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1 Supplementary
This document provides proofs, additional details, and results to
complement the main text of the manuscript.

1.1 Proofs
In this Section, we prove the following propositions of the main
manuscript.

Proposition 1.1. Given a function 𝑔 : R𝑘 → R𝑘 such that
𝑔(Φ𝑘1 ) = Π21Φ𝑘2 , then a NAM ℎ realizes 𝐸𝑁𝐴𝑀 (ℎ) = 0 in Equation
(4.11) if and only if

ℎ ◦ 𝑔 = 𝐼1 (1)
where 𝐼1 is the identity function on Φ𝑘1 .

Proof. Applying 𝑔 and then ℎ to Φ𝑘1 we obtain: ℎ
(
𝑔(Φ𝑘1 )

)
=

ℎ(Π21Φ𝑘2 ). The action ofℎ is defined row-wise, sowe haveℎ(Π21Φ𝑘2 ) =
Π21ℎ(Φ𝑘2 ). Suppose that ℎ realizes the 0 in Equation (4.11), then we
can write Π21ℎ(Φ𝑘2 ) = Φ𝑘1 , and thus ℎ

(
𝑔(Φ𝑘1 )

)
= Φ𝑘1 which provides

the first part of the proof.
Now suppose that Equation (1) holds for a given ℎ, which is

ℎ

(
𝑔(Φ𝑘1 )

)
= ℎ(Π21Φ𝑘2 ) = Π21ℎ(Φ𝑘2 ) = Φ𝑘1 . Taking the last equiva-

lence, we have that (11) is equal to 0 for this ℎ, and this completes
the proof. □

Proposition 1.2. Φ𝑘1 and Φ𝑘2 are linearly alignable for any 𝑘 ≤ 𝑛

iff the shapes are isometric.

Proof. Isometric shapes imply thatΦ𝑘1 andΦ𝑘2 are linearly alignable
for any 𝑘 ≤ 𝑛 is trivial.
The other direction can be proved by induction considering the

orthonormality of the basis. For 𝑘 = 1, we consider the two constant
eigenfunctions. If they are alignable, then 𝜙1

1 = 𝑎𝜙1
2 where 𝑎 is a

constant. But the orthonormality of the shapes implies that 𝑎 =
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±1. If Φ𝑘1 = Φ𝑘2𝐴
𝑘 implies that 𝜙𝑖1 = ±𝜙𝑖2 for all 𝑖 ∈ {0, . . . , 𝑘},

than 𝐴𝑘 is a diagonal matrix of 1 and −1 entries. Then if Φ𝑘+1
1 =

Φ𝑘+1
2 𝐴𝑘+1, 𝐴[𝑘 + 1, 𝑘 + 1] = ±1. If this does not hold, it means it

exists at least one 𝑙 ∈ 0, . . . , 𝑘 such that 𝜙𝑘+1
1 = 𝑎𝑘+1,𝑘+1𝜙

𝑘+1
2 +

𝑎𝑙,𝑘+1𝜙
𝑙
2 = 𝑎𝑘+1,𝑘+1𝜙

𝑘+1
2 + 𝑎𝑙,𝑘+1𝜙

𝑙
1 but for the orthonormality of

𝑠𝑝𝑎𝑛({𝜙 𝑗

1}
𝑘
𝑗=0) and 𝜙

𝑘+1
1 this is not possible. This proves that if the

spectra embeddings are alignable in each dimension the shapes are
isometric. □

1.2 Functional Maps
We report the rigorous derivation of the functional map. If we equip
the functional spaces with bases Φ1 and Φ2, we can represent each
function as a vector of the coefficients of its representation in the
basis, thus for each 𝑓 ∈ X1, 𝑔 ∈ X2 there exist vector of coefficients
𝑎 = (𝑎𝑖 ) and 𝑏 = (𝑏 𝑗 ) such that 𝑓 =

∑
𝑙 𝑎𝑖𝜙

𝑖
1 = 𝜙1𝑎 and 𝑔 =∑

𝑙 𝑏 𝑗𝜙
𝑗
2 = 𝜙2𝑏. Thanks to this representation and the linearity of

the functional map we have:

𝑇 𝐹
21 (𝑔) = 𝑇 𝐹

21 (
∑︁
𝑗

𝑏 𝑗𝜙
𝑗

2) =
∑︁
𝑗

𝑏 𝑗𝑇
𝐹
21 (𝜙

𝑗

2).

