
SRFeat: Learning Locally Accurate and Globally Consistent

Non-Rigid Shape Correspondence

Lei Li Souhaib Attaiki Maks Ovsjanikov
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Abstract

In this work, we present a novel learning-based frame-

work that combines the local accuracy of contrastive learn-

ing with the global consistency of geometric approaches,

for robust non-rigid matching. We first observe that while

contrastive learning can lead to powerful point-wise fea-

tures, the learned correspondences commonly lack smooth-

ness and consistency, owing to the purely combinatorial na-

ture of the standard contrastive losses. To overcome this

limitation we propose to boost contrastive feature learning

with two types of smoothness regularization that inject geo-

metric information into correspondence learning. With this

novel combination in hand, the resulting features are both

highly discriminative across individual points, and, at the

same time, lead to robust and consistent correspondences,

through simple proximity queries. Our framework is gen-

eral and is applicable to local feature learning in both the

3D and 2D domains. We demonstrate the superiority of our

approach through extensive experiments on a wide range of

challenging matching benchmarks, including 3D non-rigid

shape correspondence and 2D image keypoint matching.

1. Introduction

Finding accurate correspondences across geometric ob-

jects is a fundamental task in a wide range of computer

vision and graphics problems, such as object tracking,

registration, texture transfer, and statistical shape analy-

sis [98, 24, 10], among many others. The presence of sig-

nificant variations in 3D or 2D geometric objects, including

rigid and non-rigid transformations, makes it challenging to

develop a single unified theoretical deformation model for

robust matching [86, 81]. Earlier approaches to comput-

ing correspondences heavily relied on hand-crafted features

and pipelines [86]. In more recent years, there has been

a growing body of literature advocating the use of deeply

learned features that demonstrate superior matching perfor-

mance over axiomatic approaches [31, 76, 71, 18, 25].

In this work, we focus on learning discriminative local
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Figure 1: We propose a smoothness-regularized contrastive

learning approach for local feature learning, which leads to

more accurate, consistent correspondences. (a) Dense non-

rigid 3D shape matching via learned features on the FAUST

dataset [10]. Correspondence is visualized by color trans-

fer. (b) 2D image keypoint matching through node-wise

features on the PASCAL VOC dataset [30]. Ground-truth

corresponding keypoints have the same node color.

features that can robustly identify each point on a given geo-

metric object for correspondence. Given such local features

for a pair of objects, finding point-wise correspondences

simply reduces to proximity queries in the learned feature

space [37]. However, it is not easy to endow local features

with descriptiveness and robustness for geometric objects

potentially undergoing arbitrary deformations.

Contrastive learning is a popular approach to training lo-

cal feature extractors, for example, in the task of 3D rigid

point cloud registration [97, 23, 34, 51, 6, 18, 93]. The wide

adoption of contrastive learning lies in the fact that it is ex-

tremely generic, as also actively studied in 2D visual rep-

resentation learning [41, 15, 35, 31], and thus can be ap-

plicable to arbitrary 3D or 2D shape classes. On the other

hand, this learning paradigm is inherently based on comput-

ing correspondences across individual points by comparing

their local features. As a result, while the learned features

can be very discriminative, the overall quality of the corre-

spondences can suffer and especially lack smoothness and

consistency [16, 5], as shown in Fig. 1 (a). Thus, so far,

there is limited success in training local features purely with

contrastive learning for direct nearest-neighbor matching,

e.g., for non-rigid shape correspondence [22].



Motivated by the above discussion, we introduce a novel

smoothness-regularized contrastive learning approach, en-

abling robust feature-based matching of deformable objects.

Specifically, we boost the contrastive loss at training time

(e.g., the PointInfoNCE loss [93]) with powerful smooth-

ness regularization terms that promote the overall consis-

tency of the learned point-wise features. Our resulting ap-

proach, which we call SRFeat, enjoys the advantages of

contrastive learning, by obtaining highly discriminative lo-

cal features, which can be accurately matched via direct fea-

ture proximity queries. Moreover, owing to the smoothness

promotion, the resulting local features are strongly regular-

ized, thus leading to overall smooth and consistent corre-

spondences even without any post-processing (Fig. 1 (a)).

We initiate the study of smoothness regularization for

contrastive learning, specifically, for deformable shape cor-

respondence. We propose two implementation variants for

the smoothness regularization at training time (Sec. 3.2): (1)

a Dirichlet energy loss that penalizes discontinuities in the

feature space and (2) a spectral loss that evaluates the corre-

spondence matrices in the spectral domain. We demonstrate

the superior performance of SRFeat through a comprehen-

sive set of experiments on diverse non-rigid shape matching

benchmarks [10, 1, 57, 99]. At test time, we compute corre-

spondences between non-rigid shapes by nearest-neighbor

queries with the learned features, in contrast to the state-of-

the-art methods [25, 29] that typically require the Laplacian

basis computation and a test-time correspondence optimiza-

tion in the spectral domain.

