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In this supplementary materials, we collect all the theoretical contents

and additional experiments that can not be fitted in the main because

of lack of space.

1 PROOF OF LEMMA A.1

For convenience, we restate the lemma here:

Lemma 1.1. Let us be given a pair of shapesM,N each having non-

repeating Laplacian eigenvalues, which are the same (i.e. if ΛM , ΛN
are diagonal matrices of Laplacian eigenvalues, we require Λ(i, i) ,

Λ(j, j) whenever i , j for bothM,N , and ΛM (i, i) = ΛN(i, i) for all

i), then a point-to-point map T :M →N is an isometry if and only

if the corresponding functional map C in the complete Laplacian basis

is both diagonal and orthonormal.

Proof. To prove this lemma, we use a general result that states
that a map corresponds to an isometry if and only if its pullback
commutes with the Laplacian. This result holds in both the con-
tinuous and discrete settings, and for completeness we provide its
proof in the discrete setting below (see Theorem 1.2). Thus, if a map
T :M →N is represented as a matrix ΠMN , this condition states:
ΠMNLN = LMΠMN in the indicator (hat) basis.
Now suppose ΠMN represents an isometry. Then, if ΦM ,ΦN ,

are the matrices of the eigen-functions ofM, andN , whileΛN ,ΛN ,
are the diagonal matrices of eigenvalues, the condition above implies
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ΠMNLNΦN = LMΠMNΦN . From this follows:Φ+
M
ΠMNΦNΛN =

Φ
+

M
LMΠMNΦN andΦ+

M
ΠMNΦNΛN = ΛMΦ

+

M
ΠMNΦN . Thus

since C = Φ
+

M
ΠMNΦN we get CΛN = ΛMC. Since by assumption

ΛM = ΛN is diagonal this implies that Ci j (ΛN(i) − ΛN(j)) = 0
meaning thatCmust be diagonal. To see thatCmust be orthonormal,
note that since Π is an isometry it must preserve norms of functions,
so thatΠTAMΠ = AN . ThenC

T
C = Φ

T
N
Π
TAMΦMΦ

T
M
AMΠΦN =

Φ
T
N
Π
TAMΠΦN = Φ

T
N
ANΦN = Id . The second equality holds be-

cause ΦMΦ
T
M
AM = Id in the full basis.

Conversely, suppose that C = Φ
+

M
ΠMNΦN is diagonal. Then,

since ΠMNΦN = ΦMC we get: LMΠMNΦN = LMΦMC =

ΦMΛMC = ΦMCΛM , where the last equality holds because both
C and ΛM are assumed to be diagonal. But since ΦMC = ΠMNΦN

we get LMΠMNΦN = ΠMNΦNΛM . Furthermore, since ΛM =
ΛN by assumption, we obtain LMΠMNΦN = ΠMNΦNΛN =

ΠMNLNΦN . Finally, since ΦM is a complete set of basis functions,
this implies that LMΠMN = ΠMNLN , which implies that Π must
be an isometry. □

Theorem 1.2. Given two triangle meshes that are both connected

and having the same number of points and the same scale (i.e. the

sum of the areas of all the triangles), a bijective map Π corresponds to

a discrete intrinsic isometry if and only if ΠLM = LNΠ, where LM ,

LN are either cotangent Laplacians or the area-weighted ones with

diagonal (lumped) area matrices.

Proof. Suppose Π is a discrete isometry (a bijective map that
preserves all edge lengths). Then since the Laplacian is fully deter-
mined by edge lengths, we must have that LM and LN are the same
up to re-labeling of the vertices, which implies LM = Π

T LNΠ or
ΠLM = LNΠ.
For the converse, in the case of unweighted cotangent Lapla-

cians, this result follows directly from the main theorem in [Zeng
et al. 2012]. In the case of weighted Laplacians we have: LM =
A−1
M
WM ,LN = A−1

N
WN . ThenLM = LN impliesA−1

M
WM = A−1

N
WN ,

which impliesWM = AMA−1
N
WN .

