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Abstract
Feature-based approaches have recently become very popular in computer vision and image analysis applications,
and are becoming a promising direction in shape retrieval. SHREC’10 robust feature detection and description
benchmark simulates the feature detection and description stages of feature-based shape retrieval algorithms.
The benchmark tests the performance of shape feature detectors and descriptors under a wide variety of trans-
formations. The benchmark allows evaluating how algorithms cope with certain classes of transformations and
strength of the transformations that can be dealt with. The present paper is a report of the SHREC’10 robust
feature detection and description benchmark results.

Categories and Subject Descriptors (according to ACM CCS): H.3.2 [Information storage and retrieval]: Information
Search and Retrieval—Retrieval models I.2.10 [Artificial intelligence]: Vision and Scene Understanding—Shape

1. Introduction

Feature-based approaches have recently become very popu-
lar in computer vision and image analysis applications, no-
tably due to the works of Lowe [Low04], Sivic and Zisser-
man [SZ03], and Mikolajczyk and Schmid [MS05]. In these
approaches, an image is described as a collection of local
features (“visual words”) from a given vocabulary, resulting
in a representation referred to as a bag of features. The bag
of features paradigm relies heavily on the choice of the local
feature descriptor that is used to create the visual words. A
common evaluation strategy of image feature detection and

† Organizer of the SHREC track. All organizers and participants
are listed in alphabetical order. For any information about the bench-
mark, contact mbron@cs.technion.ac.il

description algorithms is the stability of the detected features
and their invariance to different transformations applied to
an image. In shape analysis, feature-based approaches have
been introduced more recently and are gaining popularity in
shape retrieval applications.

SHREC’10 invariant feature detection and description
benchmark simulates the feature detection and descrip-
tion stages of feature-based shape retrieval algorithms. The
benchmark tests the performance of shape feature detectors
and descriptors under a wide variety of different transfor-
mations. The benchmark allows evaluating how algorithms
cope with certain classes of transformations and what is the
strength of the transformations that can be dealt with.
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2. Data

The dataset used in this benchmark was from the TOSCA
shapes [BBK08], available in the public domain. The shapes
were represented as triangular meshes with approximately
10,000–50,000 vertices.

The dataset consisted of 3 shapes, with simulated trans-
formations applied to them. For each null shape, transfor-
mations were split into 9 classes shown in Figure 1: isometry
(non-rigid almost inelastic deformations), topology (welding
of shape vertices resulting in different triangulation), micro
holes and big holes, global and local scaling, additive Gaus-
sian noise, shot noise, down-sampling (less than 20% of the
original points).

In each class, the transformation appeared in five dif-
ferent versions numbered 1–5. In all shape categories ex-
cept scale and isometry, the version number corresponded
to the transformation strength levels: the higher the num-
ber, the stronger the transformation (e.g., in noise transfor-
mation, the noise variance was proportional to the strength
number). For scale transformations, the levels 1–5 cor-
responded to scaling by the factor of 0.5, 0.875, 1.25,
1.625, and 2. For the isometry class, the numbers do
not reflect the strength of the transformation. The to-
tal number of transformations per shape was 45, and the
total dataset size was 138. The dataset is available at
http://tosca.cs.technion.ac.il/book/shrec_feat.html.

3. Evaluation methodology

The evaluation was performed separately for feature de-
tection and feature description algorithms. The participants
were asked to provide the following: (i) for each shape Y in
the dataset, a set of detected feature points F(Y ) = {yk}k
(typically |F(Y )| << |Y |); (ii) optionally, for each detected
point yk, a descriptor vector {f(yk)}|F(Y )|

k=1 ; or alternatively,
(iii) for each shape Y in the dataset, a dense descriptor
{f(yk)}|Y |k=1. The performance was measured by comparing
features and feature descriptors computed for transformed
shapes and the corresponding null shapes.

Feature detection. The quality of the feature detection
was measured using the repeatability criterion. Assuming
for each transformed shape Y in the dataset the groundtruth
dense correspondence to the null shape X to be given in
the form of pairs of points C0(X ,Y ) = {(y′k,xk)}|Y |k=1 (and
same way, C0(Y,X)), a feature point yk ∈ F(Y ) is said to
be repeatable if a geodesic ball of radius R around the cor-
responding point x′k : (x′k,yk) ∈ C0(X ,Y ) contains a feature
point x j ∈ F(X). The subset Fr(Y ) ⊆ F(Y ) of repeatable
features is given by

FR,X (Y ) = {yk ∈ F(Y ) : F(X)∩BR(x′k) 6= ∅,
(x′k,yk) ∈ C0(X ,Y )},

where BR(x′k) = {x ∈ X : dX (x,x′k)≤ R} and dX denotes the

geodesic distance function in X . The repeatability rep(Y,X)
of F(Y ) in X is defined as the percentage of features from
F(Y ) that are repeatable,

rep(Y,X) =
|FR,X (Y )|
|F(Y )| .