But 𝑇 𝐹
21 (𝜙

𝑗

2) =
∑
𝑖 𝑐𝑖 𝑗𝜙

𝑖
1 for some 𝑐𝑖 𝑗 ∈ R, thus

𝑇 𝐹
21 (𝑔) =

∑︁
𝑗

𝑏 𝑗𝑇
𝐹
21 (𝜙

𝑗

2) =
∑︁
𝑗

∑︁
𝑖

𝑏 𝑗𝑐𝑖 𝑗𝜙
𝑖
1

where 𝑇 𝐹
21 (𝑔) = 𝑓 =

∑
𝑖 𝑎𝑖𝜙

𝑖
1. Therefore, the functional map 𝑇 𝐹

21
can be encoded as a compact matrix 𝐶21 = [𝑐𝑖 𝑗 ]𝑘𝑖,𝑗=0 between the
coefficients.

1.3 NAM for any basis
In this section, we show how we can define an alternative of NAM
which generalizes to the adjoint of any embeddings derived from a
basis.

We first prove the following statement:

Proposition 1.3. Given a Functional Map 𝐶21 and its adjoint 𝐴12,

𝐸 (Π21, 𝐴12) = ∥Π21Φ2𝐴12 − Φ1∥𝐻𝑆

= ∥Π21Φ2𝐴12

√︃
𝑀1

−1 − Φ1

√︃
𝑀1

−1∥ = 𝐸𝑒𝑙 (Π21, 𝐴12)
(2)

Proof. Minimizing ∥Π21Φ2𝐴12 − Φ1∥2
𝐻𝑆

has been proven to be
equal tominimizing ∥(

√︁
𝑀1Φ

†
1𝑀

−1
1 )⊤−(

√︁
𝑀1𝐶21Φ

†
2𝑀

−1
2 )⊤∥2, [Hartwig

et al. 2023]. SinceΦ†
𝑖
= 𝑀−1

𝑖
Φ𝑇
𝑖
𝑀𝑖 , then (

√︁
𝑀1Φ

†
1𝑀

−1
1 )⊤ =

√︃
𝑀1

−1
Φ1.

At the same time (
√︁
𝑀1𝐶21Φ

†
2𝑀2)⊤ = Φ2𝑀−1

2 𝐶⊤
21
√︁
𝑀1 this means
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that we are looking for embeddings similar in Π21Φ2𝑀−1
2 𝐶⊤

21
√︁
𝑀1 ≈

Φ1𝑀−1
1

√︁
𝑀1. But 𝐴12 = 𝑀−1

2 𝐶⊤
21𝑀1 and so minimizing

𝐸𝑒𝑙 (Π21, 𝐴12) = ∥Π21Φ2𝐴12

√︃
𝑀1

−1 − Φ1

√︃
𝑀1

−1∥ (3)
is equal to minimizing the initial equation. So we have the thesis. □

This means that, for any basis, the Equation (3.8) is minimized by
(3.9). This energy is the generalization of energy (3.4).

This means that if a NAM with LBO is defined as the solution
of 𝐸𝑁𝐴𝑀 (ℎ) = ∥Π21ℎ(Φ𝑘2 ) − Φ𝑘1 ∥ its generalized version is the one
which minimizes

𝐸𝑛𝑒𝑤
𝑁𝐴𝑀

(ℎ) = ∥Π21ℎ(Φ𝑘2 )
√︃
𝑀1

−1 − Φ𝑘1

√︃
𝑀1

−1∥ (4)
On the other hand, given a NAM ℎ, we can convert to a Π21

performing

𝑇21 = 𝑁𝑆 (Φ𝑘1
√︃
𝑀1

−1
, ℎ(Φ𝑘2 )

√︃
𝑀1

−1) (5)
This is a generalized definition of NAM that includes an adjoint

of other bases. However, from the practical point of view,
√︃
𝑀1

−1

is not well defined for any embedding, since𝑀1 is positive definite
iff Φ1 is a basis.

