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Abstract
We present a new method for non-rigid shape matching designed to enforce continuity of the resulting corre-
spondence. Our method is based on the recently proposed functional map representation, which allows efficient
manipulation and inference but often fails to provide a continuous point-to-point mapping. We address this prob-
lem by exploiting the connection between the operator representation of mappings and flows of vector fields. In
particular, starting from an arbitrary continuous map between two surfaces we find an optimal flow that makes the
final correspondence operator as close as possible to the initial functional map. Our method also helps to address
the symmetric ambiguity problem inherent in many intrinsic correspondence methods when matching symmetric
shapes. We provide practical and theoretical results showing that our method can be used to obtain an orientation
preserving or reversing map starting from a functional map that represents the mixture of the two. We also show
how this method can be used to improve the quality of maps produced by existing shape matching methods, and
compare the resulting map’s continuity with results obtained by other operator-based techniques.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: —Shape Analysis

1. Introduction

Computing correspondences or mappings between 3D
shapes is one of the key building blocks in many areas of
digital geometry processing, including deformation trans-
fer [SZGP05], shape interpolation (morphing) [KMP07] and
statistical shape analysis [HSS∗09] among many others.
This problem is particularly challenging in the case of shapes
undergoing non-rigid deformations, where the notion of the
optimal map may be difficult to define and optimize for.
Thus, although a number of robust techniques have been
proposed to address the rigid alignment problem [MAM14],
non-rigid shape matching remains challenging [TCL∗13].

Most of the succesful global methods proposed to find
correspondences between pairs of non-rigid shapes in
the recent years have relied on a variant of the confor-
mal [WWJ∗07, LF09, KLF11] or fully isometric [BBK06,
TBW∗09, SY11, OBCS∗12] deformation models, which as-
sume that either the angles or the geodesic distances between
pairs of points are approximately preserved by the mapping.
Although such models have very appealing theoretical prop-
erties, using them directly can often lead to difficult non-
linear, non-convex optimization problems [BBK06]. There-
fore, most recent work in this direction have concentrated on
finding a low-dimensional parameterization of the space of

mappings, that allows for efficient optimization techniques
(e.g. [LF09, OMMG10, BWW∗14]).

Among such low-dimensional representations of the
space of correspondences, one particularly appealing ap-
proach is based on the framework of functional maps
[OBCS∗12], which consider mappings as linear operators
between the corresponding function spaces. This representa-
tion has the advantage of being computationally efficient and
easy to manipulate, since typically it allows to encode a cor-
respondence with a small-sized matrix using a multi-scale
functional basis. Moreover, finding the optimal functional
map, can often be formulated using relatively simple opti-
mization problems [OBCS∗12, PBB∗13]. As a result, meth-
ods based on this representation, have recently been used
to achieve state-of-the-art results for near-isometric shape
matching problems [PBB∗13] and co-segmentation of shape
collections [HWG14].

One of the weaknesses of the functional map represen-
tation, however, is that by representing mappings as corre-
spondences between functions, it requires an additional post-
processing step to obtain a point-to-point map after comput-
ing the optimal functional map. The basic approach for this
conversion step, proposed in [OBCS∗12] and used in most
follow-up works, assigns points by considering the mapping
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between the corresponding Dirac delta-functions. Since each
delta-function is mapped independently, however, this ap-
proach can (and most often does) introduce significant ar-
tifacts and discontinuities into the final point-to-point map-
ping (see the first two columns of Figure 6). This makes the
resulting correspondences unusable in settings that require
continuity of the mapping, such as texture transfer. Addi-
tional pair-wise terms can potentially be introduced in the
conversion procedure, but this would require creating vari-
ables for points with potentially very expensive consistency
constraints, which very quickly loses the appeal of the func-
tional map framework, and reduces to direct optimization.

In this context, we propose a novel method for convert-
ing a functional map to a point-to-point map, which guar-
antees continuity and does not rely on any pairwise consis-
tency constraints, making it computationally efficient. Our
main idea is to represent the target point-to-point map as a
composition of an arbitrary continuous map between the two
surfaces and a flow associated with an unknown vector field
on one of them. By relying on the recently proposed oper-
ator representation of vector fields [ABCCO13], we show
that the optimal vector field can be computed efficiently en-
tirely within the functional map framework, and the com-
putation of the final map requires a single discretization of
vector field advection. We also employ a recently proposed
supervised learning technique [COC14] that not only helps
to obtain better functional maps but also helps to identify
functional subspaces where the map is reliable, which sig-
nificantly helps to improve the final point-to-point map.