For a transformed shape Y and the corresponding null shape
X , the overall feature detection quality was measured as
(rep(Y,X) + rep(X ,Y ))/2. The value of R = 5 was used
in the benchmark. This radius constitute approximately 1%
of the shapes diameter. Features without groundtruth corre-
spondence (e.g. in regions in the null shape corresponding to
holes in the transformed shape) were ignored.

Feature description. The quality of feature descriptor
was measured as the average normalized L2 distance be-
tween the descriptor vectors in corresponding points,

Q(X ,Y ) =
1

|F(X)|
|F(X)|
∑
k=1

‖f(yk)−g(x j)‖2

‖f(yk)‖2 +‖g(x j)‖2
,

(x j,yk) ∈ C(X ,Y ). For sparse feature descriptors

{f(yk)}|F(Y )|
k=1 , {g(x j)}|F(X)|

j=1 computed on feature points
F(X) and F(Y ), respectively, the correspondence was
defined between the closest detected points,

C(X ,Y ) =
{

(arg min
x j∈F(X)

dX (x j,x
′
k),yk ∈ F(Y ))

}
,

(x′k,yk) ∈ C0(X ,Y ). For dense descriptors, the groundtruth
correspondence C0(X ,Y ) was used as C(X ,Y ).

4. Feature detection methods

Three families of feature detection methods were evaluated
in this benchmark: heat kernel-based features [SOG09] (de-
noted HK for notation brevity), 3D Harris features [SB10]
(denoted H), and salient points [CCFM08] (hereinafter, SP).

HK1–2: Heat Kernel features

Sun et al. [SOG09] proposed a feature detec-
tion algorithm based on the heat kernel signa-
ture (HKS), h(x) = (ht1(x,x), . . . ,htn(x,x)), where
ht(x,y) ≈ ∑K

i=0 e−λitφi(x)φi(y) is the heat kernel asso-
ciated with the positive-semidefinite Laplace-Beltrami
operator ∆X , and λ and φ are the eigenvalues and eigen-
functions of ∆X . The HKS provides a multi-scale notion of
curvature, and local maxima of the HKS function for a large
time parameter correspond to tips of protrusions that can be
used as stable features. At the same time, HKS is also used
as a feature descriptor.

In the first setting of this method (denoted in the follow-
ing as HK1 for brevity), feature points are detected on a
given mesh by computing the HKS function ht(x,x) for a
large fixed value of t, and declare a point x a feature point
if ht(x,x) > ht(x′,x′) for all x′ in a 2-ring neighborhood
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Figure 1: Transformations of the human shape used in the tests (shown in strength 5, left to right): null, isometry, topology,
sampling, local scale, scale, holes, micro holes, noise, shot noise.

of x. To reduce processing time, each mesh was simplified
to have at most 10,000 vertices, non-manifold edges were
removed, and each face of the mesh was consistently ori-
ented using the Geomagic software. The discretization of
the Laplace-Beltrami operator ∆X was computed using the
MeshLP method of Belkin et al. [BSW08]. The HKS was
computed based on the eigendecomposition of the discretiz-
ing matrix, after normalizing the shape to have total sur-
face area 1. This also allowed to use a uniform value of
t = 0.1 across all shapes. After detecting feature points on
the simplified mesh using the local 2-ring maximum crite-
rion, the detected features were projected onto the original
high-resolution mesh.

The second method (HK2) follows the same basic pro-
cedure described above, but differs in the final step of se-
lecting feature points. After defining the function ht(x,x) for
t = 0.1, persistent homology was used to filter out unstable
feature points. For this, the 0 dimensional persistence dia-
gram of this function [ELZ00, CGOS09] was computed. A
point was declated a feature, if it is a local maximum of this
function and furthermore, if the difference between the death
and birth times of the corresponding connected component
is above a threshold α (see [ELZ00] for details). A uniform
α = 0.1 was used for all shapes, which was chosen by man-
ually examining the persistence diagram of one of the null
shapes. † This process generally results in a sparser set of
features, but that should be more stable to perturbations of
the function.

H1–3: Harris 3D features

Sipiran and Bustos [SB10] applied a method similar to Har-
ris and Stephens [HS88] interest points detector for im-
ages, referred here as 3D Harris point detector. The prob-
lem with 3D data is the arbitrary topology and subsequently,
the calculation of derivatives. Sipiran and Bustos [SB10]

† M. Ovsjanikov, J. Sun, and L. J. Guibas would like to thank Pri-
moz Skraba for providing the code for the computation of persis-
tence diagrams.

used [Glo09] as a basis for proposing a robust interest points
detector on 3D meshes.

