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Abstract
We propose a new scalable version of the functional map pipeline that allows to efficiently compute correspondences between
potentially very dense meshes. Unlike existing approaches that process dense meshes by relying on ad-hoc mesh simplification,
we establish an integrated end-to-end pipeline with theoretical approximation analysis. In particular, our method overcomes
the computational burden of both computing the basis, as well the functional and pointwise correspondence computation by
approximating the functional spaces and the functional map itself. Errors in the approximations are controlled by theoretical
upper bounds assessing the range of applicability of our pipeline. With this construction in hand, we propose a scalable practical
algorithm and demonstrate results on dense meshes, which approximate those obtained by standard functional map algorithms
at the fraction of the computation time. Moreover, our approach outperforms the standard acceleration procedures by a large
margin, leading to accurate results even in challenging cases.

CCS Concepts
• Computing methodologies → Shape analysis; • Theory of computation → Computational geometry;

1. Introduction

Processing and analyzing complex 3D objects is a major area of
study with applications in computer graphics, medical imaging and
other domains. The underlying structure of such data can be highly
detailed and require dense point sets and meshes to capture impor-
tant features. At the same time, shape analysis methods are often
designed to only handle objects that consist of tens of thousands
of points, thus requiring decimation algorithms to process meshes
containing millions of points that can arise in real-world applica-
tions. While mesh simplification can lead to good results, it suffers
from several drawbacks. First, the simplification process might lead
to artifacts and significant loss of detail. Second, for many applica-
tions, it remains highly non-trivial to accurately transfer the results
of analysis from the simplified to original shapes. Finally, the trans-
fer process can introduce errors and aliasing artifacts.

In this work, we focus on computing correspondences between
non-rigid shapes. This is a long-standing problem in Geometry
Processing and related fields, with a wide range of techniques de-
veloped in the past few years [DYDZ22, Sah20]. A notable line
of work in this domain uses the so-called functional map frame-
work, which is based on manipulating correspondences as matrices
in a reduced basis [OBS∗12]. Methods based on this framework
have recently achieved high accuracy on a range of difficult non-
rigid shape matching tasks [MMR∗19,MRR∗19,DLR∗20]. Unfor-
tunately, these approaches require costly and time-consuming pre-
computation of the Laplacian basis and, potentially, other auxil-

Figure 1: Our method produces point-to-point correspondences
between dense meshes efficiently, using values only located at
sparse samples, displayed in white. The source and target shapes
from the DEFORMINGTHINGS4D dataset [LTT∗21] are composed
of roughly 100 000 vertices, and correspondences are displayed
using texture transfer. The map computation (including all prepro-
cessing) took 60 seconds on a standard machine.

iary data-structures [RPWO19]. As a result, these techniques do
not scale well to densely sampled meshes and, thus, are most often
applied on simplified shapes. Moreover, while accelerated versions
of some methods [MRR∗19] have recently been proposed, these
lack theoretical approximation guarantees, and can be error-prone.

At the same time, several approaches have recently been pro-
posed for efficient approximation of the Laplace-Beltrami basis
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[NBH18, NH22]. These approaches can successfully scale to very
large meshes, and are especially effective for computing low fre-
quency eigenfunctions. While these methods have been shown to be
efficient when, e.g., using approximated spectra as shape descrip-
tors [RWP06] or for individual shape processing, they can come
short when applied in shape correspondence scenarios. Concep-
tually, this is because the objectives and guarantees in [NBH18,
NH22] only apply at a global scale of individual shapes, instead of
the local function approximation or function transfer required for
functional and point-to-point map computation.

In this work, we make a step towards creating scalable and ef-
ficient non-rigid shape correspondence methods, which can handle
very large meshes, and are backed by theoretical approximation
bounds. We focus on the functional map framework [OCB∗17]
and especially its recent variants based on spectral upsampling,
such as the ZoomOut method [MRR∗19] and its follow-up works
[HRWO20, XLZ21, RMWO21]. These methods are based on iter-
atively updating functional and point-to-point maps and have been
shown to lead to high-quality results in a wide range of cases. Un-
fortunately, the two major steps: basis pre-computation and intera-
tive updating of the pointwise maps can be costly for dense shapes.

To address this challenge, we propose an integrated pipeline that
helps to make both of these steps scalable and moreover comes
with approximation guarantees. For this we first establish a new
functional space inspired by [NBH18], and demonstrate how it can
be used to define an approximation of functional maps without
requiring either a dense pointwise correspondence or a even ba-
sis on the dense meshes. We then provide theoretical approxima-
tion bounds for this construction that, unlike the original definition
in [OBS∗12] is fully agnostic to the number of points in the orig-
inal mesh. Following this analysis, we extend the approach intro-
duced in [NBH18] to improve our functional map approximation,
and present an efficient and scalable algorithm for map refinement,
based on our constructions, which eventually produces accurate re-
sults in the fraction of the time required for standard processing, as
displayed on Figure 2.

2. Related Works

Our main focus is on designing a scalable and principled ap-
proach for non-rigid shape correspondence, within the functional
map framework. We therefore review works that are most closely
related to ours, especially those using spectral techniques for
shape matching, and refer the interested readers to recent sur-
veys [VKZHCO11,TCL∗12,BCBB16,Sah20,DYDZ22] for a more
comprehensive overview of other approaches.

Spectral methods in shape matching The idea of using the spec-
tral properties of the Laplace-Beltrami, and especially its eigen-
functions for shape correspondence has been investigated in many
existing works. Early approaches focused on directly aligning the
eigenfunctions, seen as descriptors, [MHK∗08, JZVK07] or using
diffusion processes to derive descriptors or embedding spaces, e.g.,
[SH10, OMMG10], among others.

A more principled framework was introduced in [OBS∗12],
based on the idea of functional maps. The overall strategy is to ex-
press the pull-back of functions as an operator in a reduced basis,

and to formulate objective functions based on desirable properties
of such an operator. The main advantage of this approach is that
it leads to small-scale optimization problems, with the number of
unknowns independent of the size of the underlying meshes.

Despite the simplicity of the original approach, its performance
is strongly dependent on accurate descriptors and hyper-parameter
tuning. As a result, this basic strategy has been extended signif-
icantly in many follow-up works, based both on geometric in-
sights [KBB∗12, AK13, OMPG13, BDK17, ERGB16], improved
optimization strategies [KGB16,NO17,RMOW20,RMWO21], and
richer correspondence models going beyond isometries across
complete shapes, [RCB∗17, ROA∗13, LRBB17], among others.