Our method also helps to address the symmetric ambigu-
ity problem inherent in many intrinsic correspondence meth-
ods when matching symmetric shapes. We provide practical
and theoretical results showing that our method can be used
to obtain an orientation preserving or reversing map starting
from a functional map that represents the mixture of the two.
Finally, we test our method on a shape collection and show
that we can produce maps that are both continuous and have
smaller geodesic distortion compared to the results obtained
by existing techniques.

2. Related Work

Non-rigid shape matching is an extremely very well-
developed area and we refer the interested reader to recent
surveys (e.g., [BBK08, VKZHCO11, TCL∗13]) for an in-
depth review of all of the related work. Below we concen-
trate on the recent works that are directly related to ours, con-
sisting of methods for global near-isometric shape matching
with special emphasis on approaches that guarantee the con-
tinuity of the resulting maps.

As mentioned in the introduction, most of the existing
techniques for non-rigid shape matching use a deformation
model for finding correspondences between 3D shapes. The
two most common models in this setting include approxi-

mate intrinsic isometries and conformal mappings. The for-
mer model, which was originally introduced by Bronstein
et al. [BBK06] and Mémoli [Mém07] assumes that pair-
wise geodesic distances are approximately preserved by the
deformation. The first works that use this assumption lead
to continuous maps by design, but result in very challeng-
ing optimization problems that are difficult to solve with
more than a small number of points [BBK06]. As a re-
sult, many follow-up techniques have used a relaxed ver-
sion of the isometric mapping assumption, which result
in more manageable optimization problems, but can of-
ten fail to guarantee a low distortion continuous mapping
(e.g., [HAWG08, TBW∗09, OMMG10, SY11, BWW∗14]).
Furthermore, an additional challenge in using the isometric
model assumption is that exact intrinsic isometries are ex-
tremely rare, both in theory [Glu75] and in practice, since
most deformable shapes induce some amount of distortion.

Another set of successful techniques, which are more
widely applicable than those based on the isometric map-
ping assumption are those that assume that the mapping is
conformal, and thus only preserves angles (e.g., [HAT∗00,
WWJ∗07, HS09, LF09, KLF11]). These techniques are ap-
pealing because a conformal mapping is known to exist be-
tween any pair of shapes with the same topology, but also
because the set of such mappings can be parameterized rel-
atively easily by using a canonical domain, such as a sphere
for genus zero surfaces. Moreover, the resulting maps ob-
tained by these approaches are typically continuous. At the
same time, conformal mappings can often induce large area
distortion, which can result in unrealistic correspondences
between non-rigid shapes, which limits their use signifi-
cantly.

A recent set of approaches that overcome the above-
mentioned challenges to some extent is based on the func-
tional map representation, introduced in [OBCS∗12]. This
framework is based on representing maps as linear operators
acting on real-valued functions, and which can be encoded
compactly by small-sized matrices in the discrete setting by
using a multi-scale basis. Although the original approach
and the follow-up works, including [KBB∗13, PBB∗13], all
implicitly use the isometric deformation assumption, they
have been shown to be very robust to small non-isometric
distortions, by extensive use of strong geometric and linear-
algebraic regularization techniques. Moreover, several re-
cent works have shown how this framework can be used in
the supervised learning setting, where functional maps be-
tween unseen shapes can be obtained by exploiting infor-
mation present in a small set of example maps [RBW∗14,
COC14].

Despite its practical appeal, one of the limitations of
the functional map framework, however, is that a post-
processing step is necessary to convert a functional map to a
point-to-point one. The method used in [OBCS∗12] is based
on mapping Dirac delta functions. However as the points are
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considered independently the continuity of the resulting map
is not ensured. This problem can be particularly prominent
in shapes that contain intrinsic symmetries, which contain at
least two equally good solutions for the optimal functional
map, and the computed one is at best a linear blending of the
two.

Note that, closely related to our technique, especially in
the use of flows for computing continuous maps (diffeomor-
phisms) is the LDDMM framework [BMTY05, MTY06],
widely used in the medical imaging community. Unlike
these methods, however, our approach is purely intrinsic and
operates directly on the surface of the target model, rather
than deforming a template in space.