Interest points detection: Let x be a vertex of the shape X
and Vk(x) denote the neighborhood of k rings around x. First,
the centroid of Vk(x) is calculated, and the set of points is
translated so the centroid is in the origin of the 3D coordinate
system. Next, a plane is fit to the translated points applying
PCA to the set of points and choosing the eigenvector with
the lowest associated eigenvalue as the normal of the fitting
plane. The set of points is rotated so that the normal of the fit-
ting plane is the z-axis. To calculate derivatives, a quadratic
surface f (u,v) is fit to the set of transformed points.

Second, the matrix E associated to the point x

E =
(

A C
C B

)

is computed, where

A =
1√
2πσ

∫

R2
e
−(u2+v2)

2σ2 . f 2
u (u,v)dudv;

B =
1√
2πσ

∫

R2
e
−(u2+v2)

2σ2 . f 2
v (u,v)dudv;

C =
1√
2πσ

∫

R2
e
−(u2+v2)

2σ2 . fu(u,v) fv(u,v)dudv,

and σ is a parameter defining the support of the Gaussian
function (the setting of σ is considered next). The Harris
operator value at point x is calculated as H(x) = det(E)−
0.04(tr(E))2.

Finally, a constant fraction of the total number of vertices
with the highest Harris operator response is selected as fea-
ture points.

Adaptative neighborhood size: Different neighborhood
size is selected depending of the tessellation around a point.
Given a point x ∈ X , Rk(x) is the boundary of the k-ring
neighborhood Vk(x) around x (the set of points distant from
x by k edges). The distance from a point x to Rk(x) is defined
as the closest point in the Euclidean sense,

d(x,Rk(v)) = max
x′∈Rk(x)

‖x− x′‖.
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Finally, the neighborhood size of a point x is defined as

ρ(x) = {k : d(x,Rk(x))≤ δ,d(x,Rk−1(x)) < δ},
where δ is a fraction of the diagonal of the object bounding
rectangle. It is important to note that the above method al-
ways find a neighborhood to a point, even with complex and
irregular tessellations around that point.

Using this information, the variance of the Gaussian func-
tion in the Harris operator is defined at each point as σ(x) =
δ/ρ(x). Therefore, each point has a different support for
the applied Gaussian window when calculating its operator
value, which is consistent with the neighborhood size.

PB1–3: Salient points

The salient points detection method proposed by Castellani
et al. [CCFM08] and used in [TCF09] is inspired by the re-
search on saliency measure on 2D images. The source mesh
is decomposed in multiscale representations, and a saliency
measure is defined by combining the results gathered at each
scale level. The method consists of the following main steps:

Multiscale representation: The first step consists of ap-
plying N Gaussian filters on the shape X , obtaining N multi-
dimensional filtering maps {Fs}N

s=1. Gaussian filtering is ap-
plied as follows: let g(x,σ) the Gaussian operator with stan-
dard deviation σ, applied on the vertex x ∈ X . The neighbor-
hood region of x, over which the filtering is applied, is built
by expanding a n-rings search starting from x, and collecting
all those vertices displaced within a distance equal to 2.5σ.
The difference-of-Gaussians (DoG) operator is defined as:

Fs(x) = g(x,σs)−g(x,kσs) (1)

where σs is the value of the standard deviation associated
to scale s, and k is a constant equal to 2. 5 Six scales of
filtering have been fixed, corresponding to standard devia-
tion values σs ∈ {1ε,2ε, . . . ,6ε}, where ε amounts to 0.1%
of the length of the main diagonal located in the bounding
box of the model. Note that, as studied by [Low04], fixing a
constant factor k for DoG computation provides a close ap-
proximation to the scale-normalized Laplacian of Gaussian,
which is required for true scale invariance.

3D saliency measure definition: This step aims at obtain-
ing a dense measure of mesh saliency (i.e., associated to each
vertex). Note that Fs(x) is a 3D vector measuring how much
the vertex x has been moved from its original position after
the filtering. In order to reduce such displacement in a scalar
quantity, the displacement vector Fs(x) is projected to the
normal n(x) at x. This way, the scale map Xs is obtained as

Xs(x) = 〈n(x),g(x,σs)−g(v,kσs)〉. (2)

Furthermore, this reduces the shrinking effect which arises
typically when Gaussian filter is applied to meshes. Each
map is normalized by adopting the Itti’s approach [IKN98]:
normalizing the values in the map to a fixed range [0, . . . ,R];

finding the location of global maximum T ; finding all the
other local maxima and computing their average t̂; globally
multiplying the map by (T − t̂)2 by obtaining the final nor-
malized scale map X̂s. The effect of this normalization is to
increase the evidence of the highest peaks.