In addition, our smoothness regularization is remarkably

generic and can be easily incorporated into other modern

contrastive feature learning frameworks in other domains

(e.g., images), and thus we position SRFeat as a general

local feature learning approach. To demonstrate the wide

applicability, as shown in Fig. 1 (b), we apply SRFeat to the

2D image domain for keypoint matching [30, 31], bringing

significant improvement over existing methods.

In a nutshell, the main contributions of our work are

as follows: (1) We introduce a novel generic smoothness

regularization to the contrastive feature learning frame-

work, substantially improving the smoothness and consis-

tency of correspondences found by local features; (2) We

establish a link between contrastive learning and spectral

(functional map-based) shape correspondence methods by

relating ways in which these approaches operate on the

computed correspondence matrices; (3) We show that con-

trastive feature learning combined with smoothness regular-

ization yields superior matching performance over existing

methods on widely adopted non-rigid shape benchmarks;

(4) We demonstrate the strong generality of SRFeat to the

2D domain for tackling matching problems on real-world

image data. Our code and data are publicly available1.

1https://github.com/craigleili/SRFeat

2. Related Work

Contrastive Learning Contrastive learning has recently

received significant research attention as a powerful repre-

sentation learning paradigm for both 2D and 3D data. In the

2D domain, contrastive learning is widely used for unsu-

pervised learning of 2D representations [63, 41, 15, 35, 31,

20]. Meanwhile, researchers also actively investigate this

generic learning paradigm for 3D geometric data. For ex-

ample, PointContrast [93] and its follow-up work [42] per-

form local feature contrasting at the point level between two

transformed 3D scene fragments. The learned feature repre-

sentation is shown to be useful in downstream 3D tasks like

segmentation and detection [21]. Besides, there also exist

recent works performing the contrasting at the local patch

level [26], object instance level [67], global scene level [46],

or both the shape and point levels [89]. Our work, related

to [93, 31], focuses on learning local features for robustly

identifying individual points on deformable geometric ob-

jects for correspondence. To boost the performance of con-

trastive feature learning, we propose smoothness regulariza-

tion and show its utility in a wide range of matching prob-

lems.

Shape Matching Shape matching is a key problem in

3D shape analysis and has been extensively studied in re-

cent decades [37, 86, 9, 38, 13, 71, 22]. Earlier works

focused primarily on hand-crafted 3D local features for

matching, including both extrinsic [47, 33, 74, 73, 75]

and intrinsic [80, 4] descriptors. In recent years, research

focus has shifted to learned local features for better ro-

bustness in matching, for example, in the task of point

cloud registration [97, 23, 34, 91, 94, 51, 2, 6, 5]. For

non-rigid shapes, a common approach to computing cor-

respondence is to leverage spectral information, e.g., us-

ing the functional map framework [64] and its follow-up

works [49, 43, 14, 70, 61, 68, 44]. In particular, several re-

cent approaches [53, 72, 29, 36, 25, 3] have built upon this

framework by advocating learned probe functions. There

also exist a few works [56, 60] exploring surface CNNs with

the contrastive loss proposed by Hadsell et al. [39] to learn

features for non-rigid shapes. However, the performance

of such approaches on dense shape correspondence was not

shown to be comparable to that of the spectral methods.

Our SRFeat framework differs from the above state-of-

the-art non-rigid shape matching approaches [25, 3], which

require the spectral basis computation and optimization in

the spectral domain at test time. Instead, our approach

achieves superior matching performance by directly match-

ing local features, learned via our smoothness-regularized

contrastive learning strategy.

Image Keypoint Matching Image matching is a well stud-

ied area in computed vision, and a full review is beyond

https://github.com/craigleili/SRFeat


the scope of this work. We refer the interested readers to

recent surveys [55, 50, 8] for a more in-depth discussion.

Finding correspondences between 2D images is a difficult

problem, due to the potentially strong differences in ap-

pearance, and ambiguities introduced by repeating patterns.

