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Sapienza University of Rome

rodola@di.uniroma1.it

Maks Ovsjanikov
Ecole Polytechnique, IP Paris
maks@lix.polytechnique.fr

Simone Melzi
Ecole Polytechnique, IP Paris
Sapienza University of Rome

melzi@di.uniroma1.it

Abstract

In this document we collect some additional details
about the proposed method, architecture and results, that
due to lack of space were not included in the main
manuscript.

1. Architecture

Meshes. When X is discretized as a mesh (typical in graph-
ics and geometry processing applications), the AE architec-
ture is a multilayer perceptron (MLP) with a bottleneck and
dimensions: n × 3 ) 300 ) 200 ) 30 ) 200 ) n × 3; each
layer, except for the last one, is followed by tanh activation.
The maps π and ρ are both parametrized by a MLP with di-
mensions: k ) 80 ) 160 ) 320 ) 640 ) 320 ) 160 ) 80 ) k;
each layer, except for the last one, is followed by batch norm
and SeLu activation. We use batch size 16, and the Adam
optimizer with learning rate equal to 10−4. Note that we
also use this architecture for 2D contours, which are dis-
cretized as (2-regular) cycle graphs.

Unorganized point clouds. In this case we do not assume
the training data to have a consistent vertex labeling. To
tackle this setting, we use a PointNet [6] encoder and a fully
connected decoder1; we use the MLP from the mesh case
for the decoder. The encoder consists in a shared MLP net-
work on each point with layer output sizes 64 and 128; each
layer is followed by batch norm. A maxpool layer is then
used to output a 128-dimensional vector, which is reduced
with a tanh-activated MLP to dimensions: 128 ) 64 ) 30.

The full implementation of the proposed architecture

1As suggested by the authors of [6] in https://github.com/
charlesq34/pointnet-autoencoder

and the data that we used in our experiments can be retrived
here: https://github.com/riccardomarin/
InstantRecoveryFromSpectrum.

2. Analysis of increasing bandwidth (k)

We performed an experimental analysis for different val-
ues of k (the number of Laplacian eigenvalues given as in-
put). This parameter affects both the amount of information
used by the network (i.e., more eigenvalues) and the capa-
bility of the learned representation (i.e., higher-dimensional
latent space). We evaluate our model with k = 15, k = 30
and k = 60 on the shape-from-spectrum reconstruction
task, using exactly the same dataset and experimental setup
as in Table 1 of the main manuscript.

The quantitative results are reported in Table 1. While
cutting k by half produces a sensible performance degra-
dation, we observed that doubling it achieves just slightly
better results. For this reason, in our experiments we set-
tled for a value of k = 30. From a qualitative perspective,
our results suggest that without changing other architecture
details, a larger value for k can achieve better precision on
the high-frequency details (e.g., the pose of the mouth); as
shown in Fig. 1.

full res 1000 500 200
k = 30 1.61 1.62 1.71 2.13

k = 15 3.74 3.78 3.72 3.59

k = 60 1.60 1.52 1.79 2.05

Table 1. Shape-from-spectrum reconstruction comparisons with
different k trained for the same number of epochs; we report av-
erage error over 100 shapes of an unseen subject from the COMA
dataset [7]. All errors must be rescaled by 10−5.
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Figure 1. Examples of shape-from-spectrum reconstructions at dif-
ferent values for the spectral bandwidth k; see Table 1 for a quan-
titative evaluation.

3. Laplace-Beltrami operator discretization

One of the advantages of our pipeline is that we can use
the cubic FEM (e.g. [8, Sec. 4.1]) to discretize the Laplace-
Beltrami operator, virtually without any additional cost if
compared with the linear finite elements. The cubic FEM
yields a more accurate discretization and improves the qual-
ity of the results produced by our pipeline. In Fig. 2 we col-
lect additional comparisons between the two different dis-
cretizations.

4. Training and test details

Here we summarize the data involved in the trainings and
in the experiments. In the code that we will release upon
acceptance, we will attach pre-processing scripts and when
possible the data used to permit replication.