Contributions In this paper we propose a novel method
for converting a functional map into a point-to-point one,
which combines the strengths of the functional map frame-
work that allows to compute low-distortion functional maps,
with those of the conformal mapping approaches, which pro-
duce continuous correspondences. Namely, starting from a
map computed using the state-of-the-art conformal-based
Blended Intrinsic Map approach [KLF11], we modify it by
computing the optimal vector field, whose flow, composed
with the original map, would result in a functional map as
close as possible to the given one. By using the recently pro-
posed operator representation of vector fields [ABCCO13]
and the connection between advection and matrix exponen-
tiation, we propose an efficient optimization approach for
computing the optimal vector field entirely within the func-
tional map framework. Moreover, we show theoretically that
this approach is guaranteed to produce the correct continu-
ous map when the input functional map represents a blend-
ing of the orientation preserving and reversing maps under
certain assumptions, and demonstrate this projection step in
practice.

3. Functional maps

The functional map representation introduced in [OBCS∗12]
provides a flexible framework for representing and manipu-
lating maps between shapes. Given two surfaces M and N,
a point-to-point map T : N → M induces a map between
function spaces CT : L2(M)→ L2(N), where L2(M) is the
set of square-integrable functions defined on the surface M.
The functional map CT is defined by composition with T as
CT ( f ) = f ◦ T . The operator CT is a linear transformation
and given a basis it can be represented as a matrix in the dis-
crete setting. This matrix can be easily computed if the map
T is known.

Following the pipeline proposed in [OBCS∗12], we use a
two stage algorithm to tackle the shape matching problem.

3.1. Functional maps pipeline

If T is unknown the first step is to approximate CT by for-
mulating functional constraints of the type CT f = g, where f

and g are functions of N and M respectively. The functional
constraints used in the original work [OBCS∗12] come from
local shape descriptors that are stable under nearly isometric
deformations. Common robust descriptors include the Heat
Kernel Signature (HKS) [SOG09] and the Wave Kernel Sig-
nature (WKS) [ASC11], as well as descriptors coming from
segment correspondence constraints. We will let F and G de-
note the matrices whose each column contains correspond-
ing functions on N and M, which implies that CT F ≈G. Ad-
ditionally a regularization is added using the assumption that
the deformation is nearly isometric, which it is equivalent to
CT ∆N ≈ ∆MCT , where ∆N and ∆M are the Laplace-Beltrami
operators on N and M respectively. This leads to the least
square problem:

C = argmin
X
‖XF−G‖2

F +α‖X∆N −∆MX‖2
F , (1)

where ‖.‖F denotes the Frobenius norm. It has been shown
that solving Eq. (1) can lead to good approximation C of
the functional map CT . In this paper we will use several
modifications of this model introduced in [COC14] that
weighted the functional correspondence by a diagonal ma-
trix D: ‖(XF−G)D‖2. This weight is automatically set us-
ing a learning procedure, which leads to functional maps
of significantly better quality. Namely, from a set of shapes
Ni with known ground-truth functional maps C?

i : L2(M)→
L2(Ni) we find the set of weights D that minimizes the dif-
ference between the approximation and the actual map:

min
D
‖Ci(D)−C?

i ‖,where Ci(D) = argmin
X

E(X)

E(X) = ‖(XF−G)D‖2
F +α‖X∆Ni −∆MX‖2

F (2)

Moreover this framework provides a way to learn a basis
Yp (where p is the basis size) of the functions whose transfer
is the most accurate, by minimizing ∑i ‖(Ci(D)−C?

i )Yp‖,
given a fixed weight matrix D.

The basis Yp is particularly useful in factoring out badly
matched functions, which typically represent the parts of
shapes, for which the descriptor constraints fail to provide
reliable information.

Once the functional map C is computed, the goal of the
second step is to convert it to a point-to-point map. The
method proposed in [OBCS∗12] and reused in most of the
follow-up work consists in finding the nearest neighbors of
the images of Dirac-delta functions on M by C among the
Dirac functions on N. Namely, for each point x ∈ M, the
map: T (x) is computed as via T (x) = argminy ||δy−Cδx||,
where δx is an indicator function on vertex x, written in the
appropriate basis.

3.2. Main challenges

While both steps described above are very efficient in prac-
tice, the second stage has a very serious limitation, in that
it processes each point independently, meaning that the final
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Figure 1: Left: the unknown continuous map TC is a com-
position of the input T 0 and the flow φ

t
V of a vector field V .

Right: dual representation as functional maps.

map T may not be (and often is not) continuous. The first
two columns of Figure 6 provide examples of discontinuous
maps resulting of this conversion.