Functional and pointwise maps While many approaches in the
functional map literature focus on the optimization in the spec-
tral domain, it has also been observed that the interaction be-
tween pointwise and functional correspondences can lead to sig-
nificant improvement in practice. This was used in the form of
the Iterative Closest Point (ICP) refinement in the original article
and follow-up works [OBS∗12,MDK∗16,OMPG13] and has since
then been extended to map deblurring and denoising [EB17], as
well as powerful refinement, and even map optimization strate-
gies [MRR∗19, RPWO19, HRWO20, ELC20, RMWO21]. All of
these works are based on the insight that manipulating maps in
both the spectral and spatial (primal) domains can lead to overall
improvement in the quality of the results.

Unfortunately, such approaches can often come at a cost of scala-
bility, since the complexity of pointwise maps is directly dependent
on the mesh resolution, making it difficult to scale them to highly
dense meshes.

Multi-resolution spectral approaches Our work is also related
to multi-resolution techniques for approximating spectral quanti-
ties, as, e.g., in [VBCG10], and especially to recent developments
for accurate and scalable eigen-solvers geared towards Laplacian
eigenfunctions on complex meshes [NBH18, NH22]. The latter set
of methods have been shown to lead to excellent performance and
scalability on tasks involving individual shapes, such as computing
their Shape-DNA [RWP06] descriptors, or performing mesh filter-
ing. Similarly, there exist several spectral coarsening and simpli-
fication approaches [LJO19, LLT∗20, CLJL20] that explicitly aim
to coarsen operators, such as the Laplacian while preserving their
low frequency eigenapairs. Unfortunately, these methods typically
rely on the eigenfunctions on the dense shapes, while the utility of
the former approaches in the context of functional maps has not yet
been fully analyzed and exploited, in part, since, as we show below,
this requires local approximation bounds.

Finally, we mention that our work is also related to hierarchi-
cal techniques, including functional maps between subdivision sur-
faces proposed in [SVBC19], and even more closely, to refinement
via spectral upsampling [MRR∗19]. However, the former approach
relies on a subdivision hierarchy, while the acceleration strategy of
the latter, as we discuss below, is based on a scheme that unfortu-
nately can fail to converge in the in the presence of full information.

Limitations of existing techniques and our contributions To
summarize, the scalability of existing functional maps-based meth-
ods is typically limited by two factors: first, the pre-processing
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Figure 2: Overall pipeline of our method, using real data from [RWHO20]. Given two dense input shapes, we first generate an approximate
eigenbasis computation by using a modified version of the approach introduced in [NH22] (Sec. 5.3). We then propose a new scalable
version of ZoomOut (Sec. 5.4), which exploits our functional map approximation (Sec 5.1) and comes with theoretical appromation bounds.
Ultimately, this leads to dense pointwise correspondences between the two input shapes visualized here via color transfer.

costs associated with the computation of the eigenfunctions of the
Laplace-Beltrami operator, and second, the complexity of simulta-
neously manipulating pointwise and functional correspondences.

In this context, our key contributions include:

1. We define an approximation of the functional map, which re-
quires only a sparse correspondence, and provide a theoretical
basis for this construction.

2. We analyze the basis approximation approach in [NBH18] for
functional map computation, obtaining explicit theoretical upper
bounds. We then modify this approach to improve the approxi-
mation guarantees, leading to more accurate maps.

3. We present a principled and scalable algorithm for functional
map refinement, based on our constructions, which produces ac-
curate results at a fraction of the time of comparable methods.

3. Method Overview

As mentioned above, our overall goal is to design a scalable
pipeline for non-rigid shape matching that can handle potentially
very dense meshes. We base our approach on the ZoomOut vari-
ant of the functional map famework [MRR∗19]. However, our con-
structions can be easily extended to other recent functional maps
methods, e.g., [RMOW20, RMWO21], which share the same gen-
eral algorithmic structure. Specifically, ZoomOut and related meth-
ods are based on two main building blocks: computing the eigen-
functions of the Laplace-Beltrami operator first, and then iterating
between updating the point-to-point and functional maps.

Our general pipeline is displayed on Figure 2 and consists of the
following major steps. First, we generate for each shape a sparse
set of samples and a factorized functional space using a modifica-
tion of the approach introduced in [NBH18], described in Sec 5.3.
Secondly, we use the approximation of the functional map that we
introduce (Sec. 5.1) to define a scalable version of the ZoomOut al-
gorithm producing a sparse pointwise map. Finally, we extend this
sparse map to a dense pointwise map with sub-sample accuracy, by
using the properties of the functional subspaces we consider.

The rest of the paper is organized as follows: in Section 4 we
introduce the notations and background necessary for our approach.

In Section 5.1, we introduce our functional map approximation
based on the basis construction approach in [NBH18]. Section 5.2
provides explicit approximation errors and Section 5.3 describes
our modification of the method of [NBH18], which helps to im-
prove the theoretical upper bounds we obtained for functional map
computation. Given these constructions, we show in Sec. 5.4 how
ZoomOut-like algorithms can be defined, first by iteratively updat-
ing functional and pointwise maps in the reduced functional spaces,
and then how the computed functional map can be extended onto
the dense shapes efficiently.

Section 5.5 provides implementation details, while Section 6 is
dedicated to extensive experimental evaluation of our approach.

4. Notations & Background

4.1. Notations

For a triangle mesh, we denote by W and A its stiffness and mass
matrices that together define the (positive semi-definite) Laplace
Beltrami Operator as L = A−1W . Given two shapes N and M
with, respectively, n and m vertices, any vertex-to-vertex map T :
N →M can be represented as a binary matrix ΠΠΠ∈ {0,1}n×m with
ΠΠΠi j = 1 if and only if T (xi) = y j, where xi denotes the i-th vertex
onN and y j the j-th vertex inM.

The eigenfunctions of the Laplace Beltrami operator can be ob-
tained by solving a generalized eigenproblem:

Wψi = λiAψi, (1)

where in practice, we typically consider the eigenfunctions corre-
sponding to the K smallest eigenvalues.

4.2. Functional Maps and the ZoomOut algorithm

Functional maps were introduced in [OBS∗12] as a means to per-
form dense non-rigid shape matching. The key insight is that any
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pointwise map T : N →M can be transformed into a functional
map via composition FT : f ∈ F(M) 7→ f ◦ T ∈ F(N ), where
F(S) is the space of real-valued functions on a surface S. Since
FT is linear, it can be represented as a matrix in the given basis for
each space

(
ψ
M
i

)
i and

(
ψ
N
i
)

i.

If the basis on shape N is orthonormal with respect to AN , the
functional map C can be expressed in the truncated basis of size K
on each shape as a K×K matrix:

C =
(
ΨΨΨ

N )⊤AN
ΠΠΠΨΨΨ

M, (2)

where each basis function onM (resp. N ) is stacked as a column
of ΨΨΨ

M (resp. ΨΨΨ
N ), ΠΠΠ is the matrix representing the underlying

pointwise map, and we use ⊤ to denote the matrix transpose.

