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Figure 1: Jet flow (left) and shear layer flow (right) on curved surfaces.

Abstract

Fluid simulation plays a key role in various domains of science including computer graphics. While most existing
work addresses fluids on bounded Euclidean domains, we consider the problem of simulating the behavior of an
incompressible fluid on a curved surface represented as an unstructured triangle mesh. Unlike the commonly used
Eulerian description of the fluid using its time-varying velocity field, we propose to model fluids using their vor-
ticity, i.e., by a (time varying) scalar function on the surface. During each time step, we advance scalar vorticity
along two consecutive, stationary velocity fields. This approach leads to a variational integrator in the space con-
tinuous setting. In addition, using this approach, the update rule amounts to manipulating functions on the surface
using linear operators, which can be discretized efficiently using the recently introduced functional approach to
vector fields. Combining these time and space discretizations leads to a conceptually and algorithmically sim-
ple approach, which is efficient, time-reversible and conserves vorticity by construction. We further demonstrate
that our method exhibits no numerical dissipation and is able to reproduce intricate phenomena such as vortex
shedding from boundaries.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Three-Dimensional Graphics and
Realism—Animation; Computer Graphics [I.3.5]: Computational Geometry and Object Modeling—Physically based modeling

1. Introduction

Fluids are fascinatingly complex and challenging to simu-
late, with applications ranging from aerodynamics and me-
teorology to special effects in computer animation, to name
just a few. While fluids in Euclidean domains have been ex-
tensively studied in both computational fluid dynamics and

∗ These authors contributed equally to this work.

computer graphics [Bri08], fluid simulation on curved sur-
faces has mostly been limited to special cases (e.g., spheres)
or particular surface representations, such as subdivision sur-
faces [Sta03], and practical numerical simulation methods
are scarce. This is unfortunate, as simulation of fluids on
surfaces has practical value in a variety of domains, includ-
ing, e.g., atmospheric research [MWC92], the investigation
of liquid crystal films [CM05,Bae12], and the entertainment
industry.
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The main obstacle to adopting successful numerical algo-
rithms from Euclidean domains to surfaces stems from the
fact that a fluid is most often represented by its velocity field,
and the equations governing the behavior of the physical sys-
tem require computing derivatives of vector fields, which is
challenging on a discrete surface.

Many fluids are naturally incompressible, i.e., the flow pre-
serves the volume of the fluid. In this case the flow can be
represented by its vorticity, given by the curl of the velocity
field. In general, vorticity is a vector field that describes the
local spinning motion of the fluid. On two dimensional do-
mains, such as surrfaces in 3D, vorticity can be represented
as a (time-varying) scalar function. This change of perspec-
tive significantly simplifies the analysis and simulation of a
fluid, since its behavior can be succinctly described using
linear operators that act on real-valued functions on the sur-
face.

Although this fact is well known [Saf92], it has, somewhat
surprisingly, received little attention in the context of design-
ing numerical methods for simulating fluids on surfaces. We
make use of this formulation in order to construct a time inte-
grator for vorticity on smooth surfaces, which is solely based
on first principles of vortex dynamics. Our time symmetric
advection scheme is intuitive and easy to implement; yet,
it turns out to be variational, i.e., belonging to the class of
structure preserving Lie group integrators for so-called Lie–
Poisson systems [MV91, BS99, MPS99], which can be de-
scribed in analogy to rigid body dynamics. Thus our method
preserves momentum (i.e., vorticity) exactly, despite being
of low numerical order. This in turn leads to a method that
is qualitatively correct, numerically stable, and largely inde-
pendent of the chosen time step.

Our resulting integration scheme is based on updating the
scalar vorticity function in time. It involves the push-forward
or advection of vorticity along the flow lines of a given vec-
tor field. Unlike existing methods which require the explicit
computation of the flow lines of a vector field on a sur-
face, we show that this advection can be simply computed
as a product of a matrix exponential with a vector in the
discrete setting, by leveraging the recently proposed func-
tional framework for vector fields [ABCCO13] and map-
pings [OBCS∗12]. As we show in this paper, this change
of viewpoint considerably simplifies the implementation and
improves the accuracy of our method.

We demonstrate that our results on Euclidean domains are
comparable with existing fluid integrators, while being con-
ceptually simple and straightforward to implement. Further-
more, we describe various experiments where our simulation
reproduces the results of analytically derived configurations
(for example, spherical solutions), validating its numerical
fidelity. Finally, we use our method for simulating flow near
the inviscid limit, including effects from vortex shedding at
boundaries.