1.4 Neural Deformations Field
Given X1,X2, a deformation field between them is defined as a
diffeomorphism 𝐹 : R3 → R3 such that 𝐹 (X1) = X2. 𝐹 has the
general form of 𝐹 (𝑥) = 𝑥𝑅 + 𝑣 (𝑥),∀𝑥 ∈ X1, where 𝑅 ∈ R3×3 is a
global affine transformation and 𝑣 (𝑥) is a generic function from
R3 to R3. If the shapes are rigidly alignable, then 𝑣 (𝑥) = 𝑡 ∈ R1

does not depend on 𝑥 . If the shapes undergo non-rigid deformations,
𝑣 is a non-linear displacement defined ∀𝑥 ∈ X1. A deformation
field can be seen as a function that aligns the point of deformable
shapes. Recent works, inspired by Neural fields, parameterize this
deformation through a multilayer perception 𝐹 , namely the neural
deformation field [Attaiki and Ovsjanikov 2024; Li 2022; Li et al.
2021; Park et al. 2021; Tang et al. 2023]. Given a correspondence Π21
this neural deformation field 𝐹 can be estimated by minimizing

𝐸 (𝐹 ) = ∥𝐹 (𝑋1) − Π21𝑋2∥, (6)
where𝑋1 and𝑋2 are sampling on the shapes and ∥∥ is the Frobenius
norm. With our work, we bring this concept to functional domains,
modeling a neural representation to align any pair of embeddings.

1.5 Role of Non linearity
In this section, we give a quantitative evaluation of our theoretical
motivation of Section 4.2 of the main paper.
In Figure 1, we show the effect of NAM representation in terms

of the alignment of embeddings and of the quality of the converted
map.

We define the spectral discrepancy between two truncated basis
Φ𝑘1 ,Φ

𝑘
2 , with 𝑘 ≤ 200 as

𝑆𝐷 (Φ𝑘1 ,Φ
𝑘
2 ) =

𝑘∑︁
𝑗=0

((Φ200
2 )†𝜓 𝑗 − (Φ200

2 )†Γ12𝜙
𝑗

1)
2 (7)

where Ψ𝑘 = Φ𝑘2𝐴12 in the linear case and Ψ𝑘 = ℎ(Φ𝑘2 ) for NAM.
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Fig. 1. Results of linear alignment vs NAM. On the 𝑥-axis the geodesic error
of the recovered map. On the 𝑦-axis the alignment error is computed as
the Euclidean distance between the embeddings. The introduction of the
non-linear module induces a better alignment of the basis and consequently
a better correspondence estimation. We note that as we increase the basis
dimension (from right to left), the difference between the NAM representa-
tion and the linear one decreases.

In Figure 2, we depict the difference between the frequencies of
two truncated embeddings. The basis functions of the source basis
present also high dimensional frequencies of the basis of the target.
We report also a metric on all the shapes of two dataset quantifying
this frequency difference between the spectrum. As expected, in the
non-isometric case this value is larger than in the isometric case.

In Table 1, we report the Mean Spectral Discrepancy for different
datasets. We note that the more isometric the dataset, the lower the
discrepancy metric for the linear case.

DT4D intra SHREC19 SMAL DT4D inter
Linear 2.89 e-07 9.87e-07 1.45e-06 8.35 e-07
NAM 3.2e-08 1.55e-07 4.25e-07 1.14e-07

Table 1. Mean spectral discrepancy on different datasets. We can see that
in the isometric case, the spectral discrepancy of the Linear map Is lower
than in the other cases.

