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Abstract

In Section 1 we provide the implementation details of our novel deformation field
representation, followed by a quantitative comparison with potential alternative
representations in Section 2. Then, we perform an extensive ablation study in
Section 3 to justify the need for regularization and our design choices. In Section 4,
we quantitatively show the reduced need for supervision of our approach by com-
paring with relevant baselines. In Section 5, we further highlight the generalization
ability of our reduced representation in establishing high-quality correspondences
between learnt implicitly defined surfaces. Finally in Section 6, we demonstrate
the robustness of our approach in estimating correspondence between real-world
data acquired from RGB-D sensor and scans of human hearts.

1 Implementation Details

1.1 Pre-Processing

We scale all training shapes to fit into a unit sphere including our template. Then, we sample nodes
from within the volume defined by the template if our shape collection is a mesh. In case of point
cloud, we simply augment by adding random Gaussian noise. Once sampled, we fix the positions
of nodes. Finally, we pre-compute Φ and ∇x,y,xΦ at each evaluation points. Please note this pre-
computation is performed only to accelerate training when evaluation points are known and it is not a
strict requirement.

1.2 Closed-form expression for deformation field gradient

We show the pre-computation of ∇x,y,xΦ in this subsection. From Equation 4 of the main paper, the
Jacobian of the deformation field is given as,

J =
∂u(x)

∂x(d)
=

K∑
i=1

∂Φi(x)

∂x(d)
ui where, x(d) = [x, y, z]T

Expanding ∂Φi(x)
∂x(d)

,
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∂Φi(x)

∂x(d)
=

∂
(
pT (x)[M(x)]−1wi(x)p (qi)

)
∂x(d)

=
∂pT (x)

∂x(d)
[M(x)]−1wi(x)p (qi) + pT (x)

∂[M(x)]−1

∂x(d)
wi(x)p (qi) + pT (x)[M(x)]−1 ∂wi(x)

∂x(d)
p (qi)

Using a 1st order polynomial basis p(x) = [1 x y z]
T and the fact that ∂[M(x)]−1

∂x =

−[M(x)]−1
(
∂M/∂x(k)

)
[M(x)]−1

∂Φi(x)

∂x(d)
= [M(x)]−1wi(x)p (qi)− pT (x)[M(x)]−1 ∂M(x)

∂x(d)
[M(x)]−1wi(x)p (qi) + pT (x)[M(x)]−1 ∂wi(x)

∂x(d)
p (qi)

From the definition of M(x)

∂M(x)

∂x(d)
=

K∑
i=1

p (qi) p
T (qi)

∂wi(x)

∂x(d)

Where,

∂wi(x)

∂x(d)
=


(
−3 · (1− ||x− qi||2/ri)2

)
(ri · ||x− qi||2)

· (x− qi) if ||x− qi||22 ≤ ri

0, otherwise

Therefore, ∀qi s.t.||x− qi||22 ≤ ri

∂Φi(x)

∂x(d)
= [M(x)]−1wi(x)p (qi)

−pT (x)[M(x)]−1
K∑
i=1

p (qi) p
T (qi)

(
−3 · (1− ||x− qi||2/ri)2

)
(ri · ||x− qi||2)

· (x− qi) (x)p (qi)

+ pT (x)[M(x)]−1

(
−3 · (1− ||x− qi||2/ri)2

)
(ri · ||x− qi||2)

(x− qi) p (qi)

(1)

From Equation1, we see that J is independent of the deformation parameter ui. Since we know the
node positions qi, in scenarios where evaluation points x are known, J can be pre-computed.

1.3 Architecture

A detailed overview of our architecture is show in Figure 1. We apply position encoding to our
input coordinates following Tanick et al. [1]. Input coordinates are embedded to the surface of a 128
dimensional hypersphere.

1.4 Hyper-Parameters

In this section, we provide details on hyper-parameters, choice of template and nodes corresponding
to each experiment in our main paper.

