the previously used constraints Π f = g even in the reduced basis,
as proved in the following theorem:

Theorem 2 If f ∈ RnM , g ∈ RnN and Π ∈ MnN ,nM (R), then
ΠDiag( f ) = Diag(g)Π and Π1 = 1 implies that Π f = g. Simi-
larly, if C is in the reduced basis, where the first basis function is a
constant function, and Ce1 = e1, then the commutativity constraint
CΦ

+
MDiag( f )ΦM = Φ

+
N Diag(g)ΦNC implies that CΦ

+
M f = Φ

+
N g.

Proof : We consider the first case, in the full basis:
Π f = ΠDiag( f )1 = Diag(g)Π1 = Diag(g)1. For the second
case, by assumption, we have: CΦ

+
M f = CΦ

+
MDiag( f )ΦMe1 =

Φ
+
N Diag(g)ΦNCe1 = Φ

+
N Diag(g)ΦNe1 = Φ

+
N g.

However, in practice, it might still be useful to enforce both the
commutativity constraint and the CF = G constraint as the latter
might give more control on the importance of preserving the func-
tion globally, by e.g., adding a scalar weight. Note that this theorem
is only meant to be a theoretical guarantee that our formulation in-
cludes at least as much information as the previous one.

6. Experiments

As described above, the new commutativity constraints allow us
to extract more information from the same set of descriptors, and
furthermore allow us to guide the functional map estimation pro-
cess closer to point-to-point maps, while still maintaining the linear
(least squares) complexity of the optimization. Below we demon-
strate the utility of these constraints on a wide range of shapes and
deformations and show that our approach allows to significantly re-
duce the number descriptor functions necessary to estimate an ac-
curate functional map, and even improve results with the increase
in the size of the basis for a fixed number of descriptors, which is
not true for the previously used constraints.

6.1. Using few descriptors

In our first set of experiments, we plot the average correspondence
error for several methods on three standard benchmarks: FAUST
[BRLB14], SCAPE [ASK∗05], and TOSCA [BBK08].

Our main goal in this experiment is to show that by formulat-
ing the descriptor preservation constraints via commutativity, rather
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Figure 1: Error plots showing the accuracy of our descriptor
preservation via commutativity (solid lines) compared to simple
value preservation (dotted) and the Blended Intrinsic maps (red)
on shape pairs from the FAUST dataset. Our method allows to ob-
tain superior performance using even a very small descriptor set.

Figure 2: Example maps obtained by formulating the descriptor
preservation with the simple method (left) and using our commuta-
tivity approach (right), using exactly the same descriptor functions.

than using the original approach based on preservation of values,
results in more accurate functional map inference, without requir-
ing any additional information.

We compare our results to the following methods:

• Blended Intrinsic Maps [KLF11]
• The original method proposed in [OBCS∗12] and used in follow-

up works [PBB∗13,RCB∗16], that formulates function preserva-
tion constraints, based on values.

We note that our approach can be incorporated into any pipeline
for estimating functional maps, which uses function (e.g., de-
scriptor) preservation constraints. As such, it can be easily com-
bined with the other techniques that have been introduced for
optimizing functional map computations, e.g., based on sparsity
[PBB∗13] or specific prior structure existing in partial correspon-
dences [RCB∗16]. Therefore, our goal is not to demonstrate that
our particular choice of descriptors or parameters results in state-
of-the-art correspondences on these benchmarks, but rather to show
that our formulation of function preservation via commutativity al-
lows to obtain more accurate results than the one based on function
values alone.

For this, we used the original functional map estimation pipeline
introduced in [OBCS∗12], with the same code and parameters.
Namely, we used a varying number (1,2,10, and 100) of descrip-

tor functions, and compared the results of estimating the functional
map either by minimizing:

Copt = argmin
C
‖CF−G‖2 +α‖∆2C−C∆1‖2,

as described in Section 4 or using our constraints, which simply
adds an extra term to the energy above, given by ∑i ‖CXi−YiC‖2,
as described in Eq. 2 above. In both cases we computed the func-
tional map C by solving a linear least squares system, using a vec-
torization of the functional map C (re-writing it as a vector c), and
solving the system Ac = b, where A and b are obtained by rewriting
the above energy in matrix-vector form. After estimating the func-
tional map C we used the post-processing technique of [OBCS∗12]
based on high-dimensional ICP to both refine the functional map
and convert it to a point-to-point correspondence.

In all of the experiments in this section we used neig = 100
eigenfunctions to represent the functional basis, by discretizing the
Laplace-Beltrami operator using the standard cotangent-scheme
[PP93, MDSB03], and a sparse eigensolver, to estimate the basis.
We followed the exact pipeline suggested in [OBCS∗12] for map
estimation and simply sub-sampled the set of descriptors used in
that work (Wave Kernel Signature [ASC11] and Wave Kernel map
based on segment correspondences).

Figures 1, 3, 5 show the results obtained using our approach
compared to the basic function-preservation method on the three
benchmarks, using a varying number of descriptor preservation
constraints. We evaluated each method on 100 pairs of shapes in the
FAUST dataset, 76 shape pairs in TOSCA and 71 pairs in SCAPE,
by taking each shape to be a source in exactly one pair. We follow
the evaluation protocol introduced in [KLF11], by plotting on the
x-axis a geodesic threshold, and on the y-axis, the fraction of the
correspondences obtained by each method that are at a distance that
is less than this threshold from the ground truth map. The geodesic
distances (approximated using Dijkstra’s algorithm) are divided by
the scaling factor

√
Area, where Area is the total area of the shape.

In this work, similarly to other non-symmetry aware intrinsic meth-
ods, we do not disambiguate left-right symmetries, and thus take
the minimum between the distance between the matched vertex and
the ground truth, and the distance between the matched vertex and
the symmetric of the ground truth as our distance to target.