Classical methods for solving this problem were based on

handcrafted features such as [54, 59, 83]. Strategies such

as ratio test [54] or mutual check were used to reduce am-

biguous matches. Recent methods are based on trainable

feature descriptors extracted by convolutional neural net-

works (CNNs). They either operate on patches extracted

by handcrafted feature detectors and produce a sparse set

of descriptors [79, 87, 7, 78], or involve end-to-end meth-

ods combining detection and description [95, 62, 19]. Sev-

eral methods have been proposed for producing consistent

matches [69, 96, 90, 31]. DGMC [31] tackles this problem

by constructing a graph for image keypoints and seeking

consensus of matches in local neighborhoods using a syn-

chronous message passing network, while using a standard

contrastive loss for training. In this work, we investigate

the strong generality of our smoothness regularization in

the image keypoint matching task, showing its significant

improvement to the contrastive learning used in [31].

3. Method

3.1. Background

Contrastive learning [39, 63] is a widely adopted ap-

proach to learning informative representations for 3D [93]

and 2D [41, 31] vision understanding tasks. Specifically,

the PointInfoNCE loss introduced in [93] was formulated

on individual points to train 3D local features for rigid align-

ment. Given a pair of point clouds P1 and P2 with n1 and

n2 points, respectively, below we re-write this contrastive

loss using a feature similarity matrix Π ∈ R
n1×n2 , as this

will be useful to establish the link to spectral approaches in

Sec. 3.2. Let f i1, f
j
2 ∈ R

d denote d-dimensional features

for the ith point in P1 and jth point in P2, respectively. The

similarity matrix Π is then constructed as:

Πi,j =
exp

�

s(f i1, f
j
2 )/τ

�

�n2

k=1 exp
�

s(f i1, f
k
2 )/τ

� , (1)

s(x,y) = x · y, (2)

where s(·, ·) is the similarity measurement between two fea-

ture vectors, and τ is a temperature hyper-parameter. Eq. (1)

can be thought of as applying row-wise softmax to the pair-

wise similarity in Eq. (2). The PointInfoNCE loss is then

defined as:

Lc = −
"

i

log
�

Πi,GT(i)
�

. (3)

Here GT(i) denotes the ground-truth correspondence.

In [93], P1 and P2 are partially overlapped and thus only

points sparsely sampled in the overlap region are consid-

ered in the above formulation.

Another example of contrastive learning is its application

to the graph matching problem [90], aiming at establish-

ing correspondences between the nodes of two input graphs,

such as for 2D image keypoint matching [30]. The training

loss used in the deep graph matching consensus (DGMC)

framework [31] has a similar formulation to Eq. (3).

Interestingly, as we demonstrate in Sec. 4.1, the PointIn-

foNCE loss alone, when used in conjunction with a recent

powerful feature extractor [77], can already lead to point-

wise features that induce competitive correspondences on

near-isometric 3D shape benchmarks. This result suggests

that it is viable to establish correspondences between non-

rigid shape pairs by simple proximity queries in the feature

space, differently from common approaches [11, 92, 77, 25]

that are either based on predicting vertex ids of some ref-

erence shape or use test time optimization. However, we

also find that using the PointInfoNCE loss alone can lead

to discontinuous maps, especially in the presence of non-

isometries, due to the issues discussed below.

Formulation Issues Despite the generality of contrastive

learning, fundamentally the loss in Eq. (3) only consid-

ers whether individual point correspondences are correct

or not, without exploiting any geometric structure of the

shapes. This means that incorrect predictions are penalized

equally regardless of whether they are close to the ground-

truth match or not. More broadly, contrastive learning does

not consider structural properties of the underlying map,

such as continuity or smoothness. Such properties emerge

when one considers either relations between learned fea-

ture embeddings of points on the shapes, or analyzing the

map as a whole [53, 72, 25]. To mitigate the issues, we pro-

pose to use simple yet powerful regularization by promoting

smoothness in the learned local features, while maintaining

the simplicity and advantages of contrastive learning.

3.2. SmoothnessRegularized Feature Learning

Our goal is to train a robust feature extraction net-

work that would enable shape matching via simple prox-

imity queries between features at different points. We base

our approach, SRFeat, on the generic contrastive learning

framework (Sec. 3.1), and propose to boost contrastive fea-

ture learning with smoothness regularization. In what fol-

lows, we first instantiate the formulations of smoothness

regularization in the 3D domain and then discuss the gener-

alization to the 2D domain (Sec. 3.3).

Let us first define the notation for feature extraction.

Suppose we are given a pair of non-rigid shapes S1 and

S2 with ground-truth correspondences. The shapes are rep-

resented as graphs (i.e., triangle meshes) and contain n1

and n2 vertices, respectively. We denote our feature ex-
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Figure 2: Overview of our smoothness-regularized con-

trastive learning framework. To train the extracted local

features G1 and G2 by the network FΘ, we augment the

contrastive loss Lc with a smoothness regularization loss

Ls. At test time, correspondences between the input de-

formable shapes are found by nearest-neighbor query be-

tween G1 and G2.

tractor as FΘ, where Θ represents the trainable network pa-

rameters. We obtain point-wise features for each shape by

forwarding it to the feature extractor FΘ. Specifically, let

G1 = FΘ(S1) and G2 = FΘ(S2) denote the sets of result-

ing d-dimensional features for the two shapes, respectively,

where G1 ∈ R
n1×d and G2 ∈ R

n2×d. We refer to each col-

umn of the feature matrices as a real-valued feature function

defined on the vertices of the corresponding shape.