1.1. Related Work

The research dedicated to computational fluid dynamics fills
numerous books, and a complete survey is beyond the scope
of the paper. We thus restrict the discussion of related work
to Eulerian methods on compact two dimensional manifolds.

Velocity-based approaches. A fluid on a Euclidean domain
can be modeled by a time varying vector field by represent-
ing the components of the vector field as functions on the
domain (see, e.g., [Sta99]). This approach does not imme-
diately generalize to curved surfaces, however, where the
representation of vector fields using coordinates is problem-
atic. One option is to use global or local surface parame-
terizations [LWC05, HAW∗09], which may introduce unde-
sired distortion, or to restrict to special cases, such as sub-
division surfaces [Sta03]. A pioneering approach for fluid
simulation on general triangle meshes was suggested by
Shi et al. [SY04], and later extended to deforming surfaces
in [NMZ07]; however, these methods require explicit com-
putation of flow lines, which is a challenging task. A related
method [FZKH05] used an unstructured Lattice Boltzmann
Model to simulate fluid behavior on triangulated surfaces
by considering interactions between mesh vertices. This ap-
proach, however, also requires an explicit representation for
the fluid velocity, unlike our method which relies on manipu-
lating real-valued functions. Auer and colleagues [AMT∗12]
proposed a different technique based on simulating the flow
on a surrounding Euclidean grid and projecting it onto the
surface using the Closest Point Method. While simple and
efficient, this approach requires a careful construction of
the grid, whereas our method works directly on the triangle
mesh itself.

Vorticity-based approaches. Discrete Exterior Calculus
(DEC) approaches have been developed for simplicial man-
ifolds. In principle, by avoiding parameterization, these ap-
proaches provide a natural framework for simulating fluid
flow. One of the first methods to adopt this perspective was
proposed by Elcott and colleagues [ETK∗07], using the vor-
ticity formulation of incompressible fluid flow. Their method
preserves circulation, while ours preserves vorticity. We im-
prove on their work by avoiding the computation of flow
lines of the velocity vector field, which tends to be both chal-
lenging to implement and numerically unstable for triangle
meshes. Additionally, our variational approach does not suf-
fer from significant energy dissipation.

Another vorticity based method is proposed by De Witt
and coleagues [DWLF12], who use the eigenfunctions of
the Laplacian for accelerating the computation, and in or-
der to avoid the somewhat costly Poisson step when com-
puting the velocity from the vorticity. While this method
could potentially be extended to curved surfaces by using
the eigenfunctions of the Laplace-Beltrami operator, such
an approach would require a large number of eigenvectors
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to correctly represent a detailed flow, which would be pro-
hibitively costly for large models.

Several existing methods exploit the principles of DEC in
combination with structure preserving variational time inte-
grators [PMT∗11,MCP∗09]. We improve on these works by
exploiting additional structure that is only available in two
dimensions: the real-valued vorticity function. As a conse-
quence, our approach requires only about a fifth of the num-
ber of unknowns (vorticity vs. flux and pressure). Further,
our formulation avoids the computation of the Lie–Poisson
bracket of vector fields, which is used to express the time
continuous fluid motion on smooth surfaces, but is difficult
to discretize. Indeed, different from [PMT∗11,MCP∗09], by
first discretizing time and then space, we circumvent this
difficulty and the attendant need of projecting back onto
the subspace of divergence-free vector fields. Then, using
the framework of functional vector fields on discrete sur-
faces [OBCS∗12, ABCCO13], the spatial discretization is
straightforward in our setup, in particular by avoiding the
costly computation of the flow lines of a vector field on a
surface for advecting the vorticity function.

Thus while being intrinsic, intuitive and easy to implement,
our method is variational, and thus preserves many structural
properties of the flow even for large time steps.

Our method is time reversible and exhibits no numerical dif-
fusion. Additionally, it conserves vorticity by construction.
As a consequence, we automatically obtain correct vortex
shedding. This contrasts our method with (i) Lagrangian
frameworks, where vortex shedding is modeled by adding
fractions of the boundary layer vorticity to the flow [PK05,
WP10] and (ii) Eulerian approaches where vortex shedding
is hampered by numerical diffusion, requiring additional
constructions, for instance using precomputed boundary lay-
ers [PTSG09] or hybrid approaches [ZLCW13].

2. Fluid Flow on Surfaces

The motion of an incompressible and inviscid fluid on a two
dimensional Riemannian manifold (M,〈., .〉) is described
by a time-dependent, divergence-free velocity vector field
νt , whose time evolution is governed by Euler’s equation.
Here we discus Euler’s equation in its vorticity formulation,
since this is the formulation that we work with. Before in-
troducing our temporal and spatial discretizations below, we
first present the time and space continuous setting. For fur-
ther details on the vorticity formulation of Euler’s equation,
we refer to e.g. [Saf92, CM00].

