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1. Smoothness Reformulation
In this section, we give details on the reformulation of

smoothness methods provided in the main manuscript.

1.1. Non-Rigid ICP

Non-Rigid ICP (nICP) [1] deforms a source shape S1

into a target shape S2 using a per-vertex affine deformation
D. Global energy reads, trying to fit a pointwise map Π12

Enicp(Π12,D) =
∥∥D∥∥2

W1
+ β

∥∥D ◦X1 −Π12X2

∥∥2
A1

(1)

with
∥∥D∥∥2

W1
=

∑
i∼j wij

∥∥Di − Dj

∥∥2
F

and D ◦ X1 the
deformed vertex coordinates. Given a point-wise map Π12,
one can directly incorporate this energy in our algorithm,
where solving for Y12 is replaced by solving for D, and then
setting Y12 = D ◦ X1. Solving for D reduces to a simple
linear system, as explained in [1]. Note that in the original
work, nICP algorithm uses graph Laplacian instead of cotan
Laplacian, but we find that using cotan weights is more sta-
ble in the case of triangle meshes. We furthermore ignored
landmarks preservation terms, borders skipping heuristic,
normals preservation and self-intersection verification pro-
cedures for simplicity.

1.2. As-Rigid-As-Possible

As-Rigid-As-Possible (ARAP) [12] promotes local
rigidity of the deformation of a shape S1 using per-vertex
rotations R, which results in minimizing the following en-
ergy:

Earap(R, Y ) =
∑
i∼j

wij

∥∥(yi − yj)−Ri(xi − xj)
∥∥2
F

(2)

where yi are the expected vertex coordinates and xi the un-
deformed coordinates.

We observe that the ARAP energy can be decomposed
into two main components including a smoothness term and
a rigidity term:

Earap(R, Y ) = Esmooth
arap (Y )− 2Erigid

arap (R, Y ) + const. (3)

Esmooth
arap (Y ) =

∑
(xi, xj)∈E(S1)

wij

∥∥yi − yj
∥∥2
F

(4)

Erigid
arap (R, Y ) =

∑
(xi, xj)∈E(S1)

wij(yi − yj)
TRi(xi − xj)

(5)

with Esmooth
arap =

∥∥Y ∥∥2
W1

= ED(Y ). Note, however, that
the default ARAP energy does not have a coupling term to
ensure that Y remains on the surface of S2. Therefore, to
avoid a trivial solution, such an energy must rely on pre-
existing landmarks to make sure that the deformation maps
onto the target shape. In our algorithm, given a pointwise
map Π12, we instead decide to add a coupling term between
the expected coordinates Y12 and transferred coordinates
Π12X1, which slightly modifies the linear system to solve
when minimizing over Y12, but doesn’t involve the rotations
R. Therefore, given a pointwise map Π12, one first needs to
compute local rotations R and can then obtain the expected
coordinates Y12 by solving a linear system.

1.2.1 Smooth Shells

Smooth Shells [5] models the deformation D as a simple
per-vertex translation seen as a function S1 → R3, which
is restricted to lie in the spectral basis of size K, i.e., D ∈
RK×3. In addition smooth shells uses the ARAP energy to
enforce the smoothness of the deformation, which therefore
adds additional local rotation R. Specifically, X1 + Φ1D
would give the updated vertex positions and the smoothness
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Figure 1. Example of wrapping a DRAKE shape to a CRYTO shape
to establish cross-category correspondences.

is then defined as:

Esmooth
shells (D,R) = Earap(R, X1 +Φ1D) (6)

The smoothness energy is again associated with a coupling
term which ensures the deformed shape remains close to the
current correspondences ∥X1 + Φ1D − Π12X2∥2A1

. Note
that in the original work, vertices X1 and X2 are also pro-
jected to a spectral basis, and extra feature and normal
preservation terms are added. In practice, solving for D
reduces to solving a K ×K linear system, compared to the
n× n linar system obtained with standard ARAP.

