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Abstract. In this paper, we propose a novel pooling approach for shape
classification and recognition using the bag-of-words pipeline, based on
topological persistence, a recent tool from Topological Data Analysis.
Our technique extends the standard max-pooling, which summarizes the
distribution of a visual feature with a single number, thereby losing any
notion of spatiality. Instead, we propose to use topological persistence,
and the derived persistence diagrams, to provide significantly more infor-
mative and spatially sensitive characterizations of the feature functions,
which can lead to better recognition performance. Unfortunately, de-
spite their conceptual appeal, persistence diagrams are di�cult to han-
dle, since they are not naturally represented as vectors in Euclidean
space and even the standard metric, the bottleneck distance is not easy
to compute. Furthermore, classical distances between diagrams, such as
the bottleneck and Wasserstein distances, do not allow to build positive
definite kernels that can be used for learning. To handle this issue, we
provide a novel way to transform persistence diagrams into vectors, in
which comparisons are trivial. Finally, we demonstrate the performance
of our construction on the Non-Rigid 3D Human Models SHREC 2014
dataset, where we show that topological pooling can provide significant
improvements over the standard pooling methods for the shape pose
recognition within the bag-of-words pipeline.
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1 Introduction

In the recent years, databases of 3-dimensional objects have been getting larger
and larger. In order to automatically process these databases, many algorithms
relying on retrieval have been proposed. However, for certain tasks, classifica-
tion techniques can be more e�cient. E�cient classification pipelines have been
proposed for images and some elements of these techniques such as the bag-of-
words methods [1] or feature learning using deep network architectures [2] have
been used to perform retrieval and shape comparison. Traditionally, the bag-of-
words method relies on extracting an unordered collection of descriptors from the
shapes we consider, which are then quantized into a set of vectors called “words”.
The information given by this quantization process is then summarized using a
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pooling scheme, which produces a vector usable by standard learning algorithms.
Ideally, all the steps of this framework should be robust to transformations of
the shape: translations, rotations, changes of scale, etc. Modern bag-of-words
approaches for 3D-shapes usually rely on a pooling method called sum-pooling
[1] which consists in taking the average of the value of each words across the
shape.

Since its introduction for image processing in [3], the bag-of-words pipeline,
which we present in Section 4, has been improved in various ways. Here, we
focus on the pooling part of the framework. Apart from the traditional sum-
pooling approach, a popular pooling method, called max-pooling introduced in
[4], consists in taking the maximum of the value for each visual word. Several
works have highlighted the improvement in accuracy obtained using this pooling
scheme as well as its compatibility with the linear kernel for learning purposes,
[4, 5]. The strength of max pooling is due in part to its remarkable robustness
properties. One of the main assumptions made in the bag-of-words approach
is that the “word” values that compose the output of the encoding step, are,
for a given class and a given word, i.i.d random variables. Refinements of the
max-pooling scheme have been proposed under this assumption: for instance
[6] proposed to consider the k highest values for each words to estimate the
probability of at least k features being present in the object. However, the in-
dependence assumption of the word functions is unrealistic; for 3D shapes close
vertices tend to have similar word functions, as illustrated in Figure 1. Thus,
in this example, the generalization proposed by [6] ends up capturing the same
feature multiple times and providing multiple redundant values. On the other
hand, pooling on di↵erent parts of an image [7] and 3D shape [8, 9] has been
proposed to take advantage of spatial information, an approach known as Spa-
tial Pyramid Matching. This approach has drastically improved the performance
of the bag-of-words procedures on multiple datasets, although it contradicts the
identically distributed assumption, and lacks proper robustness guarantees.

In this work, we propose to see the word functions not as a unordered col-
lection of random values but as a random function defined on the vertices of a
graph (in our case, the mesh of the shape). Following this approach, we propose
to use persistent homology to capture information regarding the global struc-
ture of the word functions which is not available for the traditional max-pooling
approach.