To illustrate this phenomenon, let us assume that the target
shape N has an orientation-reversing (reflectional) intrinsic
symmetry S : N → N. In this case, there exist at least two
equally good potential solutions for Eq. (1) and similarly,
each point x may have several candidate correspondences.

In practice the functional constraints are not sufficient to
resolve symmetric ambiguities, in large part because most
robust descriptors are invariant under intrinsic isometries.
The best we can hope for when approximating CT is an exact
functional map for symmetric functions (i.e. f , s.t. f ◦S = f )
and a noisy or zero functional map for antisymmetric func-
tions (i.e. f ◦ S = − f ). Since our approximations are ob-
tained by solving a linear system, most likely a solution of
the least squares problem will be a linear blending between
the orientation preserving and reversing functional map:

Cα
T = (1−α)CT +αCT◦S (3)

Note that α = 0.5 implies that all antisymmetric functions
are mapped to zero.

The conversion of C to a point-to-point map in itself gives
no guaranty of continuity in the resulting map. Since each
Dirac function of a point x is treated independently it can be
mapped indifferently to its image T−1(x) or to its symmetric
alternative S(T−1(x)). Moreover this process is not designed
to be stable under the blending noise α, as in (Eq. 3).

In this context, the key idea developed in this paper is to
construct a point-to-point map from the functional map C by
following a procedure that guarantees continuity, while be-
ing robust to blending noise. In particular, starting from an
arbitrary continuous map between M and N, we find an opti-
mal vector field, whose flow makes the final correspondence
operator as close as possible to the initial functional map.
Since the flow of a vector field provides a continuous, and
orientation-preserving map, the final correspondence is both
continuous and has the orientation of the initial map. As we
show below, this can significantly improve the quality of the
resulting point-to-point map, while remaining computation-
ally tractable and avoiding expensive second-order pairwise
constraints.

Algorithm 1: FUNCTIONAL MAP CONVERSION

Input : C : L2(M)→ L2(N) functional map
T 0 : N→M initial continuous map

Output: TC: C converted into a continuous map
1 Find Optimal Vector field (Section 5);
2 Convert T 0 to a functional map CT0 ;
3 Solve: a? ∈ argmin

a∈Rn
‖CT0 exp(∑n

i=1 aiDVi)−C‖φ;

4 Set: V := ∑
n
i=1 a?i DVi ;

5 Compute TC (Section 6);
6 Solve: d

dt φ
t
V (p) =V

(
φ

t
V
(

p)), φ
0
V (p) = p ∈ N;

7 return TC := φ
1
V ◦T 0;

3.3. Algorithm overview

The algorithm proposed in this paper takes as input a func-
tional map C : L2(M)→ L2(N) and an arbitrary continuous
map T 0 : N→M. It then outputs a continuous point-to-point
map TC : N→M.

As mentioned above, the main idea of our algorithm is to
construct the map TC by composing T 0 with the flow φ

t
V of

a well-chosen vector field V (see Figure 1). We will choose
the vector field V such that φ

t
V ◦ T 0 represented as a func-

tional map is as close as possible to the input C. This can
be done efficiently by representing φ

t
V as an operator (Sec-

tion 4) and then solving a small-scale optimization problem
as explained in Section 5. To find the map TC we solve a
system of ODEs with a simple solver (Section 6).

The main steps of the proposed algorithm are described in
Algorithm 1.

4. Family of diffeomorphisms

In this section we construct a family of diffeomorphisms
which map N onto M and derive their representation as
functional maps. The point-to-point map which converts the
given functional map C will be chosen among this family.

Vector field flow Given a family of tangent vector fields
{Vi}1≤i≤n on M, we let V be the space spanned by the lin-
ear combinations of the Vi. Any vector field V ∈ V , defines
a one-parameter family of maps φ

t
V : M→M called the flow

of V . The flow is formally defined as the unique solution to
the differential equation:

d
dt

φ
t
V (p) =V

(
φ

t
V
(

p)), φ
0
V (p) = p ∈ N. (4)

Given an arbitrary diffeomorphism T : N → M we con-
struct a family of diffeomorphisms T parametrized by t ∈R
and a ∈ Rn:

T t
a (p) = φ

t
Va ◦T (p), Va =

n

∑
i=0

aiVi (5)
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Remark that the orientation of a map T t
a ∈ T is given by

the orientation of T since the flow of a vector field is orien-
tation preserving.