1.2.2 Reversible Harmonic Maps

Reversible Harmonic Maps (RHM) [6] directly minimizes
the Dirichlet energy of a map without manipulating de-
formation fields. To avoid making the map collapse the
authors look for bijective maps with the lowest possible
Dirichlet energy. Vertices of the pull-back shape ΠijXj for
(i, j) ∈ {(1, 2), (2, 1)} are again estimated via an auxiliary
variable Yij and the energy reads as the sum in both direc-
tions of Ehalf

rhm with :

Ehalf
rhm (Πij ,Πji, Yij , Yji) = ED(Yij) + Ebij

rhm(Πji, Yij)

+ Ecouple
rhm (Πij , Yij).

(7)

Here, again, we recognize the Dirichlet energy of the esti-
mated map ED(Yij), and two terms Ebij

rhm and Ecouple
rhm which

respectively enforce bijectivity and coupling:

Ebij
rhm(Πji, Yij) =

∥∥ΠjiYij −Xj

∥∥2
Aj

(8)

Ecouple
rhm (Πij , Yij) =

∥∥Yij −ΠijXj

∥∥
Ai

(9)

This formulation leads to a computationally expensive it-
erative solver, which can obtain to great results given an
already good initialization. Additionally, the authors use a
high-dimensional embedding obtained via MDS [4] which
mimics the geodesic distance, instead of directly using the
embedding coordinates.

2. DEFORMTHINGS4D-MATCHING Dataset
Here we discuss in details how we construct our dataset

from the DEFORMTHINGS4D [7] for shape matching task:

1. Select Models. We first pick models in DE-
FORMTHINGS4D that are close to watertight. Specifi-
cally, we only keep the models where the number of ver-
tices in the largest connected components is more than
75% of the total number of vertices. Then the largest
connected component is taken if the model is discon-
nected. As a result, we get 56 animal models and 8 hu-
manoid models.

2. Select Poses. For each watertight model, we collect all
motion clips in DEFORMTHINGS4D and select poses
from all the frames that are sufficiently different from
each other. Specifically, we first pick a base pose that is
close to an A-pose: we find the pose that has large range
in z-axis and has relatively small range in xy-axis. We
then recursively find new pose from the collection that
have the largest difference in vertex positions to the cho-
sen ones, until we get 50 poses or all the poses are in-
cluded. We then manually check each chose pose and
remove unrealistic poses with large distortion or self-
intersection. As a result, the number of poses for each
model has a range from 30 to 50.

3. Remeshing. The chosen poses in each model are in the
same triangulation, which can lead to overfitting issues
for some shape matching methods [11]. We therefore ap-
ply a geometry-aware remeshing algorithm, LRVD [13],
to independently remesh all the poses to the resolution
of around 8K vertices. The correspondences between
the remeshed shapes are propagated by nearest-neighbor
searching between the remeshed shapes and the origi-
nal shapes. To fix the potential topological errors in the
nearest neighbor map, we apply spectral ICP [8] at di-
mension 500 of the Laplace-Beltrami Basis.

4. Wrapping. We also provide cross-category correspon-
dences for the 8 humanoid models. Specifically, we
use the commercial software R3DS to wrap the rest 7
models (ZLORP, MANNEQUIN, DRAKE, NINJA, PRIS-
ONER, PUMPKINHULK, SKELETONZOMBIE) to the
chosen model (CRYPTO, the left-most shapes in Fig. 2
in the main paper). For each pair, we manually select
50-80 landmarks on shapes for wrapping. Note here we
wrap the original models and propagate the correspon-
dences to the remeshed shapes afterwards. Specifically,
the cross-category correspondences among the original
poses can be established by nearest-neighbor searching
between the wrapped shape and the target shape (see
Fig. 1 for an example of a wrapped shape), which are
then propagated to the remeshed poses similar to step
3. Note that, since some shapes are far from isometry
or even incomplete, the wrapped results are not perfect,
and hence the established correspondences via map com-
positions can be inaccurate. In general, as illustrated in



