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In this document, we collect all the discussions, proofs and results that due to the limited number of
pages available did not found space in the main manuscript.

1 Adjoint operator definition and properties

In this section, we provide a concise description of the adjoint operator and its relation to the transfer
of Dirac delta functions and functional maps. Note that the adjoint operator of functional maps has
been considered, e.g., in [1] although its role in delta function transfer was not explicitly addressed in
that work.

1.1 Formal definition of the Adjoint operator

Suppose we have a pointwise map TXY : X → Y between two smooth surfaces X ,Y . Then we will
denote TFYX the functional correspondence defined by the pull-back: TFYX : f → f ◦ TXY , where
f : Y → R and f ◦ TXY : X → R such that f ◦ TXY(x) = f(TXY(x)) for any x ∈ X .

The adjoint functional map operator AXY is defined implicitly through the following equation:

< AXYg, f >Y=< g, TFYX f >X ∀ f : Y → R, g : X → R. (1)

Here we denote with <,>X and <,>Y the L2 inner product for functions respectively on shape
X and Y . The adjoint always exists and is unique by the Riesz representation theorem (see also
Theorem 3.1 in [1]).

1.2 Adjoint operator and delta functions

As mentioned in the main manuscript, the adjoint can be used to map distributions (or generalized
functions), which is particularly important for mapping points represented as Dirac delta functions.

Recall that ∀y ∈ Y , a Dirac delta function δy is a distribution such that, by definition, for any function
f we have < δy, f >Y= f(y).

Theorem 1. If AXY is the adjoint operator associated with a point-to-point mapping TXY as in Eq.
(1), then AXYδx = δTXY(x).

∗denotes equal contribution.
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Proof. Using Eq. (1) we get:

< AXYδx, f >Y =< δx, T
F
YX f >X=< δx, f ◦ TXY >X (2)

= f(TXY(x)). (3)

Therefore, AXYδx equals some distribution d such that < d, f >Y= f(TXY(x)) for any function
f : Y → R. By uniqueness of distributions this means that: AXYδx = δTXY(x).

In other words, the previous derivation proves that, unlike a functional map, the functional map
adjoint always maps delta functions to delta functions.

1.3 Relation between the functional maps and the adjoint operator in the discrete setting

Here we assume that the two shapes are represented in the discrete setting, with two embeddings
ΦX ,ΦY , and a pointwise map ΠXY , using the notation from the main paper. Our goal is to establish
the relationship between the functional map matrix and the linear operator, which aligns the two
embeddings.

Given two embeddings ΦX ,ΦY and a pointwise map ΠXY we would like to find a linear transforma-
tion AXY such that:

AXYΦT
X = (ΠXYΦY)T , or equivalently (4)

ΦXA
T
XY = ΠXYΦY (5)

Formulating this as a least squares problem we get:

min
A
‖ΦXAT

XY −ΠXYΦY‖2, (6)

from which the solution is given by:

A =
(

Φ†XΠXYΦY

)T
(7)

Recall that a functional map induced by ΠXY is defined as CYX = Φ†XΠXYΦY . Therefore, we can
write: AXY = CT

YX . In other words, in the discrete setting the adjoint is nothing but the transpose of
the functional map in the opposite direction.

1.4 Probe function constraints

Below we derive the relation between the probe function constraints for functional maps and those
for the adjoint operator used in our approach, as described in Section 4.2 of the main paper. Here we
derive the formula used in the main manuscript directly below Eq. (4).

In the main paper (Eq. (1) of the main manuscript) we wrote the following basic optimization problem
for estimating functional maps:

CXY = arg min
C∈Rk×k

‖CΦ†XGX − Φ†YGY‖2 + Ereg(C). (8)

Inverting the role of X and Y and removing the regularization we obtain:

CYX = arg min
C∈Rk×k

‖CΦ†YGY − Φ†XGX ‖2. (9)

This implies that the optimal CYX can be found as the solution of CYXΦ†YGY = Φ†XGX . This is
equivalent to (Φ†YGY)TCT

YX = (Φ†XGX )T that can be solved as a least squares problem:

CT
YX =

(
(Φ†YGY)T

)†
(Φ†XGX )T . (10)

From the equation AXY = CT
YX we can conclude that:

AXY =
(

(Φ†YGY)T
)†

(Φ†XGX )T . (11)
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This is precisely the equation used in the main manuscript directly below Eq. (4).

This provides an explicit connection between the functional map and the linear transformation that
we are optimizing for.

To summarize, one advantage of the adjoint is that it can be used to map distributions and not just
functions. In particular, unlike a functional map, the functional map adjoint always maps delta
functions to delta functions. At the same time, similarly to functional maps, it also allows estimation
via probe functions and a solution of a linear system. For this reason, despite the strong relation with
functional maps, the adjoint is better suited for estimating the correspondence.

2 Implementation details

2.1 Training set details

Pre-processing In our analysis, we consider shapes that are centered in the origin of R3 and scaled
with uniform unit area. These requirements are not strong and every input shape can be easily
pre-processed to satisfy these properties.

2.2 The softmax operation

We compute the soft permutation matrix as follows:

(SYX )ij =
e−‖Φ̂

i
X−Φj

Y‖2∑nY
k=1 e

−‖Φ̂i
X−Φk

Y‖2
(12)

where nY is the number of points of Y and ΦX and ΦY are learned embeddings.

2.3 Architecture description

We describe our complete pipeline in figure 1. The invariant embedding network and probe function
network are built with the semantic segmentation architecture of PointNet [2].

2.4 Relation to the universal embedding network

In figure 2, we show the training curves of the universal embedding model and the linearly-invariant
embedding model. We observe that learning the linearly-invariant embedding leads to faster learning
and a lower loss. It confirms that the linearly-invariant embedding simplifies and is more adapted to
the correspondence task.

3 Additional results and visualizations

We show some other results on noisy point clouds in Figure 3. We provide an example of our networks
output over a couple of FAUST shapes at high-resolution ( 160K vertices). We show the 20 basis
in Figures 4 and 5, and the 40 descriptors in Figures 6, 7 and 8. Finally, we show further statues
examples in Figure 9. We would remark that our method consider only the points coordinates; we
color the surface for better visualization.
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Figure 1: Method pipeline

Figure 2: Comparison of the linearly-invariant embedding model and the universal embedding model
training curves.
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Figure 3: Comparisons on noisy point clouds. 3DC major artifacts are over the hands and in some
cases it confuses left and right. GFM suffers from the quality of the point clouds basis estimation.
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Figure 4: Basis from 1 to 10
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Figure 5: Basis from 11 to 20

8



GX

1

GY GX

2

GY GX

3

GY

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

Figure 6: Descriptors from 1 to 18
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Figure 7: Descriptors from 19 to 36.
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Figure 8: Descriptors from 37 to 40.

Figure 9: More qualitative results between statues couples.
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