Fluid velocity. If we restrict our attention to a two dimen-
sional manifold M, then the divergence free velocity vec-
tor field νt that characterizes the fluid motion has a simple
representation in terms of a time varying scalar function σt ,
known as the stream function. This relationship is given by

νt =−J∇σt +η0 , (1)

where ∇ is the usual gradient operator acting on functions,
J denotes a (pointwise) rotation of a vector field by π/2
in each tangent plane, and η0 is a time constant harmonic
vector field (i.e., both divergence and curl-free). If the mani-
fold has a boundary, then we further require that σt vanishes
identically on it. Notice that (1) corresponds to the Hodge–
Helmholtz decomposition of νt , using zero boundary condi-
tions for σt .

The curl of the velocity vector field,

ωt = curlνt , (2)

is known as vorticity. While in 3D domains vorticity is itself
a vector field, for two dimensional manifolds it can be repre-
sented by a scalar vorticity function. In this case, the stream
function and vorticity are related through

ωt =−∆σt , (3)

where ∆ is the Laplace–Beltrami operator. Note that νt is de-
fined by ωt up to the harmonic component η0 and, for closed
surfaces, σt is defined by ωt up to an additive constant.

Vortex dynamics. The fluid motion is governed by Euler’s
equation, most compactly expressed in vorticity form,

ω̇t =−〈∇ωt ,νt〉 , (4)

where ω̇t =
d
dt ωt is the time derivative of the vorticity func-

tion. A direct consequence of this equation is that ωt is
frozen-in, i.e., it is transported in the same way as fluid par-
ticles (see e.g. [Dav04] p. 49). The velocity field can be re-
covered from vorticity by first computing the stream func-
tion σt using the linear equation (3) and then plugging the
result into (1). Hence, Eq. (4) can be viewed as an evolution
equation for both ωt alone and for the whole fluid motion.

Viscosity. So far we have assumed the fluid to be invis-
cid, i.e., that there is no energy loss due to viscous friction.
Nonetheless, the limit of zero viscosity yields the dynamical
and visual complexity of fluids, such as smoke. The assump-
tion of zero viscosity differs, however, from the limit of zero
viscosity: in the absence of viscosity there exists no mecha-
nism for the creation of vorticity, while in the limit vorticity
is created through vortex shedding from boundary layers.∗

While the above exposition only treats the inviscid case, vis-
cosity is readily incorporated into the equations of motion
using Arnold’s observation [AK98] that viscocity can be re-
garded as an external force acting on the fluid,

ω̇t =−〈∇ωt ,νt〉−ρ∆ωt . (5)

Note that this equation represents the vorticity form of the
general Navier-Stokes equation of fluid motion (in the ab-
sence of additional external forces), where ρ is scalar repre-
senting the kinematic viscosity. We return to viscosity later

∗ This insight explained d’Alembert’s paradox, which predicts van-
ishing drag on bodies moving with constant velocity [AJ05].
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in our exposition and for now confine the discussion to the
inviscid setting.

Flows of divergence-free vector fields. A key aspect of our
method is the evolution of the vorticity function along the
flow-lines of the fluid’s velocity field. For this, we recall the
notion of the flow of a time-varying vector field.

Given a time-dependent velocity field νt , its flow ϕt(p) de-
scribes the position after time t of a particle that starts at a
point p at time 0. Formally, the flow is defined via

ϕ̇t(p) = νt(ϕt(p)), ϕ0(p) = p, (6)

for all p ∈M. Thus ϕt(p) defines a curve onM, and ϕ̇t(p)
is its tangent vector at the point ϕt(p).

The flow ϕt is an invertible self-map onM, i.e., ϕt :M→
M, and as such it can also be used to transport real-valued
functions on M. In particular, the flow ϕt acts linearly on
smooth functions f : M→ R through the pushforward:

Φt( f ) = f ◦ϕ
−1
t . (7)

Note that Φt is a linear operator acting on real-valued func-
tions defined onM. In terms of the flow of the velocity field,
vorticity satisfies

ωt = Φt(ω0) , (8)

where ω0 = curlν0 and Φt is the pushforward of the flow ϕt
associated with νt . Physically, this resembles the well known
fact that vorticity is advected along the fluid flow.

We introduce the flow as a conceptual tool here. However,
our implementation does not require an explicit calculation
of the flow. Indeed, one of our key observations is that dis-
cretizing Eq. (8) directly is much simpler than computing
the flow ϕt , and can be done efficiently through a simple
matrix exponential, by utilizing the recently proposed func-
tional representation for vector fields [ABCCO13], and map-
pings [OBCS∗12]. In this framework, Φt is referred to as the
functional map that corresponds to the flow ϕt .