Overall, we perform five different trainings: for CoMa
and SMAL datasets we train the dense and the PointNet
version of our Network on the same set of data. We ob-
tained the point clouds for PointNet trainings with a sparse
sampling over the original meshes (the number of sampled
point is around 20% of the mesh vertices at full resolution):
some examples of training point clouds are shown in Fig-
ure 3. For the ShapeNet dataset, only the PointNet version
is trained using 500 points for shape. The applications use

unknown
target

linear FEM cubic FEM

Figure 2. Additional comparisons (one per row) between the use of
eigenvalues of the Laplacian discretized with linear FEM or with
cubic FEM in our shape-from-spectrum pipeline. The heatmap
encodes point-wise reconstruction error, growing from white to
dark red. “Unknown target” in the left-most column refers to the
source shape from which the eigenvalues are computed.

Figure 3. Examples of point clouds used to train the PointNet ver-
sion of our network in case of CoMa (first row) and SMAL (second
row).

these five models, and we do not do any ad-hoc optimization
for different tasks.

Concerning the involved training sets:

CoMa. We use 1,853 shapes randomly picked between 11
subjects from the CoMa dataset [7] (168 shapes for each
subject), leaving out the 12th subject for testing purpose.

SMAL. We use 4,430 animal meshes generated with the
SMAL [9] generative model, among all the five possible
classes. Thanks to the method explained in the original pa-
per, we can cluster them in the correct races while we ex-
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Figure 4. Comparison in shape from spectrum estimation between isospectralization [3] and our method in the case of meshes (left)
and point clouds (right). The Init. shape on the left is the neutral shape of the SMAL[9] generative model used as initialization of
isospectralization algorithm for animals. The target shapes in the point cloud case are shown under the point clouds.

plore the inter-class variety.

ShapeNet. We would remark that ShapeNetCore dataset [2]
is not practical for standard spectral analysis since the mod-
els consist of non-manifold disconnected pieces. For this
reason, we used a processed watertight version of it [4].
From it, we pruned the meshes that still have artifacts (e.g.
disconnected components). Finally, we remeshed the re-
maining ones to have at maximum 10K vertices. For train-
ing, we relies on four different classes: airplanes, boats,
screens, and chairs. We pick 2,047 meshes from these
classes, among the ones with a more reliable spectrum (i.e.
removing outliers case). This last property was not con-
sidered for the test set, to challenge ourselves also against
non-standard models (as you can see in Figure 11 of the
main manuscript, where the target airplane has a tail’s part
missing).

Concerning the quantitative experiments:

Shape from spectrum. This experiment was performed on
a total of 400 shapes; 100 shapes of the unseen subject from
the CoMa dataset at four different resolutions.

Estimating point cloud spectra. Here we consider a total of
1, 186 models for the test: 393 shapes of different subjects
from FLAME [5] dataset at two different samplings, and
400 shapes from ShapeNet from the four classes.
Shape matching. Finally, for the shape matching, we con-
sider 100 couples of random animals of different species.
These animals are generated with the same method of the
above training set, but with higher variance in the genera-
tive space of SMAL. In this way, the testset presents more
extreme characteristics of the ones seen at training time. For
matching, we mainly consider extreme cases where high
non-isometric deformation occurs (e.g.as shown in Figure
11 between hippos and horses). As a final comment, we
would emphasize that our results against Nearest-Neighbor

suggest our generalization capability and the real challenge
of our testsets.

5. Shape from spectrum

In the task of recovering shapes from Laplacian spec-
tra we compared with the isospectralization approach in-
troduced in [3]. In Fig. 4, we report some qualitative ex-
amples from SMAL dataset [9] and ShapeNet dataset [4].
For SMAL, both the unknown shape to be recovered and
our reconstruction are meshes (left panel of Fig. 4); for
objects from ShapeNet, our network has been trained on
unorganized sparse point clouds, so the reconstruction in
this case is a point cloud as well (right panel of Fig. 4).
Our method recovers shape from spectrum in a single for-
ward pass, while isospectralization deforms an initial shape
such that its spectrum align the one of a target shape using
geometric regularizers. As initialization for isospectraliza-
tion we used the template of SMAL [9] for animals, and the
closest (in terms of distance between the eigenvalues) shape
from our training set for objects of ShapeNet. Even so,
isospectralization produces unrealistic instances or fails to
capture the geometry of the target compared to our method.