1.4.1 Shape Correspondence and Registration

We discuss the hyper-parameters used in Experiments 5.1 and 5.2 of the main paper respectively.
Since our template is a mesh in these two experiments, we leverage the connectivity while sampling
nodes in order to eliminate a node from influencing two vertices that belong to different semantic
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Figure 1: A detailed summary of our architecture

Figure 2: Different stages of node sampling strategy. (a) First, we segment the template using [2]. (b)
Second, we sample points close to the surface of the template mesh called candidates. (c) Finally,
we sub-sample from candidates until all vertices have 4 non-planar nodes in its vicinity. Nodes are
shown as blue points with its region of influence in transparent yellow.

regions as shown in Figure 2. Hyper-parameters used during training and inference are given in
Table 1

Mode Training Inference

Variable K λ1 λ2 λ3 λ4 ri Λ1 Λ2 Λ3

Value 300 1 5e-3 1e-2 5e-3 2e-1 1 1e-4 1e-3
Table 1: Hyper-parameters used for our non-rigid shape correspondence and registration experiments

1.4.2 Unsupervised Segmentation Transfer

The template point cloud and corresponding sampled nodes are shown in Figure 3. Since the shape
collection exhibit significant structural difference, we slightly relax the first-order regularization. We
perform test-time refinement for 200 steps. Our hyper-parameters are summarized in Table 2.

Figure 3: Template point clouds corresponding to Table and Plane class used in Experiment 5.3 from
the main paper. (a) and (c) denotes the template while (b) and (d) denote sampled nodes.
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Mode Training Inference

Variable K λ1 λ2 λ3 λ4 ri Λ1 Λ2 Λ3

Value 300 1 1e-4 1e-3 1e-4 2e-1 1 1e-4 1e-3
Table 2: Hyper-parameters used in unsupervised segmentation transfer experiment.

1.4.3 Shape Interpolation

We do not perform test-time refinement for this experiment. Table 3 summarizes the training hyper-
parameters. We use the same nodes as in shape correspondence experiment.

Mode Training

Variable K λ1 λ2 λ3 λ4 ri

Value 300 1 1e-4 1e-2 1 2e-1
Table 3: Hyper-parameters used in shape interpolation experiment.

2 Comparison with Alternatives

We perform quantitative comparison between our approach and plausible alternatives in terms of
accuracy and computational efficiency. We compare with two main alternative representations. First,
deformation at each point in the template shape is predicted using a point-wise MLP, abbreviated
as PW-MLP. Second, we compare with an interpolation variant, where we replace the mesh-free
approximation with Radial Basis Function (RBF) interpolation. We provide a brief overview of this
interpolation variant below. In order to have a controlled setting, all our experiments are performed
on a machine with Nvidia Ampere A100 GPUs and AMD 7302 3Ghz CPU over same training,
batch-size and number of points used as input to the encoder.

RBF Interpolation Instead of approximating the deformation field across the surface using mesh-
free functions, we use RBF interpolation to interpolate the deformation field based on observations at
nodes. Our main pipeline (as shown in Figure.1 of main paper) remains the same, barring the fact
that, here, we interpolate the deformation field. Let U be the predicted deformation parameters at
nodes Q, φ(·) be the RBF kernel, Φ to be its matrix representation, interpolant function f(·) at a
point x ∈ R3 is given as:

f(x) =

K∑
i=1

Φ−1Uφ (x,qi) . (2)

Here qi ∈ Q and K denotes the total number of nodes. The kernel function φ(·) [3] and its matrix
representation Φ are defined as:

Φmn := φ(qm,qn) =
√
C + ϵ0||qm − qn||2, (3)

where, m and n denote the mth row and nth column of Φ respectively, qn,qn ∈ Q. Please note that
Φ is positive definite by its construction. C = 1 and ϵ0 = 50 are taken to be constants. Similar to the
case of mesh-free approximation, it is easy to see that evaluation of Jacobian is independent of values
of deformation field itself:

J = ∇x,y,zf(x) = Φ−1U

(
K∑
i=1

[
∂φ (x,qi)

∂x
,
∂φ (x,qi)

∂y
,
∂φ (x,qi)

∂z

])
(4)

Interpolation vs Approximation Although interpolation is close to our proposed representation
in terms of effective reduction, there are three key differences between both representations. First,
the weighting function expressed through φ(·) has an infinite support while our approximation has
compact support. Second, our representation guarantees the approximation function of nth order
consistency depending on the polynomial basis. Third, in the case of interpolation, f(qi) = ui|ui ∈
U , whereas while approximating, u(qi) ̸= ui|ui ∈ U . This distinction is important from the meaning
it endows our network F(·). In the interpolation case, it amounts to predicting the deformation field
whereas in the approximation case, F(·) predicts deformation parameters.
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Constraint None Lvol + Larap Lvol + Larap + LZ

Method PW-MLP RBF-Inp Ours PW-MLP RBF-Inp Ours PW-MLP RBF-Inp Ours

Time(iter/ms) 32.0 8.0 7.8 250.4 8.2 8.0 4098.3 12.6 12.1
SCAPE (PC+N) 13.7 9.9 9.8 12.6 9.1 7.0 14.8 9.3 6.6
SHREC19 7.4 8.5 7.7 7.1 8.0 5.2 9.1 8.1 4.8

Table 4: Quantitative comparison of efficiency and correspondence accuracy between possible alter-
native representations and our approach. Imposing latent-space regularization results in prohibitive
computation effort using a standard PW-MLP representation of deformation fields.