3. Time Discretization

When discretzing time (but not yet space), we seek to de-
termine from an initial vorticity ω0, a sequence ωi that
exactly respects the defining properties of ideal fluid flow
(Eqs. (1), (3), and (8)), independently of the time step.
We achieve this by introducing a sequence of time-discrete
flow updates, resembling the time-continuous setting. In-
deed, notice that Eq. (8) in the time-continuous case im-
plies that ωt+s = Φt+s(ω0) = Φt(ωs), suggesting that the
time-discrete flow update can be performed incrementally.
Notice further that the identity Φt+s(ω0) = Φt(ωs) implies
Φ−t(ωt) = ω0, which is known as conservation of vorticity.

Accordingly, we define in the time-discrete case:

Vorticity conservation: Each ωi+1 is obtained by pushing

forward ωi, i.e., for two consecutive ωi, ωi+1 there is a
functional update map Φi→i+1 such that

ωi+1 = Φi→i+1(ωi) . (9)

It remains to specify the exact structure of the linear oper-
ators Φi→i+1, which we do as follows:

Self advection: The update Φi→i+1 is obtained by the flows
of the (time-constant) divergence free velocity fields νi
and νi+1, which are (linearly) coupled with vorticity via
ωi+1 = curlνi+1 and ωi = curlνi. Namely, we first flow
on νi for a fraction 1−s of the time step, and then on νi+1
for a fraction s of the time step. Hence, for s ∈ [0,1] we
require

Φi→i+1 = Φ
i+1
s ◦Φ

i
1−s , (10)

where Φ
i
s is the functional representation of the flow of νi

for time t = sh for a given time step h (see Fig. 2).

ωi

ωi+(1−s)

ωi+1

Φ
i
1−s

Φ
i+1
s

Φ
i+1
−s

Φi→i+1 = Φ
i+1
s ◦Φ

i
1−s

Figure 2: The new vorticity ωi+1 is obtained by first advect-
ing ωi along νi for a fraction 1− s of the time step, and then
along νi+1 for the remainder of the time step. This is equiva-
lent to matching the forward advected ωi (along νi) with the
backward advected ωi+1 (along νi+1).

Combining Eqs. (9) and (10) we obtain a one-parameter fam-
ily of time integrators,

Φ
i+1
−s (ωi+1) = Φ

i
1−s(ωi) . (11)

Note that Eq. (11) is a non-linear implicit equation for ωi+1
since Φ

i+1 depends non-linearly on ωi+1. We describe a way
to solve this equation in practice in Sec. 4, in particular using
Eq. (16), which considers the explicit dependence of Φ

i+1

on ν
i+1 (and thus ω

i+1) in the discrete setting.

Two particular choices of s stand out: For s = 0 we obtain
the explicit update equation

ωi+1 = Φ
i
1(ωi) ,

which gives rise to a particularly efficient (but less accu-
rate and stable) implementation. Instead, in order to main-
tain structure preservation, we work with s = 1/2 to obtain
an implicit, time-reversible trapezoidal scheme,

Φ
i+1
−1/2(ωi+1) = Φ

i
1/2(ωi) . (12)

In summary, the above update method computes ωi+1 from
ωi through the flows Φ

i+1
−1/2 and Φ

i+1
1/2 of the two station-

ary vector fields νi+1 and νi. We stress again that in our
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t=0 t=4 t=11 t=15

Figure 3: Taylor vortices in the plane with periodic bound-
ary conditions. Compare with [MCP∗09, Fig. 4].

implementation we avoid explicit computation of flows, as
explained further below.

Note that the reversible nature of the time-integrator imme-
diately implies that there is no loss of information in be-
tween time steps, i.e., our algorithm has no numerical dif-
fusion. As we further conserve vorticity by construction, we
achieve plausible and stable fluid simulations even for large
time steps over long simulation periods.

Discussion. Our method is a trapezoidal rule and thus sec-
ond order in time. Apart from the invariants enforced by con-
struction, our time discretization also preserves the Hamilto-
nian structure of ideal fluid flow in continuous space. In fact,
our method can be derived along the lines of [BS99] using a
suitable discrete Lagrangian and thus belongs to the class of
structure preserving Lie group integrators for Lie–Poisson
systems [MV91,BS99,MPS99]. Note, however, that this de-
pends crucially on the fact that the space of smooth functions
on M carries a so-called Poisson structure. In the spatial
discretization we are unaware of such a structure, leading
to a method which is no longer Poisson but still variational,
similar to existing variational fluid integrators on spatial dis-
cretizations [PMT∗11].