6. Super-resolution

Our trained network model is largely insensitive to mesh
resolution and sampling as we show in our experiments in
the main manuscript. This property makes our network ap-
propriate for the task of mesh super-resolution. Given a
low-resolution mesh as input, we can recover a higher reso-
lution counterpart of the mesh that is also in dense point-to-
point correspondence with models from the training set. We
can do that in a single shot starting only from the spectrum
of the input low-resolution mesh. In Fig. 5, we show a com-



Target Ours NN

10
00

Target Ours NN Target Ours NN

50
0

20
0

Figure 5. Mesh super-resolution for input shapes at decreasing resolution (top to bottom, target shapes have respectively 1000, 500 and
200 vertices). Our solutions match closely with the original high-resolution version of the input shapes, while the nearest neighbor baseline
(NN) predicts the wrong identity or pose.

ta
rg

et

∼4000 1000 500 200

in
pu

t
C

os
m

o
[3

]
N

N
ou

rs

ta
rg

et
∼4000 1000 500 200

in
pu

t
C

os
m

o
[3

]
N

N
ou

rs

Figure 6. Two mesh super-resolution examples for input shapes at decreasing resolution (top row of each of the two images, left to right).
Our solutions match closely with the original high-resolution version of the input shapes (top left), while other approaches either predict
the wrong pose (NN baseline) or generate an unrealistic shape (Cosmo et al.).

parison with nearest-neighbors (NN) between eigenvalues
(with shapes within the training set), and the isospectral-
ization method of Cosmo et al. [3] for two different shapes
from a subject that is not involved in the training of our net-

work model.

In Fig. 6, we perform the same experiment on three dif-
ferent shapes never seen during the training, and belonging
to a subject whose other poses are in the training set. This
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Figure 7. Comparison between interpolation in the space of eigenvalues (left) and the interpolation in the latent space (right). The input
shapes are four low-resolution versions of as many shapes from the training set.

comparison highlights that our method generalizes better
than NN also for shapes that should be well described by the
training set. This allows us to state that navigation driven by
the eigenvalues is more accurate than NN navigation of the
latent space.

7. Spectral shape exploration

In the main manuscript, we show two different sub-tasks
of shape exploration: shape interpolation and interactive
spectrum-driven exploration.

As we claim in the main manuscript, an alternative for
shape interpolation is to regard the eigenvalues themselves
as a space that we can explore, as is typically done with
latent spaces. In Fig. 7, on the same four low-resolution
shapes, we compare interpolation in the latent space (on the
right) with interpolation in the space of the eigenvalues (on
the left). The former evaluation is also included in the main
manuscript. For the latter, given the four shapes, we first
compute their spectra, directly perform a bilinear interpola-
tion among these spectra, and finally reconstruct the corre-
sponding shapes. Also in this case, the entire procedure can
be performed for shapes with different connectivity. The
linear interpolation among spectra gives rise to meaningful
results. However, observe that the space of spectra (where
each point is a different sequence of eigenvalues) is not
a proper vector space, and taking linear steps is not com-
pletely appropriate in this domain.

We support this with two additional figures. In Fig. 8, for
four shapes in the training set, we provide a denser linear
interpolation in the space of the eigenvalues. In Fig. 9, we

show the same linear interpolation between the spectra of
a pair of shapes that come from two different datasets, and
which were never seen in the training phase. Both cases
confirm that interpolation can indeed be performed in the
space of eigenvalues.

Finally, in a video attached to these supplementary mate-
rials, we show a demo of interactive spectrum-driven shape
exploration. In the video, we modify the eigenvalues of a
given shape and we show how these modifications allow us
to interactively navigate the space of shapes.

8. Style transfer
As described in the main manuscript, we apply our

trained network for the style transfer task. In Fig. 10 we
show some additional examples. We emphasize here that
our method is correspondence-free, since the input eigen-
values completely encode the target style. Our method also
does not rely on the presence of the undeformed source
shape, used in previous analogies applications, e.g. [1]
that phrased the problem of finding X such that (A → B,
C → X) for some known A,B,C. These examples con-
firm the robustness and accuracy of the proposed method in
this application.
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Figure 10. Examples of style transfer. The target style (middle) is
applied to the target pose (left), obtaining our result (right).