Our SRFeat framework is conceptually simple and is il-

lustrated in Fig. 2. SRFeat trains the feature extractor FΘ

with a novel training loss L that combines contrastive learn-

ing with smoothness regularization:

L = Lc + λLs, (4)

where λ is a weighting hyper-parameter. The first term Lc

is the contrastive loss (Sec. 3.1) that promotes small fea-

ture distance between corresponding points and large fea-

ture distance between non-corresponding ones. The second

term Ls is the smoothness regularization loss for G1 and

G2, exploiting geometric information in the input shapes.

We propose two variants for Ls, as detailed below.

Dirichlet Energy Loss To regularize the smoothness of the

learned local features, we consider the feature functions de-

fined on the shapes (i.e., each column of G1 and G2). Our

first loss is based on the Dirichlet energy [65], which intu-

itively measures how smooth those functions are. Given a

real-valued function g : S → R on the shape S , the Dirich-

let energy is defined as:

Ed(g) =

�

S

∥∇g∥2dA. (5)

In the discrete case, the Dirichlet energy can be computed

as:

Ed(g) = g¦Wg, (6)

where g is a vector representing the input function, and W

denotes the classical symmetric cotangent weight (stiffness)

matrix [65].

We then formulate our Dirichlet energy loss as:

Ls =
1

2d

"

i

Ed(G
i
1) +

1

2d

"

i

Ed(G
i
2), (7)

where Gi
1 denotes the i-th column of G1, and similarly for

Gi
2. Intuitively, our Dirichlet energy loss promotes struc-

tural properties of the feature functions by considering the

columns of the feature matrices G1,G2, while the con-

trastive loss Lc in Eq. (3) supervises the per-point features,

i.e., the rows of G1,G2. Thus combining both losses en-

ables the network to produce discriminative and globally

consistent features, leading to more accurate, smooth corre-

spondences.

Spectral Loss We propose another variant of smoothness

regularization by going into the spectral domain to examine

correspondences between input shapes as a whole. Exist-

ing spectral methods for non-rigid shape matching, partic-

ularly, the functional map-based ones [64, 72, 25, 3], en-

code correspondences in a reduced spectral basis, result-

ing in small-sized matrices that come with a suite of the-

oretical and computational tools and allow to enforce geo-

metric consistency, which otherwise is computationally pro-

hibitive. On the other hand, using a reduced basis normally

leads to the loss of local or high-frequency details in the

matching. Inspired by this line of works, we propose to

combine the advantages of global consistency imposed by

spectral representations with the precision of a local point-

wise contrastive loss for robust feature learning.

Our starting point is that the feature similarity matrix Π

defined in Eq. (1) can be thought of as a soft point-wise

map, where each row stores the probability distribution for

a point in S1 to be matched to points in S2. A point-wise

map can be interpreted as a functional map in the complete

basis, and we exploit the above idea that encoding the map

in a reduced spectral basis can introduce global information.

Specifically, given the soft point-wise map Π, we compute

its associated functional map C ∈ R
k×k by projecting it

onto a reduced spectral basis:

C = Φ
 
1ΠΦ2, (8)

where Φ1 ∈ R
n1×k and Φ2 ∈ R

n2×k are matrices stor-

ing, as columns, the first k eigenfunctions of the Laplace-

Beltrami operator [84] on the respective shape, and  de-

notes the Moore-Penrose inverse. When the eigenfunc-

tions are orthonormal w.r.t. the area-weighted inner prod-

uct Φ¦
1 A1Φ1 = I, then Eq. (8) can be written as C =

Φ¦
1 A1ΠΦ2. Note that k is typically in the range [20, 100]

and thus C is orders of magnitude smaller than Π.



Contrastive Contrastive + Dirichlet Contrastive + Spectral

Figure 3: Effect of smoothness regularization on learned lo-

cal features for a shape pair. 128-dimensional local features

are projected to 2D by t-SNE [85] and encoded as colors.

At last, we define our spectral loss as:

Ls = ∥C−Cgt∥
2, (9)

where Cgt is the ground-truth functional map computed ac-

cording to Eq. (8) but with a binary matrix Πgt representing

the ground-truth point-wise map.