Feature points detection: The above peaks enhance-
ment procedure is emphasized by introducing an adaptive
inhibition-process on each normalized scale map. From each
vertex x ∈ X , all the values of the scale map X̂s observed on
the neighborhood of x are considered. If the X̂s(x) is higher
than the 85% of the values in its neighborhood, the value is
retained, otherwise X̂s(x) is set to zero. Therefore, the inhib-
ited saliency map is obtained by simply adding the contribu-
tion of each inhibited scale map. Finally, in order to detect
salient points a non-maximum suppression phase on the in-
hibited saliency map is performed: a point is detected if it is
a local maximum and its value is higher than the 30% of the
global maximum. Note that, after the inhibition phase, the
neighborhood of a point is adaptively defined by expanding
the local region while new non-zero points are found.

In this benchmark, three settings were used (denoted SP1–
3), differing in the number of feature points selected.

5. Feature description methods

Three families of feature description methods were evalu-
ated in this benchmark: heat kernel signature [SOG09] com-
puted on the feature points detected by the method HK1–3
(referred hereinafter as sparse HKS or SHK); dense heat ker-
nel signature as used in [OBG09,BBOG10], and spin image
signatures [JH99] computed on the feature points detected
by the method SP1, as used in [TCF09].

SHK1–2: Sparse Heat Kernel Signature

As a feature descriptor, HKS computed at the heat kernel
feature points (HK1–2) sampled at 100 values of t was used.
In other words, the descriptor of point x is a vector with en-
tries hti(x,x) for 100 values of t1, . . . , tn. Logarithmic sam-
pling in time proposed by Sun et al. [SOG09] was used with
ti = log10/λmax, . . . ,4log10/λ2.

DHK1–3: Dense Heat Kernel Signature

In [OBG09, BBOG10], a dense version of the HKS de-
scriptor was used. In this approach, the feature detection
stage is avoided, and the feature descriptor is computed at
all the points of shapes. In the present benchmark, three
settings of the dense HKS were used. In DHK1, values
of K = 100, n = 6 were used, and t1, ..., t6 were chosen
as 1024,1351,1783,2353,3104 and 4096 (these are setting
identical to [OBG09]). In DHK2, eigenpairs and the mass
matrix obtained by the linear finite elements method (FEM)
described in [PSF10] were used to compute the heat ker-
nel signatures. Same settings for K,n and t1, ..., tn as in SG1
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were used. Such a discretization is known to be less sensitive
to geometric and topological noise, irregular sampling, and
local shape deformations. In DHK3, the scale-invariant heat
kernel signature (SI-HKS) [BK10] was used. SI-HKS is

ĥ(x) = |Fτdiffτ log(hατ1 (x,x), . . . ,hατn(x,x))|,
where diff denotes the finite difference operator and F is
the Fourier transform. Cotangent weights and K = 100 first
eigenpairs were used to obtain h. Value of α = 2 and τ rang-
ing from 1 to 25 with increments of 1/16 were used. The
first six discrete frequencies of the Fourier transform were
taken (these are settings identical to [BK10]).

SI: Spin images

Spin images (SI) were introduced in the seminal work of
[JH99], to characterize the properties of a 3D object with re-
spect to a single oriented point. Spin image descriptors have
been successfully applied in computer vision and in com-
puter graphics for several applications such as object recog-
nition [JH99], partial views registration [ABC04] and 3D
object retrieval [ABADB07]. In practice, spin images are
computed as the 2D histogram of distances of neighboring
points from the normal vector and the tangent plane respec-
tively. Given a vertex x of the shape X , and its normal n(x),
the spin-map SX : R3 → R2 is defined as:

SX (x′)→ (α,β),

where x′ ∈ N (x) denotes neighbor vertices,
α =

√
‖x′− x‖2−〈n(x),x′− x〉2, and β = 〈n(x),x′ − x〉.

The values α and β are quantized into n×m bins and their
occurrences are accumulated by forming the spin image.

6. Results

Feature detectors. Tables 1–8 show the repeatability of the
feature detection approaches compared in this benchmark.
Heat kernel-based feature detectors (HK1–2) perform the
best on the average (HK1 being slightly superior to HK2
in average repeatability in strength 5). HK2 shows the best
results in isometry, micro holes, scale, local scale, and sam-
pling transformation classes, as well as noise till strength
4. HK1 shows the best results in noise of strength 5 class
and shot noise. Harris 3D features appear the most robust
to topology changes (H2) and holes (H1) of strength 5. Ta-
ble 9 summarizes the best performing feature description al-
gorithms.