4. Spatial Discretization

In the discrete case, we are given a triangle mesh M =
(V ,E ,F ), and need to represent scalar functions, vector
fields, and the corresponding operators that map between
them. In addition, we require a spatial discretization for the
advection operators Φ

i
s.

We represent real-valued functions as scalars on the vertices
of the mesh, i.e., f : V → R, and extend them to the whole
surface using the standard piecewise linear hat basis func-
tions. We also consider vector fields as being piecewise con-
stant on the faces of the mesh, i.e, ν : F →R3, s.t. each ν is
parallel to the plane spanned by face i.

Differential operators. We use two sets of functions as the
representatives of our vector fields: the stream functions σt ,
and the vorticities ωt . To mimic the continuous case, we re-
quire operators ∇, curl, div, and ∆ to be such that the fol-
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Figure 4: When the vector field on the top left is used as
initial condition, the corresponding vorticity simply rotates
on the sphere (top right). The graph (bottom left) shows the
relative kinetic energy of the vector field at time t compared
to the initial energy, for different time steps h. The maximum
change is on the order of 10−5. Compared to the Runge-
Kutta time integrator our method is more stable for a longer
time with a larger time step (bottom right).

lowing relationships hold:

νt =−J∇σt +η0, ωt = curlνt

⇓
divνt = 0, ωt =−∆σt .

(13)

Remarkably, the standard operators used in the literature ful-
fill these properties (as is shown in [PP03]), making spatial
discretization straightforward in our setting.

Functional operators. In the time-continuous setting, vor-
ticity is pushed forward from the initial vorticity ω0 using the
(functional representation) Φt of the flow of νt . In the time-
discrete setting, where the vector fields νi are stationary in
between time steps, we can in principle directly compute the
flow of νi and advect ωi along this flow. This computation,
however, is both costly, difficult to implement and is prone
to instabilities. Instead, by considering the recently proposed
functional representation of vector fields [ABCCO13] we
show that the advection of vorticity can be done directly
without computing the flow.

In particular, we follow [ABCCO13] to represent vector
fields by their action on scalar functions. Namely, given a
vector field ν, the authors propose to consider the associated
derivation operator, given by:

V( f ) = 〈∇ f ,ν〉 . (14)

Following [ABCCO13], we discretize Eq. 14 so that given
a scalar function f on the vertices of the mesh, g = V( f ) is

c© 2014 The Author(s)
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t = 0 t=3.2 t=9.2 t=14

Figure 5: Taylor vortices on curved surfaces exhibit the
same qualitative behavior as in the plane.

another such function, whose value at vertex i is given by:

gi =
1

∑ j∈N(i) A j
∑

j∈N(i)

〈
∇ f j,ν j

〉
A j , (15)

where the sums run over all faces adjacent to vertex i, ∇ f j
denotes the value of ∇ f in face j, and A j is the area of the
jth face. The resulting linear operator is given by a sparse
matrix of size |V |×|V |, which is obtained by applying V to
the piecewise linear hat basis functions. In the following we
identify V with this matrix.

The main advantage of representing vector fields as linear
operators acting on functions in our setup is that (the func-
tional representation of) the flow of a stationary vector field
ν is simply given by the matrix exponential of V (see Lemma
2.5 in [ABCCO13]). Thus, the functional map correspond-
ing to the flow of ν can be computed directly from V via

Φs = exp(shV) . (16)

Furthermore, advecting a function f with the flow Φs of
ν, can be done simply by the matrix vector multiplication
exp(shV) f . Crucially, in the discrete setting, this product
can be computed efficiently without evaluating the full ma-
trix exponential, which can be both dense and difficult to
approximate [AMH11]. We leverage this insight in the con-
text of fluid simulation by using Equation (16) to derive an
accurate and stable advection procedure, which circumvents
the need to compute the full flow of the velocity field.

This leads to the following space-discrete version of
Eq. (12):

exp
(
−h

2
Vi+1

)
ωi+1 = exp

(
h
2
Vi

)
ωi . (17)

Notice that the above equation is an exact integration of
ω advected along piecewise constant flows. This is in con-

t=0 t=5 t=29 t=109

Figure 6: A pair of vortices with equal but opposite strength
on a hyperbolic surface. The vortices move to the boundary
where they separate, travel independently along the bound-
ary, and join again at the opposite side. The bottom row
shows the same experiment on a poor triangulation, empha-
sizing the robustness of our method to the underlying mesh.
This experiment is with zero viscosity. Compare with Fig. 11
for similar initial conditions, with non zero viscosity, which
yields vortex shedding from the boundary.

trast to approaches advecting velocity [MCP∗09, PMT∗11],
where by construction only low order approximations can be
used. We practically observe that for our method a first order
approximation of the exponential map is sufficient and does
not decrease simulation quality. This amounts to time inte-
gration using the trapezoidal rule in the spatial discretiza-
tion, preserving second order accuracy from the space con-
tinuous setting. Since, to our knowledge, a proper spatially
discrete Poisson structure is missing, our time integrator may
no longer be Lie–Poisson in this case. Nonetheless, it is still
variational, time reversible, and vorticity conserving.