Functional Representation of the family The family of
mappings T has an easy representation in the functional map
framework as explained in [ABCCO13]. This is because, a
vector field V on a smooth manifold can be represented as
an operator DV acting on a function f :

DV ( f )(p) = 〈V (p),∇ f (p)〉p. (6)

Since the action of DV is linear, the operator is conve-
niently represented as a matrix in the discrete setting.

It is well known that gt = f ◦φ
t
V is the unique solution of

the PDE:
∂g
∂t

(t, p) = DV (g)(t, p), g(0, p) = f (p).

A key property of the operator representation of vector
fields, introduced in [ABCCO13] is that for analytic func-
tions the functional map Cφt

V
is represented by the exponen-

tial of the operator DV since one has:

Cφt
V

f := f ◦φ
t
V = exp(tDV )( f )

Since map composition is achieved via matrix multiplica-
tion in the functional representation, this yields a simple way
of describing our family of diffeomorphisms T . Let T t

a ∈ T
then

CT t
a
=CT exp

(
t

n

∑
i=1

aiDVi

)
. (7)

5. Optimal vector field

5.1. Optimization Problem

Our main idea, developed in the section, is to project the in-
put functional map C onto the appropriate set of diffeomor-
phisms T . Namely our goal is to find a vector field V ∈ V
such that the operator representation (7) of T t

a is as-close-
as possible to C. This projection is easily written thanks to
the operator representation, and computationally it reduces
to solving the optimization problem:

min
a∈Rn
‖CT exp

(
n

∑
i=1

aiDVi

)
−C‖φ, (8)

for an appropriate choice norm ‖.‖φ. Here we note briefly
that the norm is chosen to be differentiable.

In practice, the problem (8) can be solved using a first
order method such as the L-BFGS algorithm. The main dif-
ficulty lies in finding the gradient of the objective function is
the computation of derivative of exp(∑n

i=1 aiDVi) in the di-
rection V j. While there exists a vast literature on approximat-
ing the exponential of a matrix (for a survey see [MVL03]),

to the best of our knowledge few methods address the prob-
lem of computing the directional derivative of the matrix ex-
ponential, which is conceptually non-trivial. As we show in
the Appendix, however, the directional derivative can be ob-
tained as a block of the matrix exponential of a bigger oper-
ator.

5.2. Properties

One of the advantages of the formulation of the problem
of finding the optimal point-to-point map from a functional
map via Eq. (8) is that it makes no assumptions on the input
map C. This is particularly important since, as mentioned
above, in the presence of intrinsic symmetries the functional
map C can, even in the best case, be a linear blending of the
functional representation of an orientation-preserving and
orientation-reversing map. However, one potential problem
is that the presence of the “noisy” part in the functional map
can adversely affect the final output map T obtained by op-
timizing Eq. (8).

Fortunately, both in theory and in practice this is not
the case. Namely, under some suitable assumptions, the
orientation-preserving ground-truth functional map, must be
a local minimum of the problem (8) even when the func-
tional map C is given by the symmetry blending defined at
(3). In particular, as we show in the Appendix if the norm
‖.‖φ = ‖.‖2

F is the squared Frobenius norm, the set of vector
fields considered V is divergence-free and the initial trans-
formation T approximately isometric, then CT must be a lo-
cal minimum of Eq. (8).

5.3. Practical choice of the norm

As stated before C is not reliable for antisymmetric func-
tions. Therefore there is some function subspace on which
C and CT exp(t ∑

n
i=1 aiDVi) cannot agree. The choice of the

norm ‖.‖φ in the problem (8) is of critical importance. The
naive choice of the squared Frobenius norm is not well-
suited for this problem since it is the sum of the squared
singular values. As such, it will give a large weight on
badly matched function subspace and a small weight on
well matched function subspace. However, since typically
we have almost no information about antisymmetric func-
tions so the optimization problem based on this problem will
put a lot of effort matching functions that we cannot hope
to match and few matching interesting subspace. A better
choice for ‖.‖φ is a regularization of the nuclear norm. We
choose

‖A‖φ = ‖AYp‖ε,? (9)

where Yp is a basis of p functions that we want to focus on
obtained using the approach described in Section 3.1 and
based on [COC14]. In the unsuperised setting we chose Yp to

be the identity. The norm ‖.‖ε,? is a defined by ∑
N
i=1

√
σ2

i + ε

the σi are the singular values of the matrix. With this norm,

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.



E. Corman & M. Ovsjanikov & A. Chambolle / Continuous Matching via Vector Field Flow

p1

p2p3

p4

p0

Figure 2: Example of a path trace starting point at p0.

we give smaller weight to the subspaces that are difficult to
align and focus on task we are able to complete.