Table 1. Accuracy on DEFORMTHINGS4D-MATCHING

methods
near-isometric partial non-iso

ZLORP DRAKE MANNEQUIN NINJA PRISONER ZOMBIE

Init 11.49 9.59 8.62 10.43 20.78 15.33

Ours w/ ARAP 11.22 9.04 8.10 9.88 19.91 14.83
Ours w/ nICP 7.29 7.07 4.61 5.25 21.18 11.95
Ours w/ Shells 3.25 7.78 4.11 4.73 20.27 10.32

ZO 3.43 5.74 3.33 4.61 20.59 13.71
DO 3.26 5.95 3.64 5.10 19.59 16.53

Ours w/ D 3.72 6.93 4.18 4.80 19.81 9.71
Ours w/ RHM 3.70 5.63 3.94 5.46 18.85 11.00

Table 2. Bijectivity on DEFORMTHINGS4D-MATCHING

methods
near-isometric partial non-iso

ZLORP DRAKE MANNEQUIN NINJA PRISONER ZOMBIE

Init 11.69 7.17 6.58 10.69 22.53 11.52

Ours w/ ARAP 11.93 7.25 7.69 10.42 21.71 11.18
Ours w/ nICP 3.63 2.73 2.58 2.49 7.17 4.71
Ours w/ Shells 1.67 2.16 2.22 2.23 3.56 3.71

ZO 2.14 4.05 1.37 3.99 21.19 10.11
DO 1.27 1.55 1.63 1.46 2.26 2.52

Ours w/ D 1.77 2.12 2.30 2.25 3.60 3.74
Ours w/ RHM 1.42 1.84 1.82 1.94 2.81 3.24

Fig. 2 in the main paper, the established correspondences
are in reasonable accuracy.

3. FAUST dataset
The FAUST dataset [3] consists in 100 meshes of 10 in-

dividuals in 10 different poses.
This dataset is used as a standard benchmark for most

shape-matching algorithms. However as all shapes are near-
isometric, many methods achieve smooth and accurate re-
sults for this dataset. This therefore gives very little room
for improvement regarding the smoothness.

We provide results on a random subset of 200 pairs in
the main manuscript, where pairs we selected so that only
cross-individual ones are considered.

4. Additional Results
We evaluate different methods using accuracy, bijectiv-

ity, coverage, and smoothness of the maps as metrics. We
also report runtime to compare the efficiency. Specifically,
we compute the geodesic distances between the obtained
maps Tij and the ground-truth maps (if available) to mea-
sure the accuracy (see Tab. 1). Similarly, we compute the
geodesic distances between the composite maps Tij ◦ Tji

and the identity map Ini to measure the bijectivity of the
pointwise maps (see Tab. 2). We compute the Dirichlet en-
ergy on the obtained pointwise maps to evaluate the smooth-

Table 3. Coverage on DEFORMTHINGS4D-MATCHING

methods
near-isometric partial non-iso

ZLORP DRAKE MANNEQUIN NINJA PRISONER ZOMBIE

Init 22% 34% 35% 28% 8% 20%

Ours w/ ARAP 28% 37% 36% 34% 22% 29%
Ours w/ nICP 38% 50% 53% 53% 20% 30%
Ours w/ Shells 61% 55% 56% 57% 39% 43%

ZO 72% 70% 71% 71% 59% 60%
DO 68% 66% 65% 66% 55% 55%

Ours w/ D 59% 55% 54% 56% 37% 41%
Ours w/ RHM 64% 60% 60% 60% 45% 47%

Table 4. Smoothness via Conformal Distortion on
DEFORMTHINGS4D-MATCHING

methods
near-isometric partial non-iso

ZLORP DRAKE MANNEQUIN NINJA PRISONER ZOMBIE

Ours w/ ARAP 2.33 2.99 2.21 2.24 3.02 2.10
Ours w/ nICP 4.14 5.15 2.59 2.90 10.49 4.58
Ours w/ Shells 3.22 4.68 3.77 4.56 14.04 7.13