ZoomOut Given the Laplace-Beltrami eigenbasis, the ZoomOut
algorithm [MRR∗19] allows to recover high-quality correspon-
dences starting from an approximate initialization, by iterating be-
tween two steps: (1) Converting a k× k functional map to a point-
wise map, (2) converting the pointwise map to a functional map
of size k+ 1× k+ 1. This method has also been extended to other
settings, to both promote cycle consistency [HRWO20] and opti-
mize various energies [RMWO21] among others. Unfortunately,
although simple and efficient, the scalability of this approach is lim-
ited, first, by the precomputation of the Laplacian basis, and second
by the pointwise map recovery which relies on possibly expensive
nearest-neighbor search queries across dense meshes.

Several ad-hoc acceleration strategies have been proposed in
[MRR∗19]. However, as we discuss below, these do not come with
approximation guarantees and indeed can fail to converge in the
limit of complete information.

4.3. Eigenbasis approximation

To improve the scalability of spectral methods, recent
works [NBH18, XLHH21] have tried to develop approxima-
tions of the Laplace Beltrami eigenbasis, via the reduction of the
search space. Specifically, in [NBH18], the authors first sample a
set of p points S = {v1, . . . ,vp} on shapeM and create a set of p
local functions (u1, . . . ,up), each centered on a particular sample
point. Each function u j is built from an unnormalized function ũ j
supported on a geodesic ball of radius ρ around the sample v j,
which decreases with the geodesic distance from the center:

ũ j : x ∈M 7→ χρ

(
dM(x,v j)

)
∈ R (3)

where dM is the geodesic distance on shape M and χρ : R+ →
R is a differentiable non-increasing function with χρ(0) = 1 and
χρ(x) = 0 for x ≥ ρ. Choices for χ are discussed in Appendix A.
Finally, local functions u j are defined to satisfy the partition of the
unity by using:

u j(x) =
ũ j(x)

∑k ũk(x)
∀ x ∈M (4)

Now only considering functions that lie in the Span{u1, . . . ,up},
the original eigendecomposition system in Eq. (1) reduces to a gen-
eralized eigenproblem of size p× p:

W φi = λ̄iA φi (5)

with W=U⊤WU and A=U⊤AU where W and A are the stiffness
and area matrices ofM, and U a sparse matrix whose columns are
values of functions {u j} j. Eigenvectors φi are p-dimensional vec-
tors describing the coefficients with respect to {u j}, which define
the approximated eigenvectors as ψi = Uφi. Note that since φi are
orthonormal with respect to A this implies that ψi are orthonormal
with respect to A.

While the original work [NBH18] focused on global per-shape
applications such as filtering and Shape-DNA [RWP06] computa-
tion, we build on and modify this pipeline in order to obtain reliable
functions to perform dense shape correspondence.

5. Our approach

In this section, we first present a functional map definition using
the basis approximation strategy from of [NBH18], and provide
theoretical bounds on the approximation error (Secs. 5.1 and 5.2
respectively). Based by these results, we then introduce our modi-
fication of [NBH18] in Section 5.3 which we use in our approach
in order to minimize the computed bound. Finally we present our
Extended ZoomOut algorithm and provide implementation details
in Sections 5.4 and 5.5.

5.1. Approximate Functional Map

As mentioned in Sec. 4.3 the eigenfunctions computed using the
approach in [NBH18] are, by construction, orthonormal with re-
spect to the area matrix A. Thus, they can be used to compute a
functional map following Eq. (2). This leads to the following defi-
nition:

Definition 5.1 Given two shapes M and N with approximated
eigenfunctions

(
Ψ

M
i

)
i stacked as columns of matrix ΨΨΨ

M
(resp.

withN ), the reduced functional map associated to a pointwise map
ΠΠΠ :N →M is defined as:

C =
(
ΨΨΨ

N )⊤AN
ΠΠΠΨΨΨ

M
(6)

Note that this functional map definition uses the approximated
bases. However, it still relies on the knowledge of a full point-to-
point map between complete (possibly very dense) shapes. To al-
leviate this constraint, we introduce another functional map C that
only relies on maps between samples, independently from the orig-
inal number of points:

Definition 5.2 Using the same setting as in Definition 5.1, with
eigenfunctions arising from Eq. (5),

(
φ
M
i

)
i (resp. with N ) being

stacked as columns of a matrix ΦΦΦ
M

(resp. with N ), given a point-
wise map ΠΠΠ : SN →SM, our restricted functional map is defined
as:

Ĉ =
(

ΦΦΦ
N)⊤

AN
ΠΠΠ ΦΦΦ

M
(7)

Recall that, as mentioned in Sec 4.3 S denotes the sparse set
of samples on each shape. Therefore, in order to define Ĉ, we
only need to have access to a pointwise map between the sample
points on the two shapes. This restricted functional map Ĉ is a
pull-back operator associated to the reduced spaces Span

{
φ
M
k

}
k

and Span
{

φ
N
k
}

k since both families are orthonormal with respect
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to A. Furthermore, using the factorization ΨΨΨ = UΦΦΦ on each shape
in (6) as well as the definition of A, we remark that going from
Eq. (6) to (7) only requires the approximation ΠΠΠUM ≃ UN

ΠΠΠ, for
which we will later on derive an upper bound in Proposition 5.2.
Note that one might want to replace ΦΦΦ

M
by ΨΨΨ

M
in Eq. (7) so that

the map ΠΠΠ actually transports pointwise values rather than coeffi-
cients. In practice as evaluated in Appendix B, we did not observe
any improvement using this modification.

The first benefit of the approximated functional map in Eq. (7)
compared to the exact one in Eq. (6) is the exclusive use of small-
sized matrices. Observe that functions

(
φi
)

i, are associated with the
area and stiffness matrices A and W, which define the L2 and W1
inner products, thus allowing to use all functional map related al-
gorithms in a straightforward way without using any extra approx-
imation or acceleration heuristics. Eventually a dense pointwise-
map between complete shapes can be obtained by identifying the
two pull-back operators Ĉ and C, as described later in Section 5.4.
As we will see, the resulting correspondences outperform those ob-
tained using remeshed versions of shape and nearest neighbor ex-
trapolation, as our functional map produces sub-sample accuracy.