5. Implementation

Our temporal and spatial discretizations lead to a simple al-
gorithm, which evolves the vorticity in time, by computing
ωi+1 from a given ωi, so that the whole fluid motion is ob-
tained from an initial vorticity ω0. Below we discuss imple-
mentation details required for making our method practical
and efficient.

Solution of the non-linear equation. The update rule we
suggest in Eq. (17) is a non-linear equation for ωi+1, since
Vi and Vi+1 depend (linearly) on ωi and ωi+1 through ωi =
curlνi and ωi+1 = curlνi+1, respectively. For an efficient
solve, we (i) express ωi+1 in terms of the stream function
σi+1 and (ii) use the first order approximation exp(εA) ≈
I + εA of the matrix exponential. That is, we solve

−
(

I +
h
2
Vi

)
ωi =

(
I− h

2
Vi+1

)
∆σi+1 , (18)

which is quadratic in σi+1, and then recover ωi+1 and νi+1
using Equations (13): ωi+1 =−∆σi+1, νi+1 =−J∇σi+1 +
η0, where η0 is computed from ν0. This formulation allows
for deriving an analytic expression of the attendant Jacobian
as a sparse matrix—an essential feature for efficiency. This,
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t=0 t=8.5 t=17 t=25

t=33 t=42 t=47 t=57

Figure 7: The above initial configuration on a sphere is
known to collapse for singular point vortices [VL13]. Our
method successfully reproduces this result.

in turn, allows for using a standard Gauss–Newton solver,
which typically converges in two to five iterations. As an
initial guess for the solver, we use the one-point quadrature
−∆σi+1 ≈ exp(hVi)ωi, which can be computed efficiently
[AMH11].

Viscosity. So far we have only discussed inviscid fluids.
However, as explained above, the treatment of viscosity can
be readily integrated into our method. Adding the viscous
force to both sides of the update equation (18) leads to

−
(

I +ρ
h
2

∆

)(
I +

h
2
Vi

)
ωi =(

I−ρ
h
2

∆

)(
I− h

2
Vi+1

)
∆σi+1. (19)

Adding viscosity not only allows for simulating complex
physical phenomena, such as vortex shedding, as we explain
in the next section, but also has numerical advantages. In-
deed, various Eulerian methods suffer inherently from nu-
merical dissipation, to the extent that makes it necessary
to re-inject lost vorticity [FSJ01]. Other Eulerian methods
with no numerical dissipation (such as [MCP∗09, PMT∗11]
and ours) require explicit addition of viscosity in order to
prevent discretization artefacts. Indeed, while in the spa-
tially continuous case energy cascades to smaller and smaller
scales [Cho94], the number of available frequencies in the
spatially discrete setting is limited. Without viscosity, this
results in accumulation in the highest available frequencies,
leading to discretization artefacts.

Boundaries. The treatment of domains with boundary is
straightforward in our approach. We solve Eq. (19) under
the constraint that the stream function σ is zero along ev-
ery boundary component. In practice we use a sparse matrix
that maps functions from all mesh vertices to interior ver-
tices (by simply ignoring boundary vertices). This matrix is
applied to Eq. (19) as well as to its Jacobian, and we solve
for inner vertices only using Gauss–Newton’s method.

t=57t=0 t=67 t=83

Figure 8: A ring of 6 vortices exhibits different behavior
when placed on different parts of an oblate spheroid (left).
The top row shows vortices placed closer to the tip of the
spheroid (red dots in the illustration), and the bottom row
shows the behavior for similar vortices placed closer to the
x− z plane (blue dots in the illustration).

6. Evaluation

We have extensively evaluated our algorithm, with focus on
numerical stability, energy behavior, and physical correct-
ness. We have simulated known solutions on planar domains
in order to compare our results with existing methods, and
used flows with known analytic solutions on curved surfaces.
Further, we have simulated a number of interesting flows on
curved surfaces, including effects from vortex shedding at
boundaries near the inviscid limit, which are inspired by pre-
vious work. All the results are also shown in the accompa-
nying video. All figures, unless mentioned otherwise, show
vorticity of the flow, color coded on the surface. In figures
4 and 5 the flow is additionally visualized using the method
of [PZ11]. Finally, we investigated how the time varying op-
erator Vt can be used to uncover global behavior of the flow.