ZO 3.05 5.03 2.51 4.22 24.80 15.76
DO 3.23 5.30 3.77 4.69 21.10 16.09

Ours w/ D 2.85 3.70 2.81 3.05 9.89 4.54
Ours w/ RHM 2.88 3.92 2.78 3.07 10.05 4.72

ness (defined in Eq. (3) in the main paper) as shown in Tab. 1
in the main paper. Here we additionally evaluate the con-
formal distortion [6, 9], another popular smoothness met-
ric as shown in Tab. 4. We finally compute coverage of a
pointwise map T , i.e., the area ratio of the target shape that
is covered by map T , which evaluates the map surjectivity
(see Tab. 3). This metric must be considered in pair with
smoothness to detect degenerate case of trivial maps with
perfect smoothness. For example, a trivial map where are
vertices on the source are mapped to the same vertex on the
target, is perfectly smooth w.r.t. the Dirichlet energy, but its
coverage is close to zero. Therefore, in the ideal case, the
best map is the one with zero Dirichlet energy and 100%
coverage. All metrics are reported as an average over all the
tested shape pairs.

In Fig. 2, we show some qualitative results on the
TOSCA non-isometric dataset.

5. Parameters
In all experiments, we use the same set of parame-

ters, where those of each smoothness energy were tuned
independently. Parameters can also be found in the
released implementation at https://github.com/
RobinMagnet/smoothFM.

Spectral Energy. For all experiments we weighted the
spectral bijectivity term by 1 and the coupling term by

https://github.com/RobinMagnet/smoothFM
https://github.com/RobinMagnet/smoothFM
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Figure 2. We show two non-isometric shape pairs from TOSCA dataset can compare pointwise maps obtained from different methods via
color transfer. Note that TOSCA non-isometric dataset only provide sparse ground-truth correspondences. We therefore color the vertices
that do not have GT correspondences in black.

Table 5. Results on TOSCA nonIsometric using WKS initializa-
tion

methods accuracy bijectivity smoothness coverage

Init 56.56 39.50 93.24 15.48 %

Zo 54.61 43.23 19.27 52.48 %
DO 53.65 2.33 16.47 50.04 %

Ours w/ D 51.38 22.30 2.46 16.72 %
Ours w/ RHM 54.07 4.18 3.92 35.29 %

10−1, as advocated in the Discrete Optimization implemen-
tation [10].

Smoothness Energy. Each smoothness energy required
its own set of parameters. The Dirichlet energy was
weighted by 1 for all of them for consistency. In particu-
lar, for RHM energy, we used a coupling weight of 1 and
a bijectivity weight of 104. We used a coupling weight of
10−1 for ARAP, 10−2 for nICP and 10−3 for Shells.

Coupling. We globally reweighted the smoothness en-
ergy by a parameter γ, gradually increasing from 10−1 to
1 across iterations.

6. Initialization

For all datasets, we obtain initial dense correspondences
by computing a 5× 5 functional map using 5 landmarks.

We chose this kind of initialization as standard shape de-
scriptors like WKS [2] could not provide meaningful corre-
spondences in the presence of high levels of non-isometry.

Indeed, Table 5 provides results using WKS descriptor
as initialization for all methods. Note that the accuracy is
unable to significantly go down from initialization. It thus
becomes difficult to read into these results in a meaningful
manner.

Source DO DO + C

Figure 3. Example of correspondences without (enter) and with
(right) the conformal term of Discrete Optimization. While some
parts are more smoother, the overall effect is marginal.

7. Discrete Optimization
The discrete optimization framework [10] proposes a

large set of spectral energies, along which the conformal
energy promoting functional maps associated to conformal
pointwise correspondences. While this energy does help
smoothness, we did not notice significant improvements re-
garding discontinuities in the correspondences.

On Figure 3, we display an example of correspondences
obtained by the standard Discrete Optimization (center) and
by adding the conformal term (right). While some parts
have been made smoother, the effect remain quite marginal.

In practice, this term can provide meaningful regulariza-
tion in some cases but appears quite hard to tune to obtain a
consistent effect.
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