Secondly, as shown in the following section, our approach is
backed by strong theoretical convergence guarantees, providing
bounds on approximation errors. In contrast, previous approaches,
such as the accelerated version of ZoomOut [MRR∗19] (Sec. 4.2.3)
might not converge to the true functional maps even when using
all available information. Namely, Fast ZoomOut indeed samples q
points on shapesM andN , and approximates C using

CF-ZO = argmin
X
∥QN

ΨΨΨ
N X−ΠΠΠQM

ΨΨΨ
M∥2

F (8)

where QN ∈ {0,1}q×nN with QN
i j = 1 if and only if x j is the ith

sample on shape N (similarly for M). Using all points means Q
matrices are identity. This approximation gives equal importance
to all sampled points regardless of their area, and thus fails to con-
verge towards the underlying C as the number of samples increases.
This means a near uniform sampling strategy is required in practice,
which is difficult to achieve on very dense meshes.

In the following section, we provide approximation error bounds
for our functional map definition, which we later use to modify the
approach from [NBH18] to reduce these errors and obtain a more
accurate and principled correspondence approach.

5.2. Approximation Errors

Most expressions above involve a given pointwise map ΠΠΠ between
surfacesN andM. The following lemma provides simple assump-
tions to obtain a Lipschitz constant for its associated functional
map, which will be very useful to derive bounds on the approxi-
mation errors of our estimators:

Lemma 5.1 LetM andN be compact surfaces and T :N →M a
diffeomorphism. Then there exists BT ∈ R so that:

∥ f ◦T∥N ≤ BT ∥ f∥M ∀ f ∈ L2(M) (9)

the proof of which can be found in [HCO18] (Proposition 3.3).

Our overall goal is to use the newly designed functional map C

within a ZoomOut-like functional map estimation algorithm. We
therefore expect the approximated functional map to mimic the un-
derlying map C when the computed eigenvectors Ψk approximate
well the true ones Ψk. The following proposition bounds the error
between the two functional maps:

Proposition 5.1 Let ΨΨΨ
N

(resp. ΨΨΨ
M

) and ΨΨΨ
N (resp. ΨΨΨ

M) the
approximated and true first K eigenvectors of the Laplacian on N
(resp.M). Let C and C be the original and reduced (see Eq. (6))
functional maps of size K, associated to the map T . Suppose that T
is a diffeomorphism, and let BT be the bound given by Lemma 5.1.
If there exists ε ∈ R∗

+ so that for any j ∈ {1, . . . ,K} :

∥ΨΨΨN
j −ΨΨΨ

N
j ∥∞ ≤ ε and ∥ΨΨΨM

j −ΨΨΨ
M
j ∥∞ ≤ ε

Then:
1
K

∥∥C−C
∥∥2

2 ≤ ε
2
(

1+B2
T

)
(10)

The proof can be found in Appendix C. This proposition ensures
that a good estimation of the spectrum implies an accurate func-
tional map approximation, and thus its good behavior within match-
ing algorithms.

A more fundamental error to control is the estimation error be-
tween the functional maps C from Def. 5.1 and Ĉ from Def. 5.2.
As mentioned above, the estimation relies on the identification
ΠΠΠΨΨΨ

M ≃ UN
ΠΠΠ ΦΦΦ

M
, where ΠΠΠ is a map between the two sets of

samples SN and SM, which we expect to be similar to ΠΠΠ on these
spaces. This approximation treats equivalently the two following
procedures: 1) interpolating between values on SM then transfer-
ring using the map ΠΠΠ, 2) transferring values on SM to values on
SN using ΠΠΠ and then interpolating on N . The following proposi-
tion bounds the error of this approximation:

Proposition 5.2 Let T : N →M be a pointwise map between
the shapes represented by ΠΠΠ, and let BT be the bound given by
Lemma 5.1. Suppose that T|SN : SN →SM is represented by ΠΠΠ.

Let α = min j uMj (v j) ∈ [0,1]. Suppose further that there exists
ε > 0 so that for any k ∈ {1, . . . ,K} and x,y ∈ SM:

dM(x,y)≤ ρ
M⇒ |ΨM

k (x)−Ψ
M
k (y)| ≤ ε (11)

and

dM(x,y)≤ ρ
M⇒ |ΦM

k (x)−Φ
M
k (y)| ≤ ε. (12)

Then

1
K

∥∥∥ΠΠΠΨΨΨ
M−UN

ΠΠΠ ΦΦΦ
M∥∥∥2

N
≤ ε

2(1−α)+ ε
2B2

T (13)

The proof is given in Appendix D. This proposition shows that the
estimation error depends on two parameters: 1) the variation ε of
the eigenfunctions w.r.t to the sample distance ρ, 2) the self-weights
u j(v j) from the local functions defined in the basis approximation.
Note that since the basis functions u j verify 0 ≤ u j ≤ 1 and sat-
isfy the partition of unity, they can be interpreted as interpolation
weights from values at sampled points to values on the entire shape.
This makes the dependence in α more intuitive, as our approxima-
tion relies on the local identification of basis coefficients with func-
tion values. A discussion on the numerical values of the quantities
used in Proposition 5.2 are provided in Appendix E.
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Figure 3: Example of a local function u j (red color) centered on v j
(red vertex), visualized without (Left) and with (Right) our adaptive
radius strategy. Other samples vk are displayed in black.

In the following, we will therefore seek to modify the basis ap-
proximation [NBH18] in order to maximize α while retaining both
the quality of the approximation of the true Laplacian spectrum,
necessary to apply functional maps-related algorithms.

5.3. Improved Eigenbasis Approximation

In this section, we propose a modification of the approach
from [NBH18], based on the theoretical bounds introduced above.
For the rest of this section, we focus on a single shape, as the basis
computations are done on each shape independently.

As seen from Prop. 5.2, high self weights allow to stabilize our
functional map approximation. Interestingly with the construction
in [NBH18], the value u j(v j) only depends on the geodesic distance
between v j and other sampled points vi for i ̸= j:

u j(v j) =
1

1+∑i ̸= j ũi(v j)
. (14)

where ũi are the un-normalized local functions. We modify the
pipeline from [NBH18] in order to increase these values as follows:
we first define a per-sample radius ρ j for j ∈ {1, . . . , p} instead
of a single global value ρ. Given a sample point v j with a small
self-weight u j(v j), radius ρ j is kept untouched as it has no influ-
ence on the self-weight, but we instead reduce the radius ρi of its
most influential neighbor - that is the radius of the point vi with the
highest value ũi(v j). Following Eq. (14) this eventually increases
the value of u j(v j). Note that this modification doesn’t change the
value ui(vi) and increase the self weights of all its neighbors. This
way all self weights are non-decreasing during the algorithm, with
at least one of them increasing. This extra adaptation additionally
comes at a negligible computational cost as it only requires re-
evaluating u j at a set of fixed vertices. In particular, this does not re-
quire additional local geodesic distance computations. More details
are provided in Sec. 5.5, and the algorithm to compute these new
functions is displayed in Algorithm 1. We observe that the adap-
tive radius strategy generates better local functions than those in-
troduced in [NBH18], especially for non-uniform sampling, as can
be seen on a surface from the DFaust dataset [BRPB17] in Figure 3.
Note that since we focus on local analysis, a desirable property of
the local interpolation function is the consistency across different
shapes when only values at the samples are provided. With a single
global radius, we see on Figure 3 that these functions can be heav-
ily distorted by the normalization procedure, which is corrected by