Performance. We used a non-optimized MATLAB im-
plementation, with a standard Gauss–Newton solver for
Eq. (19), using the analytic, sparse Jacobian. In all our ex-
periments, the method was very stable and converged in 2-5
Newton iterations (using a tolerance of 10−7), depending on
time step size and flow complexity. The experiments were
performed on an Intel i7 processor, with 16 GB RAM. In
our experiments the method scaled linearly with mesh size,
and a single Newton iteration typically took around 1 second
per 10K vertices.

6.1. Analytic solutions

Planar Taylor vortices. We first tested our method on
the well-known Taylor vortices configuration on a planar
Euclidean domain with periodic boundary conditions (see
e.g., [MCP∗09]). In this experiment, two Taylor vortices ei-
ther merge or separate depending on their initial distance.
Taking this distance to be just above the critical bifurcation
threshold (i.e., the vortices should separate) provides an ex-
cellent test case for fluid simulation methods (see [McK07,
Eq. (1.16)] for initial conditions). Our method reproduces
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t=0 t=15.5 t=23

Figure 9: A double shear flow on a hyperboloid. Note the
thinning of the shear layers, and the creation of vortices.
See [SS13] for the reference behavior in the plane.

this complex dynamical behavior and produces correct re-
sults as shown in Fig. 3 (compare with [MCP∗09, Fig. 4]).

Rotating sphere flow. On the sphere an analytic solution
exists for fluid flow, whose initial condition consist of the
combination of a Killing vector field with a rotated gradient
of an eigenfunction of the Laplace-Beltrami operator. In par-
ticular, it can be shown that the energy of inviscid flow with
these initial conditions remains in the low frequencies, giv-
ing a periodic motion. This makes the configuration a good
test case for energy conservation, and for validating quali-
tative behavior of our solver. Energy plots for different time
steps are shown in Fig. 4. The relative change in energy is on
the order of 10−5. Note that while our method remains stable
for a time step of h = 2 · 10−3, replacing our time integra-
tor with a Runge-Kutta time integrator leads to significant
energy loss for a much smaller time step.

6.2. Vortex configuration on surfaces

Taylor vortices on a curved surface. We generated initial
conditions similar to the Taylor vortices in the plane on a
curved surface representing a hand. We used the same pa-
rameters as in [McK07, Eq. (1.16)], measured as geodesic
distances (using [CWW13]) on the mesh. Fig. 5 shows
frames from the animation, yielding the same qualitative be-
havior as in the plane.

Vortex pair. In the plane, two point vortices of equal and
opposite strength translate along the orthogonal bisector of
their connecting line. This can be viewed as a zero dimen-
sional vortex ring, i.e., the 2D equivalent to a circular vortex
filament in 3D. In Fig. 6 we demonstrate the same qualitative
behavior on a hyperbolic surface. In the absence of viscosity
the vortices travel towards the boundary, where they separate
and move independently along the boundary, until they meet
again at the opposite side. This configuration is extremely
stable over very long simulation times (performing the pe-
riodic motion several times), demonstrating the absence of
numerical diffusion, vorticity conservation, and excellent en-
ergy behavior of our method.

The qualitative behavior of other point vortex configurations
is also reliably reproduced by our method. For instance,

t=4 t=7.1 t=11.9

Figure 10: Two jet simulations on a sphere with a symmet-
ric triangulation. On the top row the initial vorticity function
shares the symmetry of the mesh. Our method preserves this
symmetry, yielding a symmetric flow. On the bottom row the
initial vorticity is no longer symmetric, yielding a more re-
alistic turbulent flow. For such unstable flows the simulation
is sensitive to the discretization of the initial vorticity.

Fig. 7 shows a configuration on the sphere which is known
to collapse [VL13].

Oblate sphere. It is known that N point vortices (with N <
7) on a round sphere stay in a stable relative equilibrium,
when equally spaced along a latitude circle below a critical
colatitude [VL13]. We demonstrate a similar configuration
on a stretched (along one axis) sphere, where point vortices
are replaced by Gaussian vortices. As shown in Fig. 8 in the
top row, when placing the vortices around a “flat” pole be-
low the critical angle (for point vortices on a round sphere),
the flow preserves the six fold symmetry, as in on the round
sphere. In the bottom row, the vortices are positioned above
the critical angle (i.e. further from the tip), and symmetry
breaks. Still, the vortices show periodic behavior, indicating
that the corresponding point vortex configuration might be
integrable. To our knowledge such configurations have not
been studied analytically.