Discussion To sum up, our SRFeat framework introduces

consistency into the contrastive feature learning process

through either the Dirichlet energy loss Eq. (7), which reg-

ularizes the distribution of features on the points of the do-

main directly, or the spectral loss Eq. (9), which regularizes

correspondences in the reduced spectral basis. Fig. 3 visu-

alizes the effectiveness of smoothness regularization on the

learned local features.

We reiterate that SRFeat differs from the currently dom-

inant functional map-based approaches, like GeomFmaps

[25] and DPFM [3], for non-rigid shape matching. Firstly,

the above works rely on the Laplacian basis and on solving

for the optimal functional map matrix at test time, whereas

our approach uses nearest-neighbor search directly in the lo-

cal feature domain. Secondly, since we compute correspon-

dences in the complete basis, foregoing the functional map

estimation, our approach can lead to more precise matches

and better performance than the above works that only oper-

ate in the reduced spectral basis (Sec. 4). Lastly, in our spec-

tral loss Eq. (8) we compute C directly from a learned soft

point-wise map, which avoids the need for solving linear

systems inside the network, in contrast to all previous deep

functional maps approaches [53, 25, 72, 40, 3], which re-

quire differentiating through the matrix inverse, and which

can be numerically unstable during training as observed

in [72, 25].

3.3. Generalization to 2D Matching

Our SRFeat framework naturally inherits the generality

of contrastive learning, although our smoothness regulariza-

tion losses are firstly formulated in the 3D domain. Indeed,

the graph matching problem mentioned in Sec. 3.1 can also

benefit from smoothness regularization. Concretely, for the

image keypoint matching task [30], each object instance in

images is annotated with a set of keypoints for matching. To

apply our smoothness regularization, we need to construct

a graph for the keypoints of each image object. For this,

we adopt the Delaunay triangulation, similar to [31]. The

resulting graphs are 2D meshes, and we compute the Lapla-

cian matrix for them in a similar manner to 3D meshes.

With this simple adaptation, we can compute the smooth-

ness regularization loss Ls, and combine it with the con-

trastive loss Eq. (3) to guide the feature learning for graph

nodes, as done in Eq. (4). More implementation details are

provided in Sec. 4.2.

4. Experiments

We evaluate our SRFeat framework on a wide range

of challenging deformable shape matching tasks. First, in

Sec. 4.1, we conduct experiments on existing 3D non-rigid

shape correspondence benchmarks, including human shape

datasets like FAUST [10], SCAPE [1] and SHREC’19 [57],

and an animal shape dataset SMAL [99]. Next, in Sec. 4.2,

we further investigate the generality of SRFeat in the 2D

domain with the PASCAL VOC dataset [30], in the context

of keypoint matching across natural images.

4.1. 3D Shape Matching

Datasets The FAUST and SCAPE datasets are widely used

for evaluating human shape matching performance. We

follow prior works [68, 72, 25, 29] and use the unaligned

remeshed versions of the datasets, ensuring that shapes do

not share identical mesh connectivity. FAUST contains 100

shapes labeled with ground-truth correspondences, and we

use the same training/testing split as the prior works with

80/20 shapes, respectively. SCAPE contains 71 labeled

shapes and is split into 51/20 shapes for training/testing.

Due to the nearly saturated performance on FAUST and

SCAPE, we also test on SHREC’19 [57], a more challeng-

ing human shape matching dataset. SHREC’19 contains

44 labeled shapes with the presence of a partial shape and

430 shape pairs in total. SHREC’19 is used as a test set of

generalizability, and we use the training sets of FAUST and

SCAPE for network learning.

Finally, we also test on SMAL, a four-legged animal

shape dataset with five categories including cats, dogs,

cows, horses, and hippos. We use the first three categories

as training data with 1,000 shapes per category. The last

two categories are only used as testing data with 100 shape

pairs for non-isometric matching (i.e., one horse shape and

one hippo shape in each testing pair).

Implementation We use DiffusionNet [77] as the feature



extractor FΘ, which is a generic network for learning fea-

tures on deformable shapes. The local feature dimension d
is set to 128. At training time, for the contrastive loss, we

set τ = 0.07 in Eq. (1) and randomly sample 1,024 ground-

truth correspondences. We use s(x,y) = x/∥x∥2 ·y/∥y∥2
to make the similarity measurement during training equiv-

alent to the Euclidean distance metric used in proximity

search at test time [35]. We performed a simple parame-

ter search to set λ in Eq. (4): for the Dirichlet energy loss

Eq. (7), we set λ = 1 on all the datasets; for the spectral

loss Eq. (9), we set λ = 0.1 on FAUST and λ = 10 on all

the other datasets. We use k = 30 eigenfunctions for the

spectral loss, following [25].