Discussion We summarize the quantitative and qualitative results in Table 4. Our approach shows
nearly 325× improvement in speed when applying first-order regularization compared to the PW-MLP.
While both reduced variants, namely, interpolation and approximation show comparable timings,
there is, however, a significant performance difference between them in terms of correspondence
accuracy. We attribute this observation mainly to the compactness of our approximation. Without
such compactness, deformation fields corresponding to different semantic regions may influence one
another. For instance, the deformation field corresponding to left arm of a human can affect the way
the right arm moves or the “pull-effect”. This particular example is characterized in Figure 4, where
interpolating the deformation field fails to capture the articulation. In addition, the “pull-effect” also
shortens the length of the left-arm in comparison to the right.

PW-MLP RBF-Inp Ours GT

Figure 4: Qualitative comparison between Point-wise MLP(PW-MLP), RBF interpolation (RBF-Inp)
and our approach (Ours). Meshes are color-coded with area distortion. Increasing shades of red
signifies larger distortion.

3 Ablation Study

In this section, we perform an in-depth ablation study to analyze the effect of first-order regularization
during training and inference. Then, we ablate our choice of number of nodes, its influence, different
positioning strategy and pose of template used. Training regularization (Tr-Regularization) and
Test-time regularization (Te-Regularization) refers to Equation 6 and Equation 11 from the main
paper respectively. We re-train all methods on the same 1000 SURREAL shapes [4] mentioned in the
main paper while evaluating them on SHREC’19 [5] and SCAPE (PC+N) datasets for the non-rigid
shape correspondence task.

Dataset Tr-Regularization Te-Regularization Ours

None Larap Lvol Lvol + Larap None LCD All

SHREC’19 7.7 6.9 7.3 5.2 7.9 5.0 4.8
SCAPE 9.8 10.2 8.7 7.0 12.5 6.7 6.6

Table 5: Ablation study on regularization at training and test time. All training regularization are
imposed when ablating test-time regularization and vice-versa.
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Figure 5: Effect of different regularization applied to the deformation field. While enforcing Larap

reconstructs the shape, the lack of Lvol leads to “collapse” effect at hands and legs. Similarly
using Lvol does not result in a distortion-free reconstruction. Finally, incorporating LZ produces
distortion-free deformation at joints (see right elbow).

3.1 Training Regularization

Our main observations on the efficacy of deformation field regularization is summarized in Ta-
ble 5. Although the mapping between the template shape and target are highly non-isometric, yet
incorporating first-order regularization show a notable improvement in accuracy.

This is because we do not restrict ourselves to exactly volume preserving deformations, but rather use
our regularizers to penalize implausible deformations, that can incur significant volume distortion.
We empirically observe such regularization helps in producing better results especially in the presence
of limited training data. We also show an example of deformed templates corresponding to the
losses we ablate in Figure 5. While all variants of our method recover the pose of the template, the
reconstructions are plausible only when enforcing first-order regularization.

Step=0 Step=50 Step=3000Step=500

GT

3D-CODED

Ours

Figure 6: Quantitative and qualitative illustration of test-time refinement. Our demonstrates a
plausible reconstruction w/o refinement which baseline fails to accomplish. This results in requiring
significantly less test-time refinement efforts as compared to 3D-CODED.

3.2 Test-time Regularization

We perform test-time refinement to enhance the reconstruction similar to 3D-CODED [6]. However,
owing to our structured deformation space, our method provides a more plausible initialization,
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thereby requiring significantly less refinement steps as shown in Figure 6. This is particularly
beneficial in expediting the inference process.

# Nodes 100 300 900 2700
Radius 0.5 0.2 0.5 0.1 0.2 0.5 0.07 0.2 0.5

SHREC’19 6.8 4.8 5.4 5.4 6.4 6.5 6.2 6.5 6.5
SCAPE-PC 8.2 6.6 7.6 7.0 8.7 8.8 9.8 9.6 10.1

Table 6: Ablation study on number of nodes and radius. Radius is expressed as fraction of shape
diameter. Errors on two benchmarks are reported in cm.