Feature descriptors. Tables 10–12 and 13–15 show the
average normalized L2 error in descriptor vectors at cor-
responding points for sparse and dense feature description
approaches compared in this benchmark, respectively. Heat
kernel signatures show the best results among the compared
algorithms. Among sparse descriptors (SHK1–2 and SI), the
best results in average repeatability and local scale, and sam-
pling classes are achieved by SHK1; in micro holes and scale

Strength
Transform. 1 ≤2 ≤3 ≤4 ≤5
Isometry 98.08 98.72 98.01 97.88 98.04
Topology 97.44 96.10 92.26 91.22 88.64
Holes 91.48 90.60 86.78 83.73 81.86
Micro holes 98.08 96.69 96.00 95.52 94.87
Scale 99.36 99.36 98.50 97.90 97.68
Local scale 98.08 94.83 90.09 83.05 78.31
Sampling 97.05 97.88 97.39 96.27 92.35
Noise 95.30 92.78 91.67 89.24 87.62
Shot noise 98.08 96.22 93.39 90.45 87.32
Average 96.99 95.91 93.79 91.70 89.63

Table 1: Repeatability of HK1: heat kernel based feature detection
algorithm. Average number of detected points: 23.

Strength
Transform. 1 ≤2 ≤3 ≤4 ≤5

Isometry 100.00 100.00 100.00 100.00 100.00
Topology 94.44 90.38 87.45 88.70 85.76
Holes 80.54 79.00 75.25 72.10 69.99
Micro holes 100.00 100.00 98.15 96.58 95.64
Scale 100.00 100.00 100.00 98.61 97.78
Local scale 97.44 96.79 93.02 87.25 82.90
Sampling 100.00 100.00 100.00 100.00 96.20
Noise 100.00 95.19 93.16 89.37 85.77
Shot noise 100.00 95.30 90.03 82.10 74.38
Average 96.94 95.19 93.01 90.52 87.60

Table 2: Repeatability of HK2: heat kernel based feature detection
algorithm. Average number of detected points: 9.

Strength
Transform. 1 ≤2 ≤3 ≤4 ≤5
Isometry 90.47 91.94 91.71 91.88 92.10
Topology 90.33 90.21 89.93 89.97 89.82
Holes 89.59 89.41 89.25 88.82 88.49
Micro holes 90.42 90.40 90.36 90.33 90.31
Scale 92.21 91.61 90.67 89.55 88.19
Local scale 88.08 86.49 83.64 80.99 78.98
Sampling 84.81 84.80 82.37 78.76 70.68
Noise 89.27 87.36 83.20 79.76 74.53
Shot noise 90.73 90.84 89.43 87.94 86.37
Average 89.55 89.23 87.84 86.44 84.38

Table 3: Repeatability of H1: Harris 3D feature detection algo-
rithm. Average number of detected points: 303.
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Strength
Transform. 1 ≤2 ≤3 ≤4 ≤5
Isometry 89.66 91.49 90.99 91.70 91.90
Topology 90.08 90.11 90.02 89.80 89.83
Holes 88.44 88.47 88.41 88.12 87.58
Micro holes 90.12 90.20 90.20 90.10 89.94
Scale 90.58 90.22 90.05 89.61 89.24
Local scale 89.71 89.14 87.38 84.95 82.77
Sampling 88.38 85.05 81.30 76.03 72.03
Noise 88.38 78.44 70.19 65.13 62.21
Shot noise 89.39 88.56 87.38 86.11 84.48
Average 89.42 87.96 86.21 84.62 83.33

Table 4: Repeatability of H2: Harris 3D feature detection algo-
rithm. Average number of detected points: 303.

Strength
Transform. 1 ≤2 ≤3 ≤4 ≤5
Isometry 81.97 85.23 84.32 85.59 85.67
Topology 82.05 82.21 82.46 82.20 82.06
Holes 80.30 80.58 81.07 81.24 80.91
Micro holes 82.19 82.50 82.52 82.28 82.19
Scale 84.09 83.65 82.45 80.84 79.43
Local scale 81.72 79.00 75.07 71.60 68.23
Sampling 77.36 71.78 66.51 60.50 57.06
Noise 80.25 63.55 55.08 51.69 48.93
Shot noise 81.62 79.73 77.18 74.44 71.25
Average 81.28 78.69 76.30 74.49 72.86

Table 5: Repeatability of H3: Harris 3D feature detection algo-
rithm. Average number of detected points: 151.

Strength
Transform. 1 ≤2 ≤3 ≤4 ≤5
Isometry 64.48 70.10 71.73 73.05 73.27
Topology 65.52 64.13 63.05 62.32 62.60
Holes 64.80 64.56 64.28 63.49 62.85
Micro holes 50.84 45.54 41.29 37.80 35.00
Scale 73.33 70.06 67.53 65.18 63.50
Local scale 65.48 60.99 59.82 57.81 54.09
Sampling 66.15 66.41 65.80 63.45 60.35
Noise 70.39 65.19 62.17 58.76 56.61
Shot noise 63.44 51.07 42.07 36.10 33.91
Average 64.94 62.00 59.75 57.55 55.80

Table 6: Repeatability of SP1: salient points feature detection al-
gorithm. Average number of detected points: 88.