In each plot, the red curves represent the performance of
[KLF11], the blue/green curves represent approaches based on the
functional map framework (green: using only 1 descriptor, blue:
using 100 descriptors). The curves with ∗ symbols use the original
function-preservation formulation, whereas those with solid lines
use our new approach.

We notice the following general trend: the method that uses our
commutativity constraints usually leads to better results compared
to the classic descriptor preservation constraints, and the improve-
ment is particularly large when only a few descriptors are used.
Using more descriptors leads to little improvement for this new
method, which, together with the previous fact, highlights that the
new formulation helps in extracting more information from the
same descriptors.

We also notice that increasing the number of descriptors used to
100 is not generally the best choice for getting better results, which
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Figure 3: Error plots showing the accuracy of descriptor preser-
vation via our commutativity approach (solid lines) compared to
simple value preservation (dotted) and the Blended Intrinsic maps
(red) on the TOSCA dataset.

Figure 4: Example maps obtained by formulating the descriptor
preservation with the simple method (left) and using our commuta-
tivity approach (right), using exactly the same descriptor functions.

shows that this method is well-suited for performing on few reliable
descriptors.

Perhaps most remarkably, our new formulation allows to ob-
tain results with only two descriptor functions (e.g., on the SCAPE
dataset) that are better than the ones produced by the original
method using the full set of 100 descriptors.

In Figures 2, 4 and 6 we also provide some example maps com-
puted using descriptor preservation with commutativity vs. the sim-
ple value-based approach. Note that the resulting maps are typically
less noisy and more globally consistent, despite using exactly the
same information in the optimization, which also suggests that our
formulation helps to obtain more accurate functional map. For visu-
alization, we sampled 100,300 and 200 points on the source shape
uniformly from the list of all vertices, for the pairs from the FAUST
(Fig. 2), TOSCA (Fig. 4), and SCAPE datasets (Fig. 6) respectively.

6.2. Changing the dimension of the reduced space

In our second range of experiments, we show the dependence of
the results on the number of functions used in the basis for func-
tional maps. Here, rather than changing the number of descriptor
functions, we fix the descriptor set and change the dimensionality
of the basis and evaluate the quality of the approximation of the
point-to-point correspondences using the functional map pipeline.
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Figure 5: Error plots showing the accuracy of our descriptor
preservation via commutativity (solid lines) compared to simple
value preservation (dotted) and the Blended Intrinsic maps (red)
on the SCAPE dataset. Our method allows to obtain superior per-
formance using even a very small descriptor set.

Figure 6: Example maps obtained by formulating the descriptor
preservation with the simple method (left) and using our commuta-
tivity approach (right), using exactly the same descriptor functions.

In Figure 7 we show the average correspondence error between
a subset of shapes in the FAUST dataset [BRLB14], using the same
pipeline described in the previous section, for a fixed number (in
this case two) of descriptor functions. In particular, we used the
Wave Kernel Signature for a single energy value, along with a sin-
gle descriptor function that is aimed at segment preservation using
the Wave Kernel Map with a fixed energy value. This gives us two
descriptor functions, which we incorporate into the functional map
energy using either the standard descriptor preservation constraints,
as done in [OBCS∗12] or using our commutativity-based approach.
We then convert the estimated functional map to a point-to-point
correspondence and evaluate its accuracy using the distance to the
ground truth. We plot the average pointwise map error, computed
the same way as in the previous experiment, across the shape pairs
for a varying number of basis functions.

As can be seen in Figure 7, compared to the basic method for
descriptor preservation, our approach allows not only to improve
quality of the correspondences significantly, without using any ad-
ditional information, but also provides more resilience with respect
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Figure 7: Average error on pairs of shapes in the FAUST dataset,
depending on the number of basis functions in the functional map
representation, for a fixed number (two in this case) descriptors.
Unlike the standard approach of [OBCS∗12], which deteriorates
when the size of the basis significantly exceeds the number of de-
scriptors, our method continues to produce high-quality results
even for a small number of descriptors and a large number of basis
functions. The average error is computed as the average geodesic
distance to the ground truth correspondence, symmetries allowed.

to the choice of the number of basis functions, for a fixed descriptor
set. This implies that our approach can potentially enable more ac-
curate correspondence computation based on the functional map
pipeline, without requiring any additional information, and sup-
ports the idea that using our formulation allows to extract addi-
tional information from descriptor functions, which in turns results
in better pointwise maps.

7. Conclusion, Limitations & Future work

We proposed a new formulation for incorporating descriptor (or
more general function) preservation constraints within the func-
tional map framework, which enables finding better solutions to the
non-rigid shape matching problem. Our formulation is especially
useful when the number of descriptors is lower than the dimension
of the reduced space of functions since it allows to extract more in-
formation from the same set of given descriptors. Our formulation
is applicable in the same settings as the original functional maps
framework, with the main limiting factor being the computational
time necessary to assemble and solve our optimization problem,
which nevertheless remains linear in the unknown map. We also
note that we do not enforce the preservation of the constant func-
tion in practice, and thus our formulation should, in principle be
also applicable even to partial maps. We leave the exploration of
this as an interesting direction for future work.

Conceptually, we propose to consider descriptors or functions as
linear functional operators acting on other functions through mul-
tiplication, unlike the standard approach which views them simply
as scalar-valued signals. We believe that this idea is particularly ex-

citing for future work, and are planning to investigate other ways
in which informative descriptors and constraints can be defined di-
rectly as functional operators, opening the door to a much richer
way of characterizing shapes and their geometry, which can be use-
ful in shape matching problems.
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