Persistent homology was first introduced in the context of Topological Data
Analysis under the name size theory [10]. It was later generalized to higher di-
mensions as persistent homology theory [11, 12]. The 0-dimensional persistent
homology of the superlevel-sets of a function encodes the prominence of the
peaks of the function into a collection of points in the plane, called a persistence

diagram. These diagrams enjoy strong robustness properties [13–15]. One option
to compare persistence diagrams is to use a distance between diagrams such as
the bottleneck distance and to use nearest-neighbor algorithms as it was done by
[16]. However, in this work, we aim at being able to use classification algorithms
such as SVM or logistic regression that requires a Hilbert space structure, which
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Fig. 1. Example of a word function obtained on two di↵erent shapes in the same pose
and for the two di↵erent poses.

is not the case of the space of persistence diagrams. One approach to tackle
this issue is to make use of the “kernel trick” by using a positive-definite ker-
nel in order to map the persistence diagrams into a Hilbert space. As recently
shown by Reininghaus et al. [17], one cannot rely on natural distances such
as the Wasserstein distance to build traditional distance-based kernels such as
the Gaussian kernel. This led the authors to propose another kind of kernel. A
major limitation of their approach, however, is that these types of kernel are
non-linear and the complexity of the classification becomes linear with the size
of the training set which causes scalability issues. Another approach to directly
embed persistence diagrams into a Hilbert Space was proposed in [18]. However
this embedding is highly memory-consuming as it maps a single diagram into a
set of functions and is not appropriate for dealing with large datasets.

In this work, we propose to perform pooling by computing the persistence
diagrams of each word function. We then map these persistence diagrams into
Rd for some reasonable value of d -< 20- by considering the peaks with highest
prominence. Since we provide a direct mapping of persistence diagrams into Rd,
we can use it for the pooling stage for the bag-of-words procedure and achieve
good performance with respect to the classification phase. We call this pool-
ing approach Topological Pooling. Since it relies on persistence diagrams, this
method is stable with respect to most transformations the shape can undergo:
translations, rotations, etc., as long as the descriptors used in input are also in-
variant to these transformations. Moreover, we show that this pooling approach
is robust to perturbations of the descriptors. Finally we demonstrate the validity
of our approach compared to both sum-pooling and max-pooling by performing
pose recognition on the SHREC 2014 dataset.

2 The bag of words pipeline

The bag-of-words pipeline consists of three main steps: feature extraction, coding
and pooling. Here we describe each step briefly taking a functional point of view,
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and we also introduce the notations we will need to define our new pooling
method. We will assume that the input to the pipeline is a set of M 3D-shapes
G

i

represented as triangle meshes with vertices V
i

.
Feature extraction aims at deriving a meaningful representation of the shape:

the feature function denoted as F
i

: V
i

! RN . It is usually done by computing
local descriptors (such as HKS [19], SIHKS [20], WKS [21], Shape-net features
[2], etc.) on each vertex of the mesh.

The purpose of coding is to decompose the values of the F
i

by projecting
them on a set of points W = (w

k

)
k2[|1,K|] 2 RN called a codebook. This allows

to replace each feature function by a family of functions (C
i,k

: V
i

! R)
k2[|1,K|],

called the word functions. In other words, for a coding procedure Coding and
codebook W , the C

i

are defined through

C
i,k

(V
i

) = Coding(F
i

(V ),W ).

There exist various coding methods, such as Vector Quantization [22], Sparse
Coding [4], Locally Constrained Linear Coding [23], Fisher Kernel [24] or Super-
vector [25]. The codebook is usually computed using K-means but supervised
codebook learning methods [23], [5] generally achieve better accuracy. In the
Sparse Coding approach, the one we use in this paper, W and C are computed
on the training set following

min
(Ci,k)i,k,W

MX

i=1

X

x2Vi

k(F
i

(x))�
X

k=1K

C
i,k

((F
i

(x)))w
k

k22 + �kC
i

((F
i

(x)))k1,

with constraint kw
i

k  1 and regularization parameter �. During the testing
phase, the optimization is only performed on C with the codebook already com-
puted.

The pooling step aims at summarizing properties of the family (C
i,k

)
i,k

and
representing them through a compact vector (P

i

)1iM

which can then be used
in standard learning algorithms such as the SVM (Support Vector Machine).
Usually, the pooling method depends on the coding scheme. For Vector Quanti-
zation, one traditionally uses sum-pooling:

P
i

= (SumPool(C
i,1), ..., SumPool(C

i,K

))

= (
X

x2Vi

C
i,1(Fi

(x)), ...,
X

x2Vi

C
i,K

(F
i

(x))).