3.3 Optimal nodes and radius

The number of nodes and their radius are important parameters in our reduced representation. We
desire a representation that is both compact and simultaneously can capture the local characteristics
of deformation. Unfortunately, both of these criteria are difficult to satisfy simultaneously as it could
potentially lead to a singular moment matrix (c.f Eqn 2, main draft). Therefore, we first make a
choice on the compactness by letting the radius of each node be 1

5

th of the shape diameter. Then,
from the set of candidates (Figure 2(b)) we sample nodes until the non-singularity condition for the
moment matrix is satisfied. Since the choice of radius is a hyper-parameter, we perform an ablation
study by varying the radius and the number of nodes as summarized in Table 6. We observe that
by increasing the radius of each node and the number of nodes itself deters the performance. This
is because larger radius impedes the locality of the deformation by influencing distant points. On
the other hand, increasing the number of nodes forces the network to learn more fine-grained details
thereby showing a deteriorated performance in the setting of limited training data. Alternatively, one
could first choose a fixed set of nodes and then expand their radii until the non-singularity condition is
met. However, this requires a prior-knowledge on where to place the nodes and that requires manual
intervention. On the other hand, our selection process is fully automatic.

3.4 Positioning of nodes

Our motivation behind segmenting the template at the time of node initialization is to prevent a node
from influencing the deformation field over sets of points on the template that are far from each
other in a geodesic sense as this could lead to non-local deformation behavior. Since our template
is from the SURREAL [4] dataset, we leveraged the SMPL segmentation in our main draft. In
this section, we explore three alternative sampling strategies. First, we segment the template by
performing K-means over the first 4 eigenvectors of the Laplace-Beltrami Operator of the template
mesh as shown in Figure 7. This is a well-known segmentation technique in Computer Graphics
introduced by Rustamov [7]. This technique is unsupervised in the sense it assumes no knowledge of
mesh vertex ordering. Second, we reject nodes which can influence a pair of points between which
geodesic distance is larger than 20% of shape diameter. Our final baseline is a simple Farthest Point
Sampling (FPS) over the dense point cloud sampled over template mesh without any rejection. We
compare different sampling techniques in Table 7 over two template meshes, namely in A-pose and
T-pose respectively. We observe that our proposed sampling strategy is more effective for a template
in A-pose while showing marginal improvement over a straightforward sampling for a template in
T-pose. This is because the likelihood of a node to influence geodesically farther (or semantically
different) points is significantly higher in A-pose than in T-pose. We illustrate an example in Figure 7
where a node from uniform sampling is shown to influence the deformation field at both arms and
torso. We note, however, that the approach based on unsupervised segmentation, performs similarly
to our strategy and does not require any prior semantic information.

Pose of Template T-Pose A-Pose

Sampling Strategy Uniform Geodesic Segmentation SMPL Segmentation [7] Uniform Geodesic Segmentation SMPL Segmentation [7]

SHREC’19 5.1 5.0 4.8 4.8 5.9 5.2 5.1 5.1
SCAPE 6.9 6.9 6.6 6.6 9.5 7.4 7.4 7.3

Table 7: Comparison of different sampling strategy for initializing nodes across two template poses.
All reported errors are in cm.

7



Segmented T-pose Segmented A-pose

(a)

W/o rejection Geodesic Segmentation

(b)

Figure 7: (a) denotes pose invariant segmentation [7] done over T-pose and A-pose template respec-
tively. (b) Denotes various ways of sampling nodes over A-pose template shape. Uniform sampling
leads to nodes influencing points that are far in geodesic sense (highlighted in purple). This artifact
is avoided by using geodesic distance on template mesh or segmentation information. Underlying
surface is rendered for visualization purpose only.

3.5 Choice of Template

We analyze our choice of template by comparing with three alternatives which have different pose and
style as shown in Figure 8. We compare shape-correspondence accuracy on the SHREC’19 [5]
benchmark. Template in A-pose and T-pose showed comparable performance while it mildly
deteriorated when using an I pose template.

Figure 8: Quantitative correspondence result on SHREC’19 [5] (left) using different templates (right).

4 Effect of supervision

4.1 Optimal training shapes

We simultaneously decrease and increase the amount of training data to analyze the data-dependence
of various supervised deformation methods. To that end, we train our method and baselines on
250, 500, 2000 training shapes sampled at random from SURREAL dataset [4]. We re-train the
deformation baselines TransMatch [8] and 3D-CODED [6] on the same dataset with appropriate
parameters for a fair comparison. Figure 9 summarizes our comparison. Our approach shows
significant improvement over 3D-CODED [6] when trained on 250 and 500 shapes across both
SCAPE (PC+N) and SHREC’19 benchmarks respectively. TransMatch [8] on the other hand fails
to achieve reasonable correspondence due to the strong reliance of attention mechanism on large
collection of training data.