The parameter ε makes the function ‖.‖ε,? differentiable
and should be small and is taken at 10−3. Note that the Ja-
cobian matrix of the singular values is easily computable as
explained in [PL00].

6. Vector field flow on manifold

Once the optimal vector field V is found using the procedure
described above, we obtain the final point-to-point map by
composing the initial map T with the flow of V . To compute
this flow, we need to solve the system of equations (4) on the
given triangle mesh. In principle any advection solver will
work with our method. However since computing the flow is
known to be potentially difficult, we implemented our own
solution. The implementation we use gives a coarse approx-
imation of the flow and might not be accurate for very large
deformations. For more accurate solution of this problem we
refer to [RS14, MPZ14] which provide more guaranties of
continuity of the flow and faster convergence.

In all of our applications we assume that the shape is a
triangulated mesh and the vector field is given as a single
vector per face. Given this representation, we assume that
that the vector field is constant per face and is interpolated at
the edges.

Three main situations can occur: the current point could
be at inside face, an edge or a vertex.

At a Face Since inside a face the vector field is assumed to
be constant, we follow it until we reach an edge or a vertex
(Figure 2 from p0 to p1).

At an Edge When a point is at an edge, we try to cross the
face we did not come from (Figure 2 from p1 to p2). If the
point did not move we follow the edge by interpolating the
vector field from the two neighboring faces and end up at a
vertex (Figure 2 from p2 to p3).

At a Vertex When the point is at a vertex, we try to follow
the vector of each of the neighboring faces and choose the
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Figure 3: Impact of the noisy functional map Cα
T on the

point-to-point correspondences for various values of α.

one that goes the furthest. If the point cannot move, we try to
follow the neighboring edges, using interpolated directions
and to potentially end up at another vertex (Figure 2 from p3
to p4).

7. Results

For all the experiments we express all functions in the basis
given by the first 150 eigenfunctions of the Laplace-Beltrami
operator. We choose a family of 50 tangent vector fields
for the Vi given by the first eigenfunctions of the 1-form
Laplace-de Rham operator, constructed following the pro-
cedure described in [FSDH07].

We have evaluated our method for computing point-to-
point correspondences on the shapes on the benchmarks
of Anguelov and al. [ASK∗05] and of Bronstein and al.
[BBK08]. In all of the cases, the input continuous map T 0 is
the result of the BIM algorithm [KLF11]. This map is most
of the time continuous but can be very distorted in some ar-
eas. We will show that our method is able to detect the dis-
torted areas and correct them.

7.1. Symmetry blending

As stated above a plausible perturbation for the input func-
tional map C is given by equation (3). We test our method
when C is the linear blending of the ground-truth functional
map and the ground-truth orientation reversing functional
map for various values of α. In this experiment Yp is the iden-
tity matrix. For this experiment we choose a pair of shapes
from the SCAPE dataset.

The graph shown in Figure 3 shows the percentage of cor-
respondences smaller than a threshold. Of course the closer
Cα

T is to the ground-truth map the better are the correspon-
dences. However our results are robust even when the target
functional map is an exact blending of the direct and sym-
metric map and are always better than the map coming from
BIM. Thus, even when the assumptions of our theoretical
observation are not fulfilled, our method can successfully re-
trieve meaningful information from noisy data.
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Figure 4: Improvement of the BIM map using our method.

7.2. Error using a computed functional map

In a more realistic scenario, rather than using a ground-truth
functional map, we compute it via the inference pipeline
described in Section 3.1. In this section the experiments
are conducted on several pairs of shapes: 7 human pairs
(SCAPE) and 5 animal pairs (TOSCA). The functional map
C is computed using the least squares problem (1), where
each functional constraints is weighted. The weights are
learned solving problem (2) using the algorithm described
in [COC14] which also outputs a matrix Yp corresponding to
the p best mapped functions, where we let p equal to 70. The
training set is composed of 8 randomly chosen meshes for
the SCAPE example and 4 meshes for the TOSCA centaur
example. We compute 310 functional constraints equally
distributed among these categories:

• Heat Kernel Signature [SOG09],
• Wave Kernel Signature [ASC11] at three different vari-

ances,
• Gaussian and Mean Curvature,
• Logarithm of the absolute value of Gaussian and Mean

Curvature,
• Mesh Saliency [LVJ05].