Competitors In Tab. 1, we perform comparisons to several

recently proposed approaches for non-rigid shape match-

ing. The first category is axiomatic approaches, includ-

ing BCICP [68], ZoomOut [58], and Smooth Shells [27].

The second category is unsupervised learning approaches,

including SURFMNet [72], UnsupFMNet [40], Neuro-

Morph [28], and DeepShells [29]. The third category is su-

pervised learning approaches, including FMNet [53], 3D-

CODED [36], HSN [92], ACSCNN [52], DPFM[3], and

GeomFmaps [25]. Note that for fair comparisons, we re-

produced GeomFmaps with DiffusionNet, as done in [77],

which shows significantly better performance than the orig-

inal KPConv-based GeomFmaps [82, 25]. DPFM is also

based on DiffusionNet. Post-processing techniques, such as

ICP [64], PMF [88], and ZO [58], may be used by the above

approaches.

Contrastive learning (CL) is the straightforward baseline

of our SRFeat framework, that is, we train the feature ex-

tractor with only the contrastive loss Lc (λ = 0 in Eq. (4)).

Though being simple, CL is not widely compared in the

prior works on non-rigid shape matching, and presents a

strong competitive baseline. For our smoothness regulariza-

tion approach, we denote CL with the Dirichlet energy loss

as SRFeat-D, and CL with the spectral loss as SRFeat-S. At

test time, we compute correspondences between two input

shapes by performing nearest-neighbor search between the

learned local features for CL, SRFeat-D, and SRFeat-S.

Results We use the evaluation metric introduced in [48],

i.e., the mean geodesic error on unit-area shapes between

the ground-truth and computed correspondences. Tab. 1

shows comparisons on the FAUST, SCAPE, SHREC’19,

and SMAL datasets. For the sake of readability, we multiply

the results by 100 and mark the results with post-refinement

in gray.

On FAUST and SCAPE (Tab. 1-left), our SRFeat shows

competitive performance without post-refinement. In the

setting of training on FAUST and testing on SCAPE (i.e., F

- S), DPFM and GeomFmaps perform better than SRFeat.

We ascribe this to the fact that the training set of FAUST

Train - Test

Method F S F - S S - F S19 SMAL

BCICP 6.1 11.0 - - - -

ZoomOut 6.1 7.5 - - - -

SmoothShells 2.5 4.7 - - - -

SURFMNet 15.0 12.0 32.0 32.0 - -

+ICP 7.4 6.1 19.0 23.0 - -

UnsupFMNet 10.0 16.0 29.0 22.0 - -

+PMF 5.7 10.0 12.0 9.3 - -

NeuroMorph 8.5 29.9 28.5 18.2 - -

DeepShells 1.7 2.5 5.4 2.7 21.1 12.6

FMNet 11.0 17.0 30.0 33.0 - -

+PMF 5.9 6.3 11.0 14.0 - -

3D-CODED 2.5 31.0 31.0 33.0 - -

HSN 3.3 3.5 25.4 16.7 - -

ACSCNN 2.7 3.2 8.4 6.0 - -

DPFM 2.1 2.3 2.7 2.5 6.6 6.3

+ZO 1.9 2.3 2.4 1.9 5.5 5.5

GeomFmaps 2.6 2.9 3.4 3.1 8.5 6.0

+ZO 1.9 2.6 2.6 1.9 7.9 5.6

CL 1.1 1.9 6.1 3.7 10.7 13.7

+ZO 1.9 2.5 2.8 1.9 5.5 5.0

SRFeat-S 1.1 2.2 3.9 2.5 6.1 4.5

+ZO 1.9 2.5 2.6 1.9 4.3 5.3

SRFeat-D 1.1 1.9 4.3 2.2 5.4 3.4

+ZO 1.9 2.5 3.1 1.9 4.6 4.9

Table 1: Evaluation on the FAUST, SCAPE, SHREC’19,

and SMAL datasets. The metric is mean geodesic error

×100 on unit-area shapes. The results in gray are obtained

by some specific post-processing techniques. The best and

second best results without post-refinement are highlighted

in each column.

contains a relatively small set of poses, which are different

from those in SCAPE, and SRFeat is trained to be highly

specialized on F with a very low testing error of 1.1, while

DPFM and GeomFmaps have 2.1 and 2.6, respectively. In-

terestingly, the feature matching based methods, i.e., CL,

SRFeat-S, and SRFeat-D, achieve saturated performance in

the settings of F and S, where post-refinement (i.e., +ZO)

hurts the results, indicating that the results below 1.9 on

F and 2.5 on S are nearly indistinguishable. This moti-

vates us to focus on the SHREC’19 and SMAL datasets

for robustness and generalizability tests, as discussed be-

low. Nevertheless, SRFeat significantly improves CL in the

cross dataset settings (F - S and S - F).