Figure 4: Effect of the adaptive radius on functional map approxi-
mation. Top row displays a pointwise map T from the right mesh to
the left mesh using color transfer. Bottom row displays C (Left), Ĉ
when using the pipeline from [NBH18] (Middle) and our functional
map Ĉ (Right).

our approach. However, increasing the self-weights too close to 1
also deteriorates the results, as any vertex x within the radius of a
single sample will be given the value of the sample point. There
thus exists a limit at which this procedure ceases to be helpful, and
the only solution then lies in increasing the number of samples on
the shape.

Algorithm 1 Computation of local functions with adaptive radius
Require: MeshM, samples (vk)k, initial ρ0, threshold ε

1: ρ j← ρ0 ∀ j
2: Compute local functions U with radius ρ : (3), (4)
3: Add sample points if necessary
4: while some k with uk(vk)< ε do
5: j← argmax

i ̸=k
ui(vk)

6: ρ j← ρ j/2
7: update all u using Eq. (3), (4)
8: end while
9: Add unseen vertices in the sample

The positive effect of our adaptive radius algorithm for func-
tional map estimation is further visualized in Figure 4, where given
a single pointwise map T , we display the exact functional map
on the approximated spaces C, and two approximated functional
maps Ĉ, one being computed with a shared radius [NBH18] and
the other with our adaptive radius scheme.We highlight that the
ground truth functional map actually differ for each approxima-
tion Ĉ as the reduced functional spaces are modified, which makes
values not directly comparable. However, we observe that the two
ground truth maps have nearly identical sparsity structure (see Ap-
pendix F), which is why we only display one in Figure 4. Note that
using the adaptive radius strategy then generates a sparsity pattern
on matrix Ĉ very close to the ground truth one.

© 2023 Eurographics - The European Association
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5.4. Scalable ZoomOut

In light of the previous discussions and theoretical analysis, we now
describe how to use the approximated functional map Ĉ within a
standard ZoomOut pipeline [MRR∗19]. Our complete pipeline is
summarized in Algorithm 2, where the notation ΦΦΦ1:k indicates that
we only use the first k column of matrix ΦΦΦ1:k.

Algorithm 2 Scalable ZoomOut
Require: MeshesM andN , threshold ε, initial map

1: Sample SM and SN using Poisson Disk Sampling
2: Compute UM and UN using Algo. 1
3: Approximate eigenvectors ΦΦΦ

M
and ΦΦΦ

M
solving (5)

4: Set ΨΨΨ
M

= UM
ΦΦΦ

M
and ΨΨΨ

N
= UN

ΦΦΦ
N

5: Obtain ΠΠΠ between samples using the initial map
6: for k = kinit:kfinal do

7: Ĉ =
(

ΦΦΦ
N
1:k

)⊤
AN

ΠΠΠ ΦΦΦ
M
1:k

8: ΠΠΠ = NNsearch
(
ΦΦΦ

M
1:k ,ΦΦΦ

N
1:kĈ

)
potentially using (16)

9: end for
10: ΠΠΠ = NNsearch

(
ΨΨΨ

M
1:k ,ΨΨΨ

N
1:kĈ

)
11: Return ΠΠΠ

As mentioned earlier, using Ĉ and matrices A and W allows
to apply the ZoomOut algorithm directly, as if it was applied on
remeshed versions of the shapes with only p vertices. This results
in a refined functional map Ĉ∗ and a refined pointwise map be-
tween samples ΠΠΠ

∗
. The last remaining non-trivial task consists in

converting the refined functional map into a global pointwise map
ΠΠΠ

∗ between the original dense meshes.

Standard approaches using remeshed versions of the shapes ex-
tend maps via nearest neighbors, resulting in locally constant maps.
Instead, we identify Ĉ and C, which then allows us to compute the
pointwise map ΠΠΠ

∗ by solving the standard least square problem:

ΠΠΠ
∗ = argmin

ΠΠΠ

∥ΨΨΨN Ĉ∗−ΠΠΠΨΨΨ
M∥2

AN . (15)

Since A is diagonal this problem reduces to a nearest neighbor
search for each vertex x ∈ N . This way, the obtained pointwise
map is no longer locally constant which results in a significant gain
of quality with respect to typical approaches.

On meshes containing millions of vertices, this nearest neighbor
search can, however, still be very slow. In these cases, we propose
to use the computed pointwise map ΠΠΠ as a guide to reduce the
search space as follows: for x ∈ N , we first select the indices of
its nearest sample points N(x) = { j | uNj (x) > 0}, and create the
set of possible images as the points inM close to the image of this
set under the map ΠΠΠ, that is

I(x) = {y | ∃ j ∈ N(x), uT̄ ( j)(y)> 0} (16)

where T̄ is the function representation of ΠΠΠ. Since local functions
u j are compactly supported, in practice, they are stored as sparse
vectors and extracting the set of possible images of a given vertex
therefore can be done efficiently through simple indexing queries.

Table 1: Timing in seconds for different methods when processing
a pair with 50K and 200K vertices and applying ZoomOut from
spectral size 20 to 100

methods Preprocess LBO ZoomOut Conversion Total (s)

ZO 1 132 410 83 626
Fast ZO 10 132 1 44 187
R + ZO 14 2 3 1 21

Ours 10 7 5 44 65

5.5. Implementation

We implement the complete algorithm in Python and provide the
code at https://github.com/RobinMagnet/Scalable_FM.

Following [NBH18], we generate sparse samples S using Pois-
son Disk sampling, and run a fixed-radius Dijkstra algorithm start-
ing at all sampled points v j to build local functions u j. Values can
be stored in a sparse n× p matrix where p is the number of samples.
Note that the adaptive radius algorithm presented in Section 5.3
does not require additional geodesic distance computations. Fur-
thermore finding the set of potential images for a point as described
in Section 5.4 simply reduces to checking non-zero indices in a
sparse matrix. More details are provided in Appendix G.