We compare our approach with BIM, that serves as T 0,
and with the functional map C converted to point-to-point
map using the method proposed in [OBCS∗12]. The graph
in Figure 4 shows the percent of correspondences which
have geodesic error smaller than a threshold in average for
SCAPE and TOSCA. In this case, we only accept direct cor-
respondences as correct, and consider symmetric points as
wrong. Note that our method shows quality improvement
over Blended Intrinsic Maps. The direct conversion of C
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Figure 5: Comparison of the distortion induced by various
for a pair of centaur (TOSCA).

have some point with very large geodesic error due to points
mapped to their symmetric counterparts.

We evaluate the continuity of our map with two measures
of distortion. First the maximum radius corresponding to a
geodesic ball of given size. For a map T this is formally
given by the function:

r(t) 7→ max
dN(x,y)≤t

dM(T (x),T (y)), (10)

where dN is the geodesic distance on N. If the map is nearly
isometric r should be close to identity. We compare this
measure for different mapping in Figure 5a for one exam-
ple from TOSCA. Our method is comparable to BIM and to
the ground truth in terms of continuity while the direct con-
version of C show some very large distortions. Second we
compare the ratio between the triangle’s area before and af-
ter deformation. Since the deformations in our examples are
almost isometric this ratio should be close to one. The graph
in Figure 5b shows the percent of triangles which have an
area ration smaller than a threshold. We show only the ratio
greater than one since most of the discontinuous behavior
is due to large jumps. The area ratio of the exact mapping
are concentrated around one which is consistent with the
fact that the deformation is nearly isometric. Again the di-
rect conversion of C show some very large area distortions
compare to BIM and our method.

This lack of continuity is confirmed by Figure 6 which
provides on two examples a visualization of the point-to-
point mapping using color correspondence. The direct con-
version of the functional map shows some artifacts due to

c© 2015 The Author(s)
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(a) (b) (c)

(d) (e) (f)

Figure 6: Visualization of the point-to-point mapping
through color correspondence. The texture of the first col-
umn (6a, 6d) are transferred to the second using the direct
conversion of a functional map (6b, 6e) and to the third us-
ing our method (6c, 6f).

the blending between orientation preserving and orientation
reversing maps.

Our method successfully repairs the areas distorted by
BIM as shown on Figure 7 for two different matching prob-
lems. In this example the BIM maps transfer poorly func-
tions from the source meshes to the target meshes while our
method corrects these incorrect matches by providing a more
accurate transfer. A visualization of the optimal vector field
is provided on Figure 8 for the human example. The vector
field on Figure 8b corresponds to the displacement needed
to repair the BIM map, the action of this correction can be
seen on the upper row of Figure 7.

7.3. Parameters dependence

In theory the quality of the initial map T 0 has no impact
on the final results. In practice we consider only a small
family of vector fields based on the first eigenfunctions of
1-form Laplace-de Rham operator. Therefore in this setting
our method will be more efficient in repairing low frequency
distortion rather than recovering a high frequency deforma-
tion that cannot be represented by the flow of low frequency
vector field. Of course the bigger is the vector field basis the
better will be the repairs, and the slower will be the method.
In the experiments we presented the dimension of the vec-
tor field family can be reduced to 40 without influencing too
much the point-to-point map.

Another critical parameter is the number of eigenfunc-
tions we choose to represent the functional map C and CT 0 . If
the deformation is nearly isometric a small number is suffi-
cient as the functional map C is almost diagonal. These con-

(a) (b) (c)

(d) (e) (f)

Figure 7: Transfer of a function on the source meshes 7a and
7d to the target meshes using BIM 7b and 7e compared to
our method 7c and 7f.

(a) (b)

Figure 8: Visualization of the direction of the optimal vector
field corresponding to the experiment 7c: complete shape 8a
and close-up on the face 8b.

siderations also apply to the initial map T 0: a very distorted
map is badly approximated by a small number of eigenfunc-
tions and can severely influence our method. We found that
lowering the size a the function basis under 150 degrades
rapidly the quality of the results.

In principle our method should work for non-isometric
deformations provided we are given high-quality functional
map as input. To obtain such a map, the choice of the func-
tional basis would have to be modified in order to success-
fully encode the functional map in a reduced basis. This di-
rection is left as an interesting future work.