Strength
Transform. 1 ≤2 ≤3 ≤4 ≤5
Isometry 79.01 83.50 83.90 84.33 84.79
Topology 78.10 77.26 77.00 77.18 77.35
Holes 79.55 79.34 78.64 77.68 76.50
Micro holes 59.07 53.36 49.60 46.42 43.74
Scale 84.68 82.36 80.77 78.98 77.42
Local scale 78.91 77.68 76.37 74.39 71.98
Sampling 76.39 75.58 74.15 72.02 69.09
Noise 83.45 80.36 77.73 75.41 73.08
Shot noise 77.78 73.31 66.06 62.25 59.68
Average 77.44 75.86 73.80 72.07 70.40

Table 7: Repeatability of SP2: salient points feature detection al-
gorithm. Average number of detected points: 205.

Strength
Transform. 1 ≤2 ≤3 ≤4 ≤5
Isometry 86.17 87.42 87.24 87.76 88.15
Topology 86.18 85.63 85.58 85.56 85.56
Holes 85.72 85.10 84.34 83.56 82.58
Micro holes 68.52 62.27 57.96 54.75 51.99
Scale 89.80 88.28 86.82 85.14 83.70
Local scale 85.73 84.97 84.48 83.33 82.12
Sampling 85.02 83.15 82.21 79.94 77.61
Noise 87.31 85.43 83.28 81.36 79.40
Shot noise 85.95 84.42 82.77 81.76 81.23
Average 84.49 82.96 81.63 80.35 79.15

Table 8: Repeatability of SP3: salient points feature detection al-
gorithm. Average number of detected points: 409.

Strength
Transform. ≤ 1 ≤ 2 ≤ 3 ≤ 4 ≤ 5

Isometry HK2 HK2 HK2 HK2 HK2
Topology HK1 HK1 HK1 HK1 H2
Holes HK1 HK1 H1 H1 H1
Micro holes HK2 HK2 HK2 HK2 HK2
Scale HK2 HK2 HK2 HK2 HK2
Local scale HK1 HK2 HK2 HK2 HK2
Sampling HK2 HK2 HK2 HK2 HK2
Noise HK2 HK2 HK2 HK2 HK1
Shot noise HK2 HK1 HK1 HK1 HK1
Average HK2 HK1 HK1 HK1 HK1

Table 9: Winning feature detection algorithms across transforma-
tion classes and strengths. H1–3=Harris 3D features, HK1–2=heat
kernel features.
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Strength
Transform. 1 ≤2 ≤3 ≤4 ≤5
Isometry 0.05 0.04 0.04 0.04 0.04
Topology 0.05 0.06 0.12 0.14 0.19
Holes 0.07 0.07 0.07 0.08 0.09
Micro holes 0.05 0.05 0.06 0.06 0.06
Scale 0.05 0.05 0.05 0.05 0.05
Local scale 0.07 0.09 0.10 0.12 0.14
Sampling 0.06 0.06 0.06 0.08 0.13
Noise 0.08 0.09 0.11 0.12 0.13
Shot noise 0.05 0.06 0.10 0.16 0.25
Average 0.06 0.06 0.08 0.09 0.12

Table 10: Robustness of SHK1: heat kernel signature feature de-
scription algorithm based on featured detected by HK1 (average
L2 distance between descriptors at corresponding points). Average
number of points: 23.

Strength
Transform. 1 ≤2 ≤3 ≤4 ≤5
Isometry 0.04 0.03 0.04 0.04 0.04
Topology 0.04 0.06 0.11 0.13 0.18
Holes 0.06 0.07 0.08 0.08 0.09
Micro holes 0.04 0.04 0.05 0.05 0.05
Scale 0.04 0.04 0.04 0.04 0.04
Local scale 0.07 0.08 0.10 0.13 0.16
Sampling 0.05 0.05 0.05 0.07 0.14
Noise 0.08 0.09 0.11 0.12 0.13
Shot noise 0.05 0.08 0.15 0.24 0.31
Average 0.05 0.06 0.08 0.10 0.13

Table 11: Robustness of SHK2: heat kernel signature feature de-
scription algorithm based on featured detected by HK2 (average
L2 distance between descriptors at corresponding points). Average
number of points: 9.

the best results are of SHK2; in isometry, holes, and noise
classes, SHK1 and SHK2 perform the same; and spin im-
age (SI) feature descriptor performed the best in topology
and shot noise classes. Among dense descriptors (DHK1–
3), DHK1 and DHK2 show equal average performance, with
FEM-based descriptor (DHK2) being slightly better in the
topology, local scale, sampling, and noise classes; the scale-
invariant heat kernel signatures (DHK3) perform the best
in the scale class. Overall, the top performing descriptor is
DHK2, and summarized in Table 16.