By assumptionAM ,AN are diagonal. SinceWM is symmetric we
have that AMA−1

N
WN must be symmetric. Moreover, sinceWN is

symmetric it follows that AM (i)/AN(i) = AM (j)/AN(j) for every
i, j connected by an edge. Since the mesh is connected, this means
that the ratio between areas AM and AN is constant for the whole
mesh. I.e., AN = cAM for some scalar c . But since the global scale
is the same by assumption, this means c = 1, which implies that
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AM = AN . This meansWM =WN , and using the result of [Zeng
et al. 2012] the map must be a discrete isometry. □

2 ALTERNATIVE ALGORITHM AND RELATION TO PMF

Below we first describe an alternative formulation to ZoomOut

that we call Algorithm 1 and that is also based on iterative spectral
upsampling, but uses a different pointwise map conversion. We then
draw a link between Algorithm 1 and PMF.

To derive this alternative algorithm, we remark that in the generic
situation of the Laplacians having distinct eigenvalues, for any
eigenfunction φN

i
on the source, its image on the target via a pull-

back Π must lie in the space spanned by the first k eigenfunctions
on the target shape where k ≤ i . In other words, if Π maps functions
from N toM then:

(ΦMi+1...n )
+
ΠφNi = 0, or, equivalently

(I − ΦM1..i (Φ
M
1..i )

+)ΠφNi = 0.

Now consider the following alternative optimization problem:

min
Π

∑

k

k∑

i=1

∥(I − ΦM1..k (Φ
M
1..k )

+)ΠφNi ∥
2
F . (1)

Using the results in the previous section it is easy to see that
whenever Π is an exact isometry, it must also be an exact minimizer
of Eq. (1).

We rewrite Eq. (1) in a slightly different form by noting that the
inner term can be written as:

k∑

i=1

∥(I − ΦM1..k (Φ
M
1..k )

+)ΠφNi ∥
2
F (2)

= ∥ΠΦN1..k − Φ
M
1..k (Φ

M
1..k )

+
ΠΦ
N
1..k ∥

2
F (3)

= ∥ΠΦN1..k − Φ
M
1..k (CΠ)1..k,1..k ∥

2
F . (4)

Here (CΠ)1..k,1..k represents the k × k functional map induced by
Π. This means that Eq. (1) can be written as:

min
Π

∑

k

∥ΠΦN1..k − Φ
M
1..k (CΠ)1..k,1..k ∥

2
F . (5)

Each term in this sum has a very nice geometric interpretation:
it measures the failure of Π to map the first k eigenfunctions on
shapeM to the span of the first k eigenfunctions onN . Despite this
relaxation, one of the difficulties of solving the problem in Eq. (5)
directly is that C is not a free variable since it is fully determined by
Π. Thus to make the problem more tractable we decouple Π and C.
This suggests the following iterative algorithm:

Algorithm 1:

(1) Given an initial pointwise map Π and some parameter k .
(2) Compute CΠ = (Φ

M
1..k
)+ΠΦN

1..k
.

(3) Compute Π = argminΠ ∥ΠΦ
N
1..k
− ΦM

1..k
(CΠ)1..k,1..k ∥.

(4) Set k = k + 1, repeat steps 2-4.

Note that this algorithm makes two approximations when opti-
mizing Eq. (5) in a similar spirit to ZoomOut. First, it decouples
C and Π, and second, rather than minimizing the sum over all k it
progressively increases k and enforces each term in the inner sum
separately. The second approximation can be justified by noticing

that the terms in the sum are nested, since if a map Π is such that
ΠΦ
M
1..k

lies in the span of ΦN
1..k

then the first k terms of ΠΦM
1..k+1

will automatically lie in the span of ΦN
1..k+1

. Thus, a pointwise map
Π at iteration k provides a very strong prior for iteration k + 1. Note
also that, as shown in [Ezuz and Ben-Chen 2017], computing Π in
step 3) of Algorithm 1 leads to as-smooth-as-possible pointwise
maps in the sense of minimizing the presence of the high frequen-
cies in the image of ΠΦN

1..k
. Therefore, by progressively increasing

k we intuitively refine the maps from smoother to more and more
detailed ones.

Relation to PMF

We also note that Algorithm 1 above has another interpretation,
which is similar to the justification for the Product Manifold Filter
approach given in [Vestner et al. 2017]. We can think of this algo-
rithm as solving for the map Π by using the following iterative map

smoothing and sharpening procedure:

(1) Set X = Φ
M
1..k
(ΦM

1..k
)+ΠΦN

1..k
(ΦN

1..k
)+

(2) Compute Π = argminΠ∈p2p maps ∥Π − X ∥

(3) Increase k .