On SHREC’19 and SMAL (Tab. 1-right), our SRFeat-

D has the best matching performance. We note that these

experiments present a very challenging test, which involves

non-isometric shape matching and evaluates generalization

across datasets (i.e., training on FAUST + SCAPE, testing

on SHREC’19) as well as across shape categories (i.e., no

category overlap between the training and testing data of
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Figure 4: Correspondence quality evaluated on SHREC’19

and SMAL.

Ground Truth DeepShells GeomFmapsDPFM CL SRFeat-DSRFeat-S

SHREC’19

Source

SMAL

Figure 5: Qualitative results from the SHREC’19 and

SMAL datasets without using any post-refinement. Corre-

spondence is visualized by color transfer.

SMAL). The experiments show that our SRFeat works well

across various challenging testing scenarios and brings con-

sistent improvement to CL.

To get a better understanding of the improvement

brought by smoothness regularization, in Fig. 4, we plot

cumulative curves showing the percentage of correspon-

dences (y-axis) that have geodesic error smaller than a vari-

able threshold (x-axis). The plots show that SRFeat-S and

SRFeat-D improve upon CL, and indicate, in particular,

that using smoothness regularization in CL helps to signif-

icantly reduce correspondences with large errors and thus

improves the overall correspondence consistency and qual-

ity. In Fig. 5, we show qualitative results without perform-

ing any post-refinement, which can better reveal the origi-

nal correspondence quality produced by each approach. We

observe that our SRFeat can produce more accurate corre-

spondences while reducing both local and global artifacts.

Ablation Study We perform a study w.r.t. the configura-

tions of our approach. First, we have shown the signifi-

cant contribution of our smoothness regularization losses in

Tab. 1 by comparing SRFeat-S and SRFeat-D with the base-

line CL (i.e., setting λ = 0 in the training loss Eq. (4)).

Next, we test different network architectures for feature

extraction. In the above experiments, we use DiffusionNet

W/o noise 5X noise

(b)(a)

Figure 6: Test with varying noise magnitude on SHREC’19.

Network CL SRFeat-S SRFeat-D

PointNet++ 6.2 5.6 5.9

SparseConv 6.9 5.2 3.9

Table 2: Shape matching performance of point-based fea-

ture extractors on SMAL (mean geodesic error ×100).

as the feature extractor, which needs connectivity for fea-

ture propagation. In Tab. 2, we test two recent architec-

tures designed for learning on point sets: PointNet++ [66]

and SparseConv [18, 17]. We observe that SRFeat-S and

SRFeat-D still improve CL noticeably, showing generality

across architectures. We find this result to be promising, as

it shows that once trained on 3D data with mesh connec-

tivity (used in the smoothness regularization losses), at test

time our SRFeat can be applied to non-rigid point sets for

local feature extraction and matching without the connec-

tivity information.

Furthermore, we test the robustness of our SRFeat to in-

put noise. We add an increasing amount of Gaussian noise

to point positions of shapes in the test set, as shown in Fig. 6

(b), and we do not train or fine-tune the networks on each

noise magnitude. We plot the mean geodesic error w.r.t.

the noise magnitude in Fig. 6 (a). We observe that SRFeat-

S and SRFeat-D consistently improve CL across different

noise levels and thus demonstrate the ability to handle mod-

erate amounts of noise.

4.2. Image Matching

To demonstrate the wide applicability of our smoothness

regularization in other modern contrastive feature learning

frameworks, we conduct experiments on an existing 2D im-

age keypoint matching benchmark, as discussed in Secs. 3.1

and 3.3.

Dataset We follow [31] to test on the PASCAL VOC

dataset [30] with Berkeley keypoint annotations [12]. The

dataset has 6,953 and 1,671 natural images with annotated

keypoints for training and testing, respectively. Object in-

stances in the images have varying scale, pose and illumi-

nation. The number of keypoints in an object ranges from 1

to 19.