6. Results

In this section we evaluate our method, while focusing on two as-
pects. Firstly we verify that our method outperforms existing ap-
proaches in terms of speed at all steps of the pipeline - that is pre-
processing as well as the ZoomOut algorithm. Secondly we show
this gain in speed comes at a minimal cost in terms of quantitative
metrics. In particular we verify that although our pipeline relies on
sparse samples, we eventually obtain clear sub-sample accuracy in
the correspondences.

6.1. Timings

The method introduced in [NBH18] aimed at approximating the
spectrum of the Laplace Beltrami Operator efficiently. As men-
tioned above, the additional building blocks we introduced in Sec-
tion 5.3 come at a nearly negligible computational cost as the main
bottleneck lies in local geodesic distances computations, which are
not recomputed. The main benefit of our method appears when
considering the processing time of the ZoomOut algorithm. Indeed
since our algorithm does not involve any n-dimensional matrices,
its running time becomes entirely agnostic to the original number of
vertices. Only the final conversion step, which converts the refined
functional map into a dense point-wise map, scales with the number
of vertices. Table 1 displays an example of timings when applying
the ZoomOut algorithm between two meshes with respectively 50
and 200 thousands vertices. We compare the standard ZoomOut
algorithm (ZO), the Fast ZoomOut algorithm (Fast ZO), the stan-
dard ZoomOut applied to remeshed versions of the shapes with
nearest neighbor extrapolation (R+ZO) and our complete pipeline
with p = 3000 samples on each shape. Notice that farthest point
sampling used in Fast ZoomOut can become quite slow on dense

© 2023 Eurographics - The European Association
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Figure 5: Qualitative results on the SHREC19 dataset. Although processing time differ heavily, there is no significant difference between our
method and results from ZoomOut. However, remeshing the surface before ZoomOut results in locally constant correspondences.

meshes compared to Poisson sampling, which explains the similar
preprocessing timings between our method and Fast ZoomOut.

6.2. Evaluation

Dataset As most shape matching methods scale poorly with the
number of vertices, there are few benchmarks with dense meshes
and ground truth correspondences for evaluation. The SHREC19
dataset [MMR∗19] consists of 430 pairs of human shapes with
different connectivity, all of which come with initial correspon-
dences. Meshes in this dataset have on average 38 000 vertices,
with the smallest and largest number of vertices having respec-
tively 4700 and 200 000 vertices. Due to the limitations of exist-
ing shape matching methods, a remeshed version of this dataset
is commonly used. In contrast, we display results on the complete
dense dataset, and show that our method obtains similar results as
ZoomOut [MRR∗19] in only a fraction of the required time.

Metrics We evaluate different methods using standard met-
rics [RPWO19] for dense shape correspondence, that is accuracy,
coverage and smoothness. The accuracy of a computed dense map
T :N →M gives the average geodesic distance between T (x) and
T∗(x) for all x ∈ N where T∗ denotes the ground truth map. Note
that since maps on SHREC19 are only evaluated on a small sub-
set of 6890 points this metric only captures partial information,
and locally constant maps can still achieve high accuracy. Cover-
age and smoothness metrics provide additional information on the
quality of correspondences and are sensitive to locally constant cor-
respondences. Coverage is defined as the ratio of area covered by
the pointwise map, and smoothness is the Dirichlet energy defined
as the squared L2 norm of the gradient of the transferred coordi-
nates.

ZoomOut We compare our method (Ours) using 3000 samples
first to the same algorithm without adaptive radius (Ours w/o ra-
dius), to the standard ZoomOut [MRR∗19] algorithm applied on

Table 2: Evaluation of different methods on the complete
SHREC19 dataset. Blue highlights the best two methods.

methods Accuracy Coverage Smoothness

Init 60.18 26.5 % 9.5

GT − 33.0 % 10.43
ZO 26.84 61.5 % 6.2

R + ZO 28.57 18.0 % 15.0
Ours w/o radius 71.35 29 % 52.2
Ours + Fast ZO 29.5 59.7 % 6.4

Ours 27.78 56.7 % 5.6

the dense meshes (ZO) and on remeshed versions with 3000 ver-
tices (R+ZO). We don’t compare to other standard shape matching
baseline [ELC20, ESB19] first since we only wish to approximate
results from ZoomOut, but also because these baselines don’t scale
to high number of vertices. Additionally, despite the lack of theoret-
ical guarantees, we evaluate a new version of Fast ZoomOut which
uses functional map approximation (8) on the approximated func-
tional space F introduced in section 5.1 (Ours + Fast ZO). Table 2
shows the values of the evaluation metrics on the SHREC19 dataset
where the accuracy curves can be found on Figure 6, and Figure 5
shows an example of a map computed on two dense meshes. We
see that all methods but R+ZO produce similar metrics although
processing times vary significantly. In contrast, the fastest method
R+ZO produces locally constant maps as seen on Figure 5, which
results in poor coverage and smoothness metrics. While our re-
sults are similar to ZoomOut and Fast ZoomOut, we stress that
our results were obtained at a fraction of the processing time of
ZoomOut, and come with theoretical upper bounds and control pa-
rameters on approximations which Fast ZoomOut does not have.

© 2023 Eurographics - The European Association
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Figure 6: Accuracy curves for different methods presented in Ta-
ble 2. Numbers in the legend provide the average geodesic error
(×103).

Sub-sample accuracy One Figure 7, we provide a result using tex-
ture transfer after applying our scalable ZoomOut on a pair of real
scans of humerus bones obtained using a CT scanner [ROA∗13].
This Figure shows how our algorithm obtain sub-sample accuracy,
as the transferred texture remains smooth even though samples are
quite sparse on each shape. We display similar results using texture
transfer on the SHREC19 dataset on Figure 8 and in Appendix H,
which provides further details on the shapes.

Adaptive Radius While results on Table 2 highlight the efficiency
of the adaptive radius scheme, we additionally evaluate how this
heuristic allows to improve the estimation ∆ = ∥C− Ĉ∥ presented
in section 5. For this we simply compute C and Ĉ with K = 20 for
all initial maps of the SHREC19 dataset, and evaluate the norms of
the estimation errors ∆ which we provide in Table 3. In this experi-
ment we notice our method improves the baseline by two orders of
magnitude.

Table 3: Norm of the estimation error ∆ with and without adaptive
radius on the SHREC19 dataset

w/o radius Ours

∆ (×10) 1.486 0.018

7. Conclusion, Limitations and Future Work

In this paper we introduced a new scalable approach for computing
correspondences between non-rigid shapes, represented as possibly
very dense meshes. Our method is based on the efficient approach
for estimating the Laplace-Beltrami eigenbasis [NBH18] using op-
timization of coefficients of local extension functions built from a
sparse set of samples. Key to our approach is careful analysis of
the relation between functional spaces on the samples and those on
the original dense shapes. For this, we extend this approach pro-
posed in [NBH18] and demonstrate how better behaved local func-
tions can be obtained with very little additional effort. We use this
construction to define a functional map approximation that only re-
lies on information stored at the samples, and provide theoretical
guarantees for this construction. Finally, we use these insights to

propose a scalable variant of the ZoomOut algorithm [MRR∗19],
which allows to compute high-quality functional and point-to-point
maps between very dense meshes at the fraction of the cost of the
standard approach.