The first step in this sequence applies a low pass filter to a given
map thus creating a smooth soft mapX , which if used directly would
be a large dense matrix. The second step sharpens the soft map and
computes a pointwise map Π that best approximatesX . We mention
explicitly that Π must be a p2p map in step 2) to highlight that
Π = X is not, in general, a viable solution. This is very similar to the
Product Manifold Filter approach using the Heat Kernel [Vestner
et al. 2017] with two notable differences: 1) rather than using the
strict low-pass filter by cutting off all frequencies above the kth

one while progressively increasing k , the authors in [Vestner et al.
2017] use a smoothing operator which applies an exponential weight
inversely proportional to the frequency. 2) Instead of computing any
pointwise map, PMF tries to compute a bijection in the second step.
This requires solving a linear assignment problem, which can be
very expensive depending on the number of vertices on the shapes.

We have experimented extensively with Algorithm 1, which is
equivalent to the Deblur + upsampling approach mentioned in Sec-
tion 4.4 of the main manuscript, and have found it to perform sig-
nificantly worse than ZoomOut in the vast majority of cases. This
suggests that the (computationally expensive) linear assignment
step in PMF strongly contributes is, at least in part, responsible for
the accuracy of that method.

Finally, we remark that Algorithm 1. only promotes upper-triangular
functional maps (i.e., those that map every eigenfunction i on the
source to the subspace of i eigenfunctions on the target) and unlike
ZoomOut does not, for example, promote diagonality or metric
preservation. Interestingly, ZoomOut can be derived from Algo-
rithm 1. by making an additional assumption thatCk is orthonormal
and post-multiplying the term inside the norm in Eq. (5) by C

T
k
. Al-

ternatively, as shown in the main submission, we derive ZoomOut
through a variational optimization problem that directly promotes
orthormality of every principal submatrix and thus diagonality of
the functional map.
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3 DEPENDENCE ON THE STEP SIZE
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Fig. 1. Comparison for different size of the increments in our method.

In Figure 1, we compare the average geodesic error (y-axis) achieved
by our method with different step sizes (x-axis). We evaluate step
size equal to 1, 2, 3, 4, 5, 10, 20, 30, 40, 50. These results are average
on 4 horse pairs from TOSCA selected at random. We initialize our
method on a 10×10 map, and we refine it to dimension 310×310. ICP
average error obtained on the same initialization is shown for com-
parison. As stated in the main manuscript, in practice, our method
can achieve good accuracy with increments of size 1 but also with
larger increments ranging between 2 and 10.

4 ADDITIONAL RESULTS

4.1 Additional evaluations on symmetry detection

We show additional evaluations of the symmetry detection on the
FAUST (Fig. 2) and SCAPE (Fig. 3) datasets. The average direct error
of each method is reported in the legend. As mentioned in the main
manuscript, for human shapes, the first four Laplace-Beltrami eigen-
functions follow the same structure disambiguating top-bottom and
left-right. Therefore, we can use a fixed 4 × 4 diagonal functional
map with entries 1, 1,−1,−1 as an initial guess for human symme-
try detection. We therefore add the corresponding results with the
name of ł4signsIniž. Note that unlike łWKSiniž, ł4signsIniž does
not use any descriptors, and the refined map with our method can
achieve comparable results to łWKSini + oursž.
Inspired by the signs initialization as shown in Fig. 2 and 3, we

try to automatically select the signs for the initial functional map.
Fig. 4 shows such an example, where we test all possible signs
combinations for the first four Laplace-Beltrami eigenfunctions. For
each choice, we use ZoomOut to compute a refined functional map.
We then compute the Laplacian commutativity error ∥∆C −C∆∥2

F
to measure the quality of the refined functional maps. The top three
functional maps with the smallest error are selected and converted
to a point-wise map, as shown in Fig. 4.

4.2 Refinement for shape matching

Figures 5 and 6 show the corresponding summary curves for Table
2 in our main paper.
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Fig. 2. Additional evaluation of the symmetry detection for FAUST dataset.
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Fig. 3. Additional evaluation of the symmetry detection for SCAPE dataset.

Fig. 4. Symmetry detection: given a vase shown on the leftmost, our method
can detect three possible symmetries (column 2 - 4). The top view of the
vases are shown in the box.