Method Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse M-Bike Person Plant Sheep Sofa Train TV Mean

GMN [96] 31.1 46.2 58.2 45.9 70.6 76.5 61.2 61.7 35.5 53.7 58.9 57.5 56.9 49.3 34.1 77.5 57.1 53.6 83.2 88.6 57.9

PCA-GM [90] 40.9 55.0 65.8 47.9 76.9 77.9 63.5 67.4 33.7 66.5 63.6 61.3 58.9 62.8 44.9 77.5 67.4 57.5 86.7 90.9 63.8

DGMC [31] 47.0 65.7 56.8 67.6 86.9 87.7 85.3 72.6 42.9 69.1 84.5 63.8 78.1 55.6 58.4 98.0 68.4 92.2 94.5 85.5 73.0

SRFeat-D 48.4 69.4 57.3 69.8 88.2 86.0 85.8 73.3 42.1 67.7 93.2 67.9 73.2 59.7 58.8 97.1 65.6 95.2 93.8 86.1 73.9

SRFeat-S 49.2 69.1 57.6 68.3 87.7 88.6 85.0 72.9 36.7 64.2 95.1 67.9 76.9 65.0 60.0 96.2 68.6 97.0 93.6 85.7 74.3

Table 3: Keypoint matching in natural images. Hits@1 (%) on the PASCAL VOC dataset with Berkeley keypoint annotations.

DGMC SRFeat-SSRFeat-DDGMC

Figure 7: Qualitative results from the PASCAL VOC

dataset. Ground-truth corresponding keypoints have the

same color.

Comparisons We perform comparisons with recent works

GMN [96], PCA-GM [90], and DGMC [31]. DGMC is

a recent deep graph matching network that performs node

matching between two input graphs based on the node fea-

ture similarity, and uses the contrastive loss Lc in Eq. (3)

for training.

Implementation Our implementation follows DGMC [31].

Specifically, we use SplineCNN [32], a graph neural net-

work, as the feature extractor FΘ. We apply the Delau-

nay triangulation to the keypoints in each image for graph

construction, which is used in both the graph neural net-

work and our proposed smoothness regularization losses.

We augment the contrastive loss Lc with smoothness regu-

larization, as done in Eq. (4), where we set λ = 0.01 for

both the Dirichlet energy loss and the spectral loss. We also

use the same training and testing protocols as DGMC.

Results Tab. 3 presents the performance comparisons on

PASCAL VOC. The evaluation metric is Hits@1, measur-

ing the proportion of correctly matched keypoints ranked

in the top-1. Fig. 7 further shows qualitative comparisons.

We observe that our smoothness regularization brings no-

ticeable improvement over DGMC, which uses contrastive

learning only, and SRFeat-S achieves the best performance

on this benchmark. We ascribe the slightly better per-

formance of SRFeat-S over SRFeat-D partly to the fact

that image objects have very sparse (f 19) keypoints and

may undergo significant geometric distortion and occlu-

sion (Fig. 7). Thus enforcing approximate smoothness and

global structure consistency by the spectral loss in a re-

duced basis can be more beneficial. In contrast, 3D shape

matching in Sec. 4.1 is a different application scenario,

where dense (∼ 5, 000) point correspondence is tested.

The Dirichlet energy loss encourages the features to vary

smoothly on 3D surfaces to better capture the underlying

geometry, resulting in more precise dense matching. Nev-

ertheless, the result in Tab. 3 strongly indicates the general

applicability of our smoothness-regularized feature learning

framework.

5. Conclusion, Limitations & Future Work

In this work, we have presented SRFeat, a generic

learning-based framework that combines the local accu-

racy of contrastive learning with the global consistency of

geometric approaches, for robust non-rigid shape corre-

spondence. Through extensive experiments, we show that

SRFeat produces discriminative local features that can be

robustly matched, resulting in more accurate correspon-

dences. We demonstrate the effectiveness and generality

of SRFeat on a suite of benchmarks including 3D non-rigid

shape matching and 2D image keypoint matching.

One limitation of our approach is that to compute

smoothness regularization we assume the input shapes to be

represented as triangle meshes during training, and it might

be worth extending our approach to point clouds. For par-

tially overlapped shapes, unlike [3, 45], SRFeat does not

have a specific component for predicting overlapping masks

used in matching, which might be worth further investiga-

tion. Unsupervised learning is another interesting direction

to explore. To eschew ground-truth annotations, one possi-

ble approach is, like [93], to create synthetic shape pairs via

data augmentations. A key challenge would be to systemat-

ically study various augmentation strategies for deformable

shapes that can lead to informative local feature learning.

Finally, further improvements to the matching quality of

SRFeat can be brought, e.g., by incorporating a learnable

correspondence filtering component [16, 5], in future work.
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and Jitendra Malik. Recognizing objects in range data using

regional point descriptors. In ECCV, 2004. 2

[34] Zan Gojcic, Caifa Zhou, Jan D. Wegner, and Andreas Wieser.

The perfect match: 3D point cloud matching with smoothed

densities. In CVPR, 2019. 1, 2



[35] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
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