7.4. Performance

For performance evaluation the computation times are given
in the Table 1 in various cases. All the experiments have
been performed on laptop with a 1.4 GHz processor and 4Go

c© 2015 The Author(s)
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Mesh Vertices Optimization Flow
Horse 19248 369s 29.4s
Dog 25290 300s 20.4s
Centaur 15768 381s 39.0s
SCAPE 12500 231.8s 30.8s

Table 1: Average CPU time of each step for different mesh
size.

memory without parallelization. The timings are given for
the two steps of the method: solving the problem (8) and
tracing the flow lines. The time spent solving the optimiza-
tion problem is almost independent of the number of ver-
tices. The size of this problem depends only on the number
of computed eigenfunctions of the Laplace-Beltrami opera-
tor and on the dimension of the vector field family, which
are constant in all experiments. Note that the computation
of the flow does not scale linearly with the number of the
vertices. This is explained by the fact we compute a compo-
sition with the BIM map which may map many vertices to a
single point.

8. Conclusion, Limitations and Future Work

In this paper we presented a method for non-rigid shape
matching that is designed to output continuous maps. Our
approach combines the strengths of conformal-based ap-
proaches, which often guarantee continuity with the func-
tional map framework, which can enable low-distortion
maps on the space of functions. Key to our method is en-
forcing continuity via the flow of a vector field, which al-
lows our method to remain efficient by avoiding expensive
pairwise vertex constraints. One of the limitations of our
method is that we only approximate the flow of a single vec-
tor field, whereas in practice, for complex motions, a com-
bination of flows may be necessary. Extending our method
to such cases is possible, while taking care of the robustness
and non-accumulation of numerical errors. We are also plan-
ning to wider arrays of initial maps and ways to incorporate
the continuity directly in the optimization of the functional
maps.
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9. Appendix

Directional derivative of matrix exponential Let x0 be an
arbitrary vector and x(t) = exp(t ∑

n
i=1 aiDVi)x0, it is well

known that x(t) satisfies the ODE:

x′(t) =
n

∑
i=1

aiDVi x(t), x(0) = x0.

Moreover xh(t) = exp
(
t(∑n

i=1 aiDVi +hV j)
)

x0 is solution
of

x′(t) = (
n

∑
i=1

aiDVi +hV j)x(t), x(0) = x0.

We denote y(t) the directional derivative in the direction
V j:

y(t) = lim
h→0

1
h

(
exp

(
t(

n

∑
i=1

aiDVi +hV j)

)

−exp

(
t

n

∑
i=1

aiDVi

))
x0

Therefore the y(t) is the unique solution of{
x′(t) = ∑

n
i=1 aiDVi x(t), x(0) = x0

y′(t) = ∑
n
i=1 aiDVi y(t)+V jx(t), y(0) = 0

Finally, the directional derivative d jE is a block of the
matrix exponential of a bigger operator:(

E A
d jE B

)
= exp

(
t ∑

n
i=1 aiDVi 0

tV j t ∑
n
i=1 aiDVi

)
Note that if there are n vectors in the family of vector fields
we have to compute n matrix exponentials.

Optimality under blending noise A necessary condition
for CT to be a local minimum is:

∀X ∈ T (CT ), 〈X ,CT −Cα
T 〉F = 0

where T (CT ) is the tangent space of the set of all func-
tional map at the point CT . This tangent space has a simple
expression. Consider a small perturbation of CT by the flow
φ

t
V of vector field V ∈ V applied to an arbitrary function f :

lim
t→0

1
t

(
Cφt

V◦T f −CT f
)
= lim

t→0

1
t
(

f ◦φ
t
V ◦T − f ◦T

)
=

d
dt
( f ◦φ

t
V ◦T ) |t=0

= 〈V,∇ f 〉 ◦T

=CT (DV ( f ))

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.



E. Corman & M. Ovsjanikov & A. Chambolle / Continuous Matching via Vector Field Flow

The necessary condition becomes:

∀V ∈ V, (1−α)〈CT DV ,CT −CSCT 〉F = 0

If the deformation is nearly isometric isometric C⊥T ≈
CT−1 see [OBCS∗12], moreover C⊥T CSCT is an approxima-
tion of the internal symmetry on M.

Suppose that the functional basis is composed only by
even and odd functions with respect to the symmetry S.
Therefore the functional map associated to an internal sym-
metry is a diagonal matrix with 1 and −1 on the diagonal
correspong to the symmetric and antisymmetric eigenfunc-
tions.

The necessary condition becomes:

∀V, (1−α)〈DV , I−C⊥T CSCT 〉F = 0

If DV represents a divergence free vector field then it is
a skew symmetric operator as explained in ( [ABCCO13]).
Since I−C⊥T CSCT is a diagonal matrix the scalar product is
always zero. Therefore CT is a critical point of (8).
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