In Figure 7, we plot the average geodesic error using learned
SHOT descriptors [Roufosse et al. 2018] on the test set depending
on the size of the functional map. Note that larger functional maps
lead to severe over-fitting and result in degraded performance on the
test set. Instead, by learning on a smaller functional map and refining
it with ZoomOut we obtain significantly better accuracy. Note that
in [Roufosse et al. 2018], the authors obtain the best results using
large functional maps of size 120 because two networks were trained
separately on FAUST and SCAPE remeshed datasets. However, in
our work, we tackle a more difficult problem of simultaneously
training a single network on both. Thus, our training set consists of
a combination of SCAPE and FAUST shapes and our test set consists
of unseen shapes sampled from both datasets. In this challenging
setting we avoid overfitting and obtain the best performance using
small functional maps (of size 20).
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Fig. 5. Comparing different refinement methods. (left) We use WKS descrip-
tors to compute the initial maps on the original FAUST dataset; (right) we
use two randomly picked landmarks to compute the initial maps on the
FAUST dataset after applying edge-flipping to each shape thus avoiding
identical mesh structure. Our method is 12× (without subsampling) and
100× (with subsampling) faster than the best baseline BCICP.
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Fig. 6. Here we show the results on the remeshed 190 pairs FAUST and 153
SCAPE shape pairs, where the initial maps are obtained from learned SHOT
descriptors [Roufosse et al. 2018]. We then compare different refinement
methods.Note that Ours∗ is applying zoomOut on the sampled 500 vertices,
and in this setting, we can get comparable results to the state-of-the-art
refinement technique, BCICP, but 500 times faster.

4.3 Additional details for SHREC19

Figure 9 shows the summary curves corresponding to Table 3 in our
main paper. Figure 8 shows some example shapes from SHREC19 [Melzi
et al. 2019], consisting of meshes with very different triangulation
and resolution.

f1

GivenT

д1

(1) T̃ ← д1 ◦T ◦ f1

(2) T̃ ∗ ← Refine(T̃ )

f2 д2

(3)T ∗ ← д2 ◦ T̃
∗ ◦ f2S1 S2

S̃1 S̃2

Fig. 10. Refine givenmapT on
the downsampled meshes.

As mentioned in the main sub-
mission, BCICP and PMF take ge-
odesic distance matrices as input
and thus cannot be applied to this
dataset directly. We therefore ap-
ply them on simplified versions of
these shapes following the steps
illustrated in Fig. 10. Specifically,
given the original shapes Si and
the initial map T , we first use the
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Fig. 7. Here we show that large functional maps of size (> 20) obtained
directly via learned SHOT descriptors [Roufosse et al. 2018] performs sig-
nificantly worse on test set of 190 pairs FAUST and 153 SCAPE shape pairs
due to over-fitting. In contrast, upsampling a functional map of initial size
20 to 120 performs much better.

Princeton SHREC14 KD3HUB SMPL SPRING TOSCA FAUST

Fig. 8. A subset of the meshes from SHREC19 [Melzi et al. 2019]. On the
top of each shape we report the name of dataset to which it belongs.
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Fig. 9. Comparison on SHREC19 dataset. Here we show our method with
acceleration (on 500 samples) and compare it to other refinement methods.

MATLAB function reducepatch

to simplify the meshes to S̃i (with
resolution 500, 1K, and 5K, such that computing the pairwise geo-
desic distance is feasible). We then transfer the map T to the sim-
plified meshes via nearest neighbor. The refinement BCICP or PMF
can then be applied to S̃i and the corresponding initial map T̃ . Fi-
nally, the refined map will be propagated to the original meshes via
nearest neighbor sampling.
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Table 1. FARM summary. Here we only compare the refinement methods
that can be applied to the complete large-scale meshes without remeshing.

Measurement \ Method Ini ICP ICP20 ICP120 RHM Ours* Ours
Improv.

Ours Ours*
Avg. Error (×10−3) 82.1 78.9 57.8 75 60.3 29.3 28.3 49.3% 51.0%
Avg. Runtime (s) - 44.0 7.2 110.3 295.5 1.2 76.5 7× -
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Fig. 11. Results on FARM dataset. Only the methods that can be applied on
the full resolution meshes are considered.