Max-pooling was introduced along the Sparse Coding scheme by Yang et al. in
[4]. With this pooling technique, we summarize a function by its maximum:

P
i

= (MaxPool(C
i,1), ...,MaxPool(C

i,K

))

= (max
x2V

C
i,1(Fi

(x)), ...,max
x2V

C
i,K

(F
i

(x))).

It is interesting to note that the max-pooling approach is more robust than
the sum-pooling. Indeed, it is robust to usual transformations the shape can
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Fig. 2. A function f (red), a noisy approximation f̃ of f (blue) and their respective
local maxima. Despite having a lot of local maxima, f̃ only has two “prominent peaks”
(green and yellow).

undergo: translations, rotations, changes of scales, etc. However, it is still quite
limited as it summarizes a whole function by a single value. A natural idea is to
not limit ourselves to the global maximum of the function but rather to capture
all local maxima. On the other hand, in this naive form, the method results
in a very unstable pooling vector since arbitrarily small perturbations of the
word functions can create many local maxima, as shown in Figure 2. Thus, a
pooling approach consisting of taking the highest k local maxima is not stable.
On the other hand, in the example shown in Figure 2, we can see that, while
there are a lot of local maxima for the noisy function, both functions show only
two “prominent peaks”. These notions of “peak” and “prominence” are properly
defined in the 0-dimensional persistent homology framework which provides us
with tools to derive a robust pooling method.

3 Introducing 0-dimensional persistent homology

0-persistent homology provides a formal definition of prominence and mea-
sures the prominence of each peak of a function f , with the promise that the
most prominent ones are stable under small perturbations of f . We provide a
brief overview of the computation of 0-dimensional persistent homology for the
superlevel-sets of a function defined on a graph, and invite the reader to consult
[11] for a more general introduction.

Let f be a function defined on the vertices of a finite graph G = (V,E). In 0-
dimensional persistent homology, one focuses on the evolution of the connectivity
of the subgraphs F

↵

of G induced by the superlevel-sets of f : F
↵

= ({v 2 V |
f(v) � ↵}, {(u, v) 2 E | min(f(u), f(v)) � ↵}), as ↵ decreases from +1 to �1,
as shown in figure 3. A vertex v is a local maximum if, for any edge (v, u) in E,
we have f(u)  f(v). A peak p corresponds to a local maximum b

p

= f(v
p

) of f .
We say that p is born at b

p

, see figure 3.(b). For a local maximum v
p

, let C(v
p

,↵)
be the connected component of v

p

in F
↵

and let d
p

be the largest value of ↵ such
that the maximum of f over C(v

p

,↵) is larger than b
p

, we say that p dies at
d
p

. Intuitively, a peak dies when its connected component gets merged with the
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y = x

(a) (b) (c) (d) (e) (f) (g)

Fig. 3. Evolution of the connectedness of the superlevel-sets F↵ of a function f in blue
(a) as ↵ (green) decreases from +1 to �1 (b-f). This evolution is then encoded in a
persistence diagram (g).

one of another peak that has a higher maximum. Thus, there exists a vertex u
p

which connects the two components such that f(u
p

) = d
p

. u
p

is called a saddle,
see figure 3.(c). The “prominence” of p is then the di↵erence b

p

� d
p

. The peak
corresponding to the global maximum of f dies when ↵ reaches the minimum
value of f on G3. Thus, a peak of f can be described by the couple (b

p

, d
p

). The
set of such points (with multiplicity) in the plane is called a persistence diagram,
denoted �

f

, see figure 3.(g).
Persistence diagrams are endowed with a natural metric called the bottleneck

distance. The definition of this metric involves the notion of partial matching.
A partial matching M between two diagrams �1 and �2 is a subset of �1 ⇥�2

such that each point of �1 and �2 appears at most once in M . The bottleneck
cost C(M) of a partial matching M between two diagrams �1 and �2 is the
infimum of � � 0 that satisfy the following conditions:

– For any (p1, p2) 2 M , ||p1 � p2||1  �, and
– For any other point (b, d) of �1 or �2, b� d  2�.