Double shear flow. Two vortex layers of equal but oppo-
site strength with small perturbations generate a vortical flow
with a symmetric structure [SS13, Section 4.2]. We use sim-
ilar initial conditions on the hyperboloid. The resulting flow
exhibits the same qualitative behavior, including the intricate
symmetries. Fig. 9 shows frames from the resulting simula-
tion. Note how vortices curl up, creating thinner and thinner
vortex lines, similarly to the reference behavior in the plane.

6.3. Turbulent flow and vortex shedding

Jet on a sphere. A jet is modeled by steadily injecting vor-
ticity of equal but opposite strength at both sides of the jet’s
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t=23 t=32.5 t=46 t=54.5

Figure 11: Two vortices collide with the boundary on the
Enneper’s surface. Note the details in shed vorticity gener-
ated by the boundary due to viscosity. Compare with Fig. 6
for similar initial conditions but zero viscosity.

orifice. Fig. 10 shows two jet simulations on a symmetric tri-
angulation of the sphere. In the top row, the initial vorticity
function shares the symmetry of the mesh, and due to the
stability of our method, this symmetry is exactly preserved
by the flow. In the bottom row, the initial vorticity is not
exactly symmetric with respect to the triangulation, which
introduces instabilities in the flow, leading to a more real-
istic simulation. In general, unstable flows such as this are
sensitive to the discretization of the initial conditions.

Vortex shedding. As explained before, our method naturally
handles vortex shedding from boundaries. We used a pair of
point vortices on the Enneper’s surface, as in Fig. 6, but with
non-zero viscosity. In contrast to the inviscid case, where the
two vortices separate and travel along the whole boundary,
with viscosity vortex shedding from the boundary generates
two additional small vortices which “trap” the original vor-
tices and prevent them from circulating, see Fig. 11.

In the accompanying video we also show the wake behind
a two dimensional cylinder on a round sphere, generated
through vortex shedding.

6.4. Flow properties

Globally invariant functions. In addition to being in-
strumental in the computation of vorticity advection, the
functional representation of vector fields of Azencot et
al. [ABCCO13] also allows us to gain information about dif-
ferent properties of the flow, that would be difficult to obtain
otherwise. Here, we briefly outline one such application and
leave further exploration as future work.

Given the solution to a flow, we may be interested in find-
ing regions of the surface that are invariant under the flow,
i.e., regions from which the fluid does not leave or regions
into which the fluid does not enter during the simulation.
We relax this problem to consider all functions f such that
Φt( f ) = f for all t. In order to find such a function, note
that if f is mapped to itself under the flow of a constant vec-
tor field ν, then exp(tV) f = f for all t, which means that
V f = 0, or equivalently that f is in the kernel of V . There-
fore, we are looking for a function f that is simultaneously
in the kernels of all Vt . Notice that this is the case if and only
if f is in the kernel of ∑t VT

t Vt , where we are using that in

λ ≈1e-3i

λ ≈1e-10i

Figure 12: A function which is invariant to the whole flow,
computed from the flow’s kernel. Top row, for the flow from
Fig. 4, and bottom row for the flow from Fig. 8.

the time-discrete case there exist only finitely many tempo-
ral sample points. Using this observation, we compute the
kernel of ∑t VT

t Vt for the rotating flow from Fig. 4 and the
stable vortex ring from Fig. 8. The resulting functions in the
respective kernels are shown in Fig. 12.

7. Conclusion

Building on the vorticity formulation of fluids, we presented
a method for temporally and spatially discretizing the equa-
tions of fluid flow. The attendant time integrator for the invis-
cid case is variational, preserves vorticity exactly, is time re-
versible, and does not exhibit numerical diffusion. Addition-
ally, our approach allows for adding a principled treatment
of viscosity, enabling the simulation of complex phenomena,
such as vortex shedding, without any special or unphysical
treatment of boundary layers. The resulting algorithm is effi-
cient, simple to implement, and leads to unprecedented sim-
ulation results of fluid flow on curved surfaces, which were
previously only possible for flat Euclidean domains.

In our derivation, we have first discretized time and then
space, thereby suggesting a variational integrator in the spa-
tially continuous setting. At the core of our integration lies
the observation that each time step can be performed along
two consecutive stationary velocity segments. The flow cor-
responding to these stationary segments can efficiently be
computed using the functional point of view in the spatially
discrete case, where it simply corresponds to a matrix expo-
nential. We have demonstrated how to achieve efficiency by
approximating this exponential up to first order terms, with-
out sacrificing stability.
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