4.2 Optimal corresponding points

We analyze the need for supervision by comparing with 3D-CODED by varying the number of points
used for supervision (c.f Equation 7 main paper). We use 50, 100 and 1000 points for supervision
and compare on SCAPE (PC+N) and SHREC’19. For a fair comparison, we re-train 3D-CODED on
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Figure 9: Quantitative correspondence accuracy with varying number of shapes in the training set.
Our approach shows a significant improvement over the baseline particularly when there is paucity of
data.

same training shape as our method. Results are summarized in Figure 10. It is remarkable to note
that our method shows improvement over the baseline with one-tenth of supervision.

Figure 10: Quantitative comparison between our approach and 3D-Coded [6] with varying level of
supervision used

5 Unsupervised Implicit Shape Correspondence

Figure 11: Node sampling strategy for modelling deformation between implicit fields. (a) Given a
template mesh, (b) we sample nodes near the surface. (c) Then, we define “auxiliary” nodes along
the vertices and edge of the unit cube. Auxiliary nodes are shown in red and its spatial influence in
yellow (transparent).
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Complimentary to discussions in Section 5.3 of our main paper, we demonstrate that our proposed
representation is data-efficient in establishing correspondence between learnt implicit surfaces of
real-world objects from ShapeNet [9] dataset. For this task, we adapt the existing implicit shape
correspondence work DIF-Net [10] and replace their point-wise “Deform-Net” with our reduced
representation. This replacement however is not straightforward as a volumetric deformation requires
the deformation field to be continuous and defined in R3 while our compact representation restricts
to a sub-region Ω ⊂ R3. To overcome this, we scale all shapes to fit a unit cube and place auxiliary
nodes at each vertex of the cube. These auxiliary nodes have a larger radius, thereby covering the
entire region as shown in the Figure 11. Please recall that since the deformation field at a point varies
inversely by its distance from neighbouring nodes, the influence of auxiliary nodes are minimal near
the surface of the shape. As a result, auxiliary nodes act as a regularizer for points that are far from
the surface.

We consider three categories namely chair, table and plane. Since there is no dense ground-truth
correspondence annotation between them, we show qualitative interpolation results. For a fair
comparison, we train both DIF-Net and our method over same shapes, consisting of 500 random
samples from each category. We summarize our qualitative results in Figure ??. Our method produces
plausible interpolation sequences owing to the latent constraint LZ that regularizes the deformation
field corresponding to intermediate shapes. In addition, our deformation field is smooth as shown by
the color-map.

Figure 12: Qualitative comparison for implicit shape correspondence across three object categories.
Individual columns in interpolation corresponds to samples at same time-steps across rows. Our
well-structured latent space helps to avoid implausible reconstructions.

6 Real-world Data

Finally, we demonstrate the generalization of our approach in solving correspondence between real-
world data over two datasets, namely, point cloud from RGB-D scans of humans and meshes of hearts.

6.1 CMU Panoptic Dataset

We show qualitative results of texture transfer between point clouds obtained from Kinect RGB-D
sensor, from the CMU Panoptic dataset [11]. Our results are shown in Figure 13. Last row shows a
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particularly interesting example of texture transfer between different subjects. Our approach is the
only method that provides reasonable correspondence.

6.2 Human Heart Meshes

In order to demonstrate the applicability of our novel deformation-field representation beyond
articulated non-rigid shapes, we consider the publicly available virtual cohort of four-chamber heart
meshes dataset [12]. This dataset is generated from twenty-four heart failure (HF) patients, starting
from CT scan images of the heart. These images are then segmented to distinguish the four chambers
and a tetrahedral mesh is constructed from the resulting segments. In our experiments, we use the
outer boundary surface of the mesh after Quadratic Edge Collapse Decimation [13]. Qualitative
results are shown in Figure 14. We compare our approach with ZoomOut [14], an axiomatic
shape correspondence technique and our closest deformation-based baseline, 3D-CODED [15]. Our
approach extracts a more consistent correspondence in comparison to the two baselines. We attribute
this to our regularization that facilitates smoothness and learning over a small-scale dataset.

Figure 13: Qualitative comparison on real-world data from the CMU Panoptic dataset with noise and
outlier points. First three rows show texture transfer between same subjects while the last row is an
example of inter-subject transfer.
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Source ZoomOut 3D-CODED Ours

Figure 14: Qualitative comparison of colour-transfer between human hearts of different subjects
obtained from [12]. Dotted box highlights the efficacy of our approach in computing smooth and
consistent map.
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