7. Conclusions

Among the compared feature detection algorithms, heat
kernel-based methods show the highest overall repeatabil-
ity. These methods also perform the best in most of the
transformation classes, excepting topology and holes, where
3D Harris feature detector shows the best results. Among

Strength
Transform. 1 ≤2 ≤3 ≤4 ≤5
Isometry 0.12 0.10 0.10 0.10 0.10
Topology 0.11 0.11 0.11 0.11 0.11
Holes 0.12 0.12 0.12 0.12 0.12
Micro holes 0.15 0.15 0.16 0.16 0.16
Scale 0.18 0.15 0.15 0.15 0.15
Local scale 0.12 0.13 0.14 0.15 0.17
Sampling 0.13 0.13 0.13 0.13 0.15
Noise 0.13 0.15 0.17 0.19 0.20
Shot noise 0.11 0.13 0.16 0.17 0.18
Average 0.13 0.13 0.14 0.14 0.15

Table 12: Robustness of SI feature description algorithm based on
features detected by SP2 (average L2 distance between descriptors
at corresponding points). Average number of points: 205.

Strength
Transform. 1 ≤2 ≤3 ≤4 ≤5
Isometry 0.02 0.01 0.01 0.01 0.01
Topology 0.02 0.02 0.02 0.02 0.03
Holes 0.02 0.02 0.02 0.03 0.03
Micro holes 0.01 0.02 0.02 0.02 0.02
Scale 0.25 0.15 0.13 0.14 0.16
Local scale 0.02 0.04 0.05 0.08 0.11
Sampling 0.02 0.02 0.02 0.02 0.03
Noise 0.02 0.06 0.09 0.13 0.16
Shot noise 0.02 0.02 0.02 0.02 0.02
Average 0.04 0.04 0.04 0.05 0.06

Table 13: Robustness of DHK1: dense heat kernel signature fea-
ture description algorithm using cotangent weight discretization
(average L2 distance between descriptors at corresponding points).

Strength
Transform. 1 ≤2 ≤3 ≤4 ≤5
Isometry 0.01 0.01 0.01 0.01 0.01
Topology 0.02 0.02 0.02 0.02 0.02
Holes 0.02 0.02 0.02 0.03 0.03
Micro holes 0.01 0.01 0.01 0.01 0.02
Scale 0.25 0.15 0.13 0.14 0.16
Local scale 0.02 0.03 0.05 0.07 0.10
Sampling 0.02 0.02 0.02 0.02 0.02
Noise 0.03 0.06 0.09 0.12 0.15
Shot noise 0.01 0.01 0.02 0.02 0.02
Average 0.04 0.04 0.04 0.05 0.06

Table 14: Robustness of DHK2: dense heat kernel signature fea-
ture description algorithm using FEM discretization (average L2
distance between descriptors at corresponding points).
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Strength
Transform. 1 ≤2 ≤3 ≤4 ≤5
Isometry 0.09 0.07 0.07 0.07 0.07
Topology 0.10 0.10 0.11 0.11 0.11
Holes 0.09 0.10 0.12 0.13 0.14
Micro holes 0.09 0.09 0.09 0.09 0.09
Scale 0.12 0.10 0.10 0.10 0.09
Local scale 0.10 0.13 0.15 0.19 0.22
Sampling 0.09 0.09 0.10 0.10 0.12
Noise 0.11 0.16 0.19 0.21 0.24
Shot noise 0.09 0.09 0.09 0.09 0.10
Average 0.10 0.10 0.11 0.12 0.13

Table 15: Robustness of DHK3: dense scale-invariant heat kernel
signature feature description algorithm using cotangent weight dis-
cretization (average L2 distance between descriptors at correspond-
ing points).

Strength
Transform. ≤ 1 ≤ 2 ≤ 3 ≤ 4 ≤ 5
Isometry DHK2 DHK2 DHK2 DHK2 DHK2
Topology DHK2 DHK2 DHK2 DHK2 DHK2
Holes DHK2 DHK2 DHK2 DHK2 DHK1
Micro holes DHK2 DHK2 DHK2 DHK2 DHK2
Scale SHK2 SHK2 SHK2 SHK2 SHK2
Local scale DHK2 DHK2 DHK2 DHK2 DHK2
Sampling DHK2 DHK2 DHK2 DHK2 DHK2
Noise DHK1 DHK1 DHK2 SHK1 SHK2
Shot noise DHK2 DHK2 DHK2 DHK2 DHK2
Average DHK2 DHK2 DHK2 DHK2 DHK2

Table 16: Winning feature description algorithms across trans-
formation classes and strengths. DHK1=dense heat kernel signa-
tures using cotangent weight discretization, SHK2=sparse heat ker-
nel signatures based on features detected by HK2.

the compared feature description algorithms, the best results
were achieve by heat kernel-based methods.