The bottleneck distance between two diagrams D1 and D2, is then defined as:

d
B

(�1,�2) = inf
�

{� | 9M,C(M)  �}

Intuitively, the bottleneck distance can be seen as the cost of a minimum perfect
matching between persistence diagrams (with possibility to match points to the
diagonal y = x), where the cost is the length of the longest line, see figure 4.
A remarkable property of persistence diagrams, proven by [13] and [15], is their
robustness with respect to perturbations of f . Given two functions f and g
defined on some graph G, we have:

d
B

(�
f

,�
g

)  ||f � g||1 = sup
v2V

|f(v)� g(v)| (1)

In other words, if we compare the diagrams of a function f and of a noisy version
of a function f̃ then each point p 2 D

f̃

can either be matched to a point of D
f

or it has a low prominence, see figure 4.

3 This point is slightly di↵erent from the traditional persistent homology framework.
Usually, the death value of the peak corresponding to the global maximum is set to
�1.
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y = x

(a) (b)

Fig. 4. (a): A real-valued function f (red) and a noisy approximation f̃ of f (blue).(b):
Their respective persistence diagrams have close bottleneck distance.

Computation As 0-dimensional persistence encodes the evolution of the connec-
tivity of the superlevel-sets of a function, computing it can be done using a simple
variant of a Union-find algorithm; in practice we use Algorithm 1 described by
Chazal et al. [26], with parameter ⌧ set to infinity. This algorithm has close to
linear complexity in the number of vertices of the meshes; more precisely it has
complexity O(|V | log(|V |) + |V |↵(|V |)) where ↵ is the inverse of the Ackermann
function.

4 Using persistence diagrams for pooling.

As we previously mentioned at the end of Section 4, a simple idea to enhance
the max-pooling approach is to consider the values of multiple local maxima.
However, this can be highly unstable under small perturbations of the word
functions. As we saw in Section 3, we can use persistence diagrams to deal with
this issue. Given a persistence diagram �, we define the prominence p of a point
(b, d) 2 � by p = b � d; in other words, the prominence corresponds to the
lifespan of a peak during the computation of the persistence diagram. Given a
function f on a graph G, we define the infinite-dimensional Topological Pooling
vector of f with i� th coordinate given by

TopoPool(f)
i

= p
i

(�
f

),

where p
i

(�
f

) is the i-th highest prominence of the points of �
f

if there is at
least i points in �

f

and 0 otherwise. Since the stability of persistence diagrams
given in Equation 1 implies the stability of the prominence of the points of �

f

,
such a construction yields some stability for our pooling scheme.

Proposition 1 Let G be a graph and f and g two functions on a graph G with

vertices V . Then, for any integer n, and any 0 < k < n,

|TopoPool(f)
k

� TopoPool(g)
k

|  2 sup
x2V

|f(x)� g(x)|
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Of course, in practice we cannot use an infinite-dimensional vector and we simply
consider a truncation of this vector keeping n first coordinates, we denote such
a truncated pooling vector “TopoPool-n”. Using the notations of Section , given
some n > 0, the pooling vectors (P

i

)1iM

we consider are

P
i

= (TopoPool � n(C
i,1(Fi

(x))), ..., T opoPool � n(C
i,K

(F
i

(x)))).