To further highlight the power of the proposed method on large-
scale meshes, we run it in the full version on a subset of SHREC19.
This subset, is composed of SMPL and 4 different shapes: male and
female shape from TOSCA [Bronstein et al. 2008] (around 50K ver-
tices), SPRING [Yang et al. 2014] (12.5K vertices) and K3DHUB [Xu
et al. 2018] (around 10K vertices). Some example meshes can be
found in Figure 8. From FARM registration [Marin et al. 2018] a
ground truth dense correspondence between SMPL and each of
these shapes is available. For a more precise evaluation, we only
consider the pairs composed by SMPL and each of the 4 shapes. We
extend these correspondences to other 4 male and 4 female shapes
from TOSCA and to 3 shapes from SPRING obtaining a set of 15
shapes. We refer to this set as FARM. On FARM, we only evaluate
methods that can be used directly on the full resolution meshes,
for this reason PMF and BCICP are not involved. We initialize our
method with a 20 × 20 functional map estimated according to [Nog-
neng and Ovsjanikov 2017], using WKS and 2 landmarks as probe
functions (Ini). We apply ZoomOut to the initial map with step
size 5 and until size 120 × 120 without (referred to as Ours) and
with spatial subsampling (500 vertices, referred to as as Ours). We
compare with RHM, ICP applied to the computed map with the
same dimensions (ICP20); functional maps of size 120 × 120 with
ICP, estimated with the same framework and the same probe func-
tions as in our initialization (ICP120); and ICP applied to functional
maps of size 120 × 120 obtained after converting the point-to-point
map resulting from the initialization (ICP). Quantitative results are
reported in Figure 11. We outperform all the competitors. More-
over, our average runtime is 76.5 without subsampling and 1.2 with
subsampling while RHM takes 295.5 seconds.

10cm

0cm

Source Ini15 ICP15 Fmap100 ICP100 Ours100

Fig. 12. Matching error on a pair from the FARM dataset (SMPL to TOSCA).
We define the error as the geodesic distance between the estimated and the
ground truth correspondences. The error is encoded as a heatmap, growing
from white (zero error) to black (≥ 10cm error).

20cm

0cm

Source Ini15 ICP15 Fmap100 ICP100 Ours100

Fig. 13. Error visualization on point clouds. The matching error is defined
as the Euclidean distance between the estimated matches and the ground
truth correspondences and it is encoded by the heat colormap, growing
from white (zero error) to black (≥ 20cm error).

Figure 12 shows a qualitative example of mapping a SMPL shape
to a TOSCA shape, while Figure 13 shows an additional example of
extending our method to point clouds.

4.4 Upsampling in a different basis

We consider the experimental setting of Cosmo et al. [2016], where
a full template modelM has to be matched to a partial observation
in a cluttered scene N . Following [Melzi et al. 2018], we construct
a Hamiltonian operator HM = LM +VM with VM = diag(1 − v)
being a diagonal matrix of the localization potential v :M → [0, 1]
(and similarly for shapeN ). Potentials onM andN are obtained by
constructing mixtures of Gaussians from sparse point-wise matches
yielded by a clutter-robust algorithm [Rodolà et al. 2012]. The results,
reported in Figure 14, are evaluated on the entire dataset of [Cosmo
et al. 2016], consisting of 150 cluttered scenes and 3 query models
(animals).

We further note that the matching algorithm of [Melzi et al. 2018]
actually consists of just the first step of our algorithm (in the Hamil-
tonian eigenbasis). Specifically, a localized functional map is first

ACM Trans. Graph., Vol. 38, No. 6, Article 155. Publication date: November 2019.
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Fig. 14. Top: Comparisons on deformable object-in-clutter with the task-
specific algorithms Localized Manifold Harmonics (LMH) [Melzi et al. 2018]
and Functional object in Clutter (FC) [Cosmo et al. 2016], and the baselines
PFM, the standard functionalmaps pipeline (FM), Game-TheoreticMatching
(GTM) [Rodolà et al. 2012], and Coherent Point Drift (CPD) [Myronenko and
Song 2010]. Bottom: Our spectral upsampling has the effect of increasing
map coverage if compared to the closest competitor LMH.

encoded in the Hamiltonian eigenfunctions, end then simply con-
verted back to a point-to-point map via nearest neighbors.
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