Figure 7: Texture transfer using our scalable version of ZoomOut.
Samples used in the pipeline are shown as white dots.

Although our method achieves high-quality results, it still has
several limitations. First, it relies heavily on the mesh structure,
and is not directly applicable to other representations, such as point
clouds. Second, our method depends on a critical hyperparameter,
which is the number of samples. We have observed that 3000 sam-
ples perform well on a very wide range of settings, but it would
be interesting to investigate the optimal number, depending on the
size of the spectral basis. Furthermore, we use Poisson sampling as
advocated in [NBH18], which gives good results in practice. How-
ever, the optimal choice of the sampling procedure, depending on
the geometric properties of shapes under consideration, would be
an equally interesting venue for investigation. Lastly, an out-of-core
implementation, capable of handling meshes with 10’s of millions
to billions of vertices, while possible in principle, would be an ex-
cellent practical future extension of our approach.

Figure 8: Texture transfer using our scalable version of ZoomOut
on a pair of the SHREC19 dataset. Samples used in the pipeline are
shown as white dots.
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Appendix A: Function χ

The function χ : R+ → [0,1], differentiable with χ(0) = 1 and
χ(x) = 0 for x ≤ 1 can be defined two ways. Following [NBH18],
we use the polynomial interpolation function χ : x 7→ 1−3x2+2x3.
Another possibility is to use the standard C∞ compactly supported
function χ : x 7→ exp

(
1− 1

1−x2

)
, which we found not as good as

the polynomial interpolation regarding results. Both functions are
displayed on Figure 9.

Figure 9: Possible choices for function χ

Appendix B: Coefficient weighting

Table 4 compares our algorithm (Ours) with a similar one (Ours +
reweight), where we replace ΦΦΦ

M
by ΨΨΨ

M
in Eq. (7) so that the map

ΠΠΠ actually transports pointwise values rather than coefficient, as

Table 4: Evaluation of the reweighting scheme on the SHREC19
dataset.

methods Accuracy Coverage Smoothness

Init 60.18 26.5 % 9.5

Ours + Reweight 28.1 54.6 % 6.3
Ours 27.78 56.7 % 5.6

mentioned in section 5.1. This amounts to reweigthing local coef-
ficients to actually become function values. We notice this method
does not improve our pipeline on the SHREC19 dataset.

Appendix C: Proof of Proposition 5.1

Proof We first note that the entries of the functional maps C and C
can be written

Ci, j = ⟨ψN
j ,ψM

i ◦T ⟩N (17)

Ci, j = ⟨ψN
j ,ψM

i ◦T ⟩N (18)

Furthermore, given f1, g1, f2, g2 functions onN .
Then for any x ∈N

f1(x)g1(x)− f2(x)g2(x) = f1(x)(g1(x)−g2(x))

+g2(x)( f1(x)− f2(x))
(19)

With f1 = ψ
N
i , g1 = ψ

M
j ◦T , f2 = ψ

N
j and g2 = ψ

M
i ◦T , we have

by hypothesis

∥ f2− f1∥∞ ≤ ε

∥g2−g1∥∞ ≤ ε

∥g2∥N ≤ BT

(20)

Therefore

|⟨ f1,g1⟩N −⟨ f2,g2⟩N |2 =
∣∣∣∣∫N ( f1(x)g1(x)− f2(x)g2(x))dµN (x)

∣∣∣∣2
≤

∫
N

f1(x)
2 (g1(x)−g2(x))

2 dµN (x)

+
∫
N

g2(x)
2 ( f1(x)− f2(x))

2 dµN (x)

≤ ε

∫
N

f1(x)
2dµN (x)+ ε

∫
N

g2(x)
2dµN (x)

≤ ε

(
∥ f1∥2

N +∥g2∥2
N
)

≤ ε
2
(

1+B2
T

)
Summing for all elements of the matrix C gives the result.

Appendix D: Proof of Proposition 5.2

This proof relies on the following proposition,

Proposition D.1 Given,M a surface,
(
v j
)

j and
(
u j
)

j built as de-
scribed in Sec 4.3.
Given f : M → R, suppose there exists ε > 0 so that for any
x,y ∈M, d(x,y)≤ ρ =⇒ | f (x)− f (y)| ≤ ε.
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Then the interpolation error between f and f̃ = ∑ j f (v j)u j is
bounded by ε:

| f̃ (x)− f (x)| ≤ ε ∀x ∈M (21)

And for any j ∈ {1, . . . , p}

| f̃ (v j)− f (v j)| ≤ ε
(
1−u j(v j)

)
(22)

Proof of Prop. D.1
Let f :M→ R, S = {v1, . . . ,vp} a sample ofM associated to a
radius ρ. Since

(
u j
)

verify ∑ j u j = 1, for any x ∈M we have

f (x) =
p

∑
j=1

u j(x) f (x) (23)

Therefore if f̃ = ∑ j f (v j)u j

f (x)− f̃ (x) =
p

∑
j=1

u j(x)( f (x)− f (v j))

= ∑
j, d(v j ,x)<ρ

u j(x)( f (x)− f (v j))
(24)

This gives, using triangular inequality and u j(x)2 ≤ u j(x) (since
0≤ u j(x)≤ 1):

| f (x)− f̃ (x)|2 ≤ ∑
j, d(v j ,x)<ρ

u j(x)
2| f (x)− f (v j)|2

≤ ∑
j, d(v j ,x)<ρ

u j(x)| f (x)− f (v j)|2
(25)

Which gives | f (x)− f̃ (x)|2 ≤ ε using the hypothesis of the propo-
sition and the fact ∑ j u j = 1.
Furthermore, if there exit k so that x = vk, we can remove the term
of index k and we have

| f (x)− f̃ (x)|2 ≤ ∑
j ̸=k, d(v j ,x)<ρ

u j(vk)
2| f (vk)− f (v j)|2

≤ ε
2

∑
j ̸=k, d(v j ,x)<ρ

u j(vk)

≤ ε
2(1−uk(vk))

(26)

Proof of Prop. 5.2
We again suppose all shapes to be area-normalized. Using the f̃
notation from proposition D.1, we can use the triangular inequality
on