5 Experiments

Fig. 5. The real SHREC 2014 dataset

In this section we evaluate the sum-pooling, the max-pooling and our topo-
logical pooling approaches on the SHREC 2014 dataset “Shape Retrieval of
Non-Rigid 3D Human Models” [27], which we modify by applying a random
rotation to each 3D shape. The dataset is composed of 400 meshes of 40 sub-
jects taking 10 di↵erent poses and we wish to classify each of these meshes with
respect to the pose taken by the subject. We consider both SIHKS features [20]
and curvature-based features corresponding to the unary features from [28] and
composed of 64 values corresponding to the curvatures, the Gaussian curvature,
the mean curvature . . . The coding step is performed using Sparse Coding [4]
and the computation are performed performed using the SPAMS toolbox [29].
The learning part is done using a Support Vector Machine. We use 3 shapes
per class for the training set, 2 for the validation set and 5 for the testing set.
We compare the traditional sum-pooling with our TopoPool-n with di↵erent val-
ues for n -remark that n = 1 is equivalent to max-pooling- and under di↵erent
codebook sizes. As a baseline, we also display the results obtained using a rigid
Iterated Closest Point (ICP) [30] and a 1-nearest neighbour classification, which
aims at iteratively minimizing the distance between two point clouds through
rigid deformations. In our case it corresponds to finding the correct rotation to
align the shapes as two shapes in a similar pose are close, however the approach
can fail if it gets stuck in a local minimum and is not able to recover the correct
rotation. We run the experiment a hundred times, selecting the training and
testing sets at random. We display the mean accuracy over the multiple runs in
Table 5.
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Pooling / Codebook size 40 60 80 100 120 140 160 180 200
SIHKS features
Sum-Pooling 0.53 0.56 0.60 0.60 0.58 0.62 0.61 0.60 0.60
TopoPool-1 0.46 0.55 0.53 0.54 0.58 0.59 0.63 0.64 0.64
TopoPool-5 0.69 0.71 0.69 0.70 0.73 0.70 0.74 0.73 0.72
TopoPool-10 0.70 0.71 0.71 0.69 0.72 0.71 0.73 0.74 0.72
TopoPool-15 0.72 0.73 0.71 0.70 0.74 0.71 0.74 0.75 0.71
TopoPool-20 0.72 0.73 0.70 0.72 0.73 0.72 0.73 0.75 0.73
Curvature features
Sum-Pooling 0.80 0.80 0.84 0.85 0.88 0.88 0.87 0.88 0.89
TopoPool-1 0.39 0.56 0.56 0.57 0.64 0.69 0.69 0.73 0.76
TopoPool-5 0.63 0.79 0.80 0.80 0.82 0.85 0.86 0.87 0.86
TopoPool-10 0.74 0.85 0.85 0.86 0.86 0.87 0.89 0.89 0.88
TopoPool-15 0.78 0.85 0.87 0.87 0.88 0.89 0.89 0.90 0.90
TopoPool-20 0.79 0.88 0.88 0.88 0.88 0.89 0.90 0.90 0.89
ICP 0.55

Table 1. Mean accuracy obtained on the SHREC 2014 dataset.

The first noticeable fact about our experiments being the overall better re-
sults obtained by our Topological Pooling scheme compared to the max-pooling
and to the sum-pooling for the SIHKS features. In the case of curvature fea-
tures, Topological Pooling and sum-pooling gives similar accuracy results for
large codebooks but in the case of smaller codebooks, Topological pooling gives
much better results. It is interesting to notice that the gap between the di↵er-
ent pooling scheme decreases as the size of the codebook increases. Indeed, the
smaller the codebook, the richer each word function in terms of topology -and
thus the richer each persistence diagrams will be-.

Regarding the running time of our experiment in the case of SIHKS features,
online testing using the bag-of-words procedure with the largest codebook to
a given shape takes around 40 seconds, where most of the time is devoted to
computing the SIHKS. On the other hand, performing ICP between two shapes
takes 6 seconds, thus the online testing time for a single shape with ICP is 6 times
the cardinality of our training set seconds; in our case 5 minutes. On the other
hand, with the ICP approach requires no o✏ine training while the bag of words
requires to compute the codebook, perform the whole bag-of-words pipeline on
each training shape and compute the SVM which takes roughly 45 minutes.
Overall we have to classify 350 shapes, the bag-of-words approach requires 4
hour and a half while the ICP approach requires more than a day.

6 Conclusion

In this paper, we proposed to use the canonical graph structure on shapes to
capture neighborhood information between the di↵erent feature vectors. We then
built discrete “word functions” on this graph instead of following the traditional
approach of considering a collection of independent “word” vectors. We then
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proposed to consider new pooling features making use of this new information
and generalizing the classical max-pooling approach by using the critical points
of the “word functions”. We proposed to use 0-dimensional persistent homol-
ogy to ensure stability of a pooling output relying on these features. Finally, we
designed a new pooling method relying on these new features and we experi-
mentally showed that these features are e�cient in a pooling context.
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