A more detailed version of this report presenting addi-
tional details and experiments will be published separately.

References
[ABADB07] ASSFALG J., BERTINI M., A. DEL BIMBO P. P.:

Content-based retrieval of 3d objects using spin image signatures.
IEEE Transactions on Multimedia 9, 3 (2007), 589–599. 5

[ABC04] ANDREETTO M., BRUSCO N., CORTELAZZO G. M.:
Automatic 3-d modeling of textured cultural heritage objects.
IEEE Transactions on Image Processing 13, 3 (2004), 335–369.
5

[BBK08] BRONSTEIN A. M., BRONSTEIN M. M., KIMMEL R.:
Numerical geometry of non-rigid shapes. Springer, 2008. 2

[BBOG10] BRONSTEIN A. M., BRONSTEIN M. M., OVS-
JANIKOV M., GUIBAS L. J.: ShapeGoogle: geometric words
and expressions for invariant shape retrieval. TOG (in review)
(2010). 4

[BK10] BRONSTEIN M. M., KOKKINOS I.: Scale-invariant heat
kernel signatures for non-rigid shape recognition. In Proc. CVPR
(2010). 5

[BSW08] BELKIN M., SUN J., WANG Y.: Discrete Laplace op-
erator on meshed surfaces. In Proc. SCG (2008), pp. 278–287.
3

[CCFM08] CASTELLANI U., CRISTANI M., FANTONI S.,
MURINO V.: Sparse points matching by combining 3D mesh
saliency with statistical descriptors. Computer Graphics Forum
27 (2008), 643–652. 2, 4

[CGOS09] CHAZAL F., GUIBAS L. J., OUDOT S. Y., SKRABA
P.: Analysis of scalar fields over point cloud data. In Proc. SODA
(2009), pp. 1021–1030. 3

[ELZ00] EDELSBRUNNER H., LETSCHER D., ZOMORODIAN
A.: Topological persistence and simplification. In Proc. IEEE
Foundations of Computer Science (2000), pp. 454–463. 3

[Glo09] GLOMB P.: Detection of interest points on 3D data: Ex-
tending the harris operator. In Computer Recognition Systems 3,
vol. 57 of Advances in Soft Computing. Springer Berlin / Heidel-
berg, May 2009, pp. 103–111. 3

[HS88] HARRIS C., STEPHENS M.: A combined corner and
edge detection. In Proc. Fourth Alvey Vision Conference (1988),
pp. 147–151. 3

[IKN98] ITTI L., KOCH C., NIEBUR E.: A model of saliency-
based visual attention for rapid scene analysis. Trans. PAMI 20,
11 (1998). 4

[JH99] JOHNSON A., HEBERT M.: Using spin images for effi-
cient object recognition in cluttered 3D scenes. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 21, 5 (1999),
433–449. 4, 5

[Low04] LOWE D.: Distinctive image features from scale-
invariant keypoints. IJCV 60, 2 (2004), 91–110. 1, 4

[MS05] MIKOLAJCZYK K., SCHMID C.: A performance evalua-
tion of local descriptors. Trans. PAMI (2005), 1615–1630. 1

[OBG09] OVSJANIKOV M. BRONSTEIN A. M., BRONSTEIN
M. M., GUIBAS L. J.: ShapeGoogle: a computer vision ap-
proach to invariant shape retrieval. Proc. NORDIA (2009). 4

[PSF10] PATANÉ G., SPAGNUOLO M., FALCIDIENO B.: Multi-
scale feature spaces for shape analysis and processing. In Proc.
Shape Modeling International (SMI) (2010). to appear. 4

[SB10] SIPIRAN I., BUSTOS B.: Robust 3D Harris operator. sub-
mitted, 2010. 2, 3

[SOG09] SUN J., OVSJANIKOV M., GUIBAS L.: A concise and
provably informative multi-scale signature based on heat dif-
fusion. In Eurographics Symposium on Geometry Processing
(SGP) (2009). 2, 4

[SZ03] SIVIC J., ZISSERMAN A.: Video Google: A text retrieval
approach to object matching in videos. In Proc. ICCV (2003),
vol. 2, pp. 1470–1477. 1

[TCF09] TOLDO R., CASTELLANI U., FUSIELLO A.: Visual vo-
cabulary signature for 3D object retrieval and partial matching. In
Proc. Eurographics Workshop on 3D Object Retrieval (2009). 4

c© The Eurographics Association 2010.