∥∥∥ΠΠΠΨΨΨ
M−UN

ΠΠΠ ΦΦΦ
M∥∥∥

N
:

∥∥∥ΠΠΠΨΨΨ
M−UN

ΠΠΠ ΦΦΦ
M∥∥∥2

N
≤

∥∥∥∥∥ΠΠΠΨΨΨ
M−

˜
ΠΠΠΨΨΨ

M
∥∥∥∥∥

2

N

+

∥∥∥∥∥˜
ΠΠΠΨΨΨ

M−UN
ΠΠΠ ΦΦΦ

M
∥∥∥∥∥

2

N

(27)

The first term can be decomposed as a sum of the norms of its K

columns, where each term is in the form ∥ΨM
j ◦T − ˜

Ψ
M
j ◦T∥2

N ,
and can be controlled by applying the bound on interpolation er-
ror from proposition D.1 associated with the bounded distortion

lemma, that is ∥∥∥∥∥ΠΠΠΨΨΨ
M−

˜
ΠΠΠΨΨΨ

M
∥∥∥∥∥

2

N
≤ KB2

T ε
2 (28)

Focusing on the second term, the following lemma will be very
useful in order to bound it :

Lemma D.1 Given β ∈ RpN , ∥UN
β∥2

N ≤ ∥β∥
2
F

We indeed notice the second term can be written in the form
∥UN A − UN B∥2

N . Using lemma D.1, we can now focus on
bounding ∥A−B∥2

F and especially on the squared norm of each of
the columns of A−B. In practice, each column can be written as(

ψ
M
j ◦T (vk)−φ

M
j ◦T|SN (vk)

)
k
, since we supposed that T|SN

was well defined between the subsamples.

Given k ∈ {1, . . . , pN }, there exists i0 ∈ {1, . . . , pM} so that
T (vNi ) = vMi0 .
Furthermore, by definition of the approximated eigenvectors ψ

M
j ,

for all x ∈M we have ψ
M
j (x) = ∑

pM

k=1 φ
M
j (vMk )uMk (x)

Therefore, denoting ∆ j(i) = ψ
M
j (vMi0 )−φ

M
j (vMi0 )

∆ j(i) =
pM

∑
k=1

φ
M
j (vMk )uMk (vMi0 )−φ

M
j (vMi0 ) (29)

=
pM

∑
k=1

uMk (vMi0 )
(

φ
M
j (vMk )−φ

M
j (vMi0 )

)
(30)

The exact same procedure as in the proof of Proposition D.1 can
now be applied which allows to bound the term∥∥∥∥∥˜

ΠΠΠΨΨΨ
M−UN

ΠΠΠ ΦΦΦ
M

∥∥∥∥∥
2

N
≤ Kε(1−α) (31)

Summing terms from (28) and (31) produce the upper bound of
proposition 5.2.

Appendix E: Values of theoretical quantities

We here provide values for the named values from Proposition 5.2.
We again highlight the proposed bounds are not tight and only
serves as guidance to select parameters.

First, note that BT is a Lipchitz-constant, which is 1 whenever T
is an isometry, and is else related to the area-distortion induced by
T .

α can then vary between 0 and 1, but our adaptive radius scheme
ensures the minimal value is 0.3. In practice, the average value is
higher, around .43 on average on the SHREC19 dataset.

Finally ε controls the variation of the approximated eigenvectors
in a local neighborhood, and can be set arbitrarily small by decreas-
ing the value for ρ (and potentially increasing the number of sam-
ples to ensure partition of unity). Note that the higher the frequency
of the eigenvector, the higher the maximal value of ε is, where the
maximum is taken across all local neighborhoods. In practice, we
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Figure 10: Ground truth functional map C using the functional
space F without (Left) and with (Right) adaptive radius. Notice
that up to a change of sign, both functional maps look similar

observe maximum values between 0 and 8 for the first 150 eigen-
vectors, when using around 1500 sampled points. In comparison,
we obtain values between 0 and 4 by comparing values of the exact
eigenvectors simply across edges.

Appendix F: Functional Map approximation

We here display on Figure 10 images of the ground truth functional
maps for Figure 4

Appendix G: Implementation details

We here provide additional details on parameters and algorithm for
implementation.

Per vertex radii are initially set to the same initial value ρ0, de-

fined as ρ0 = 3ρ̃0 with ρ̃0 =
√

Area(M)
pπ

. The value of ρ̃0 is ob-
tained by expecting each sample point v j to occupy a geodesic disk
or radius ρ̃0, which would eventually cover the complete shape -
that is pπρ

2 = Area(M). If the choice of the sample is free, we
recommend using Poisson Disk Sampling to obtain roughly evenly
spaced samples in a fast manner.

Local Dijkstra starting from samples can be accelerated by both
parallelization and reduction of the search space to a euclidean ball
of radius ρ0 around each sample as we have dM(xi,x j) ≤ ∥xi−
x j∥2.

If some points xi ∈M have not been reached during this process,
one should either increase the initial radius ρ0 or simply add xi to
the sample set S and run an extra local Dijkstra starting from xi.

Values of
(
ũ j
)

j can now be computed and stored in a sparse n× p

matrix Ũ where each column stores a local function. Eventually
in order to detect too small self-weights u j(v j), we notice from
Equation (14) that u j(v j)≤ α is equivalent to ∑i ũi(v j)≥ 1

α
, where

the first term is the sum of a row of a p× p submatrix extracted from
Ũ. Reducing the radius ρ j of a sample only consists in recomputing
the j-th column of Ũ from the same distance values as computed by
the first Dijkstra run. This way, no additional Dijkstra is run which
leads to a somewhat costless improvement of the local functions.

Appendix H: Texture transfer

We further show the efficiency of our method in terms of accu-
racy by displaying another example of texture transfer on a pair
of dense meshes part of the SHREC19 dataset, as seen on Fig-
ure 11. Here the leftmost shape contains 50 000 vertices and right-
most 200 000, but we only use nearly 1500 samples to obtain such
correpondences. Note that in this case, where the number of ver-
tices on the target shape is larger than the number of vertices on the
source shape, texture transfer is especially challenging as multiple
vertices of the target shape are projected into the same triangles.
This makes texture transfer very sensitive to the quality of the es-
timated map. We stress this pipeline obtains sub-sample accuracy
in the correspondences, all in a fraction of the required time to run
the exact ZoomOut pipeline. We further highlight that texture at the
elbows and shoulder is not smooth on the source shape, which ex-
plains the distortion on the target shape. This results simply serves
as visualization.

Figure 11: Texture transfer using our scalable version of ZoomOut
on a pair of the SHREC19 dataset. Samples used in the pipeline are
shown as white dots.
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