1.6 Kinect Dataset
In this section, we add details on how we built our evaluations on
point clouds. We considered the [Bhatnagar et al. 2022] dataset of
Kinect acquisitions of humans interacting with objects. We selected
15 shapes. Than we randomly selected 10k points from each shape.
Having the SMPL registration, for each point of the SMPL dataset,
we extracted outliers considering the points with a distance with
the SMPL surface below a threshold.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: June 2025.
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Fig. 2. We consider
∑30
𝑗=0 ( (Φ200

2 )†𝜓 𝑗 )2, where 𝜓 𝑗 is Π12𝜙
𝑗

1 for Source,

ℎ (Φ2 ) | 𝑗 for NAM and (Φ2𝐴12 ) | 𝑗 for linear, where · | 𝑗 is the 𝑗𝑡ℎ column. We
note that Π12𝜙

𝑗

1 on average on 𝑗 has small components in all the frequency
bandwidth of Φ200

2 . Similar behaviour is obtained by NAM while the linear
alternative is similar only on the first frequencies. In the table, we compute
the Mean Spectral Discrepancy for Linear and NAM representation for
each couple of the dataset as 𝑀𝑆𝐷 (Φ1,Φ2 ) =

∑𝐾
𝑘=0 𝑆𝐷 (Φ𝑘1 ,Φ𝑘2 ) . We can

see that the more non-isometric the dataset, the bigger the MSD with the
Linear map.

In figure 3 we show the 15 shapes that our evaluation dataset
comprises.

1.7 Additional Results
In the following table, we report the values of ZO, NZO, and NZO*
with different 𝑘𝑖𝑛𝑖 . This highlights that if the initial map is too good
we can increase its accuracy only if we find an initial number of
k enough to represent completely the correspondence. Instead, in
more challenging scenarios as in the SMAL dataset, converting to a
lower dimensional ma can help decrease the error because it induces
more smoothness.

DT4D intra SMAL
𝑘𝑖𝑛𝑖 = 20 𝑘𝑖𝑛𝑖 = 100 𝑘𝑖𝑛𝑖 = 20 𝑘𝑖𝑛𝑖 = 100

Ini 0.90 0.90 7.10 7.10
ULRSM ref 0.85 0.85 3.87 3.87

ZO 1.06 0.84 6.02 6.78
NZO 0.99 0.84 4.39 4.89
NZO* 1.9 1.7 3.97 3.86

Table 2. NZO performances for different initial basis dimensions

Depth Width 64 Width 128 Width 256
Gt Est. Time Gt Est. Time Gt Est. Time

1 0.94 0.61 2.3 0.89 0.61 2.4 0.86 0.62 2.3
2 0.86 0.61 2.6 0.84 0.63 2.6 0.84 0.65 2.6
4 0.84 0.63 3.0 0.87 0.65 2.9 0.87 0.68 2.8
8 0.89 0.66 3.5 0.90 0.64 3.4 0.95 0.64 4.3

Table 3. Ablation study on Width and Depth.

1.8 Ablation
Number of parameters. A feature on which we ablate is the num-

ber of parameters of our model, i.e. the depth o and the width of
the non-linear component. In Table 3 we report the mean geodesic
errors obtained by choosing different values of depth and width.
Interestingly, comparing mean optimization time and refinement
performances, the optimal number is 2 layers. For the width, we
have different behaviors. If the initial map is estimated by a learned
feature extractor, the best choice is a width of 64. However, in the
case of a better map computed from a ground-truth functional map,
the best choice seems to be the more expensive. For this reason, we
decided to make a conservative choice, which returns intermediate
results. In general, as the number of parameters and non-linearities
increases, the solution space expands, making optimization more
expensive and solutions less smooth and so less accurate.

Alternatives. We add details on the alternatives to which we com-
pare our NAM approach in the ablation. Some alternatives to induce
bijectivity are:

• (A) Overfit a correspondence with a Neural deformation field.
• (B) Optimize two networks that represent two deformation
fields, 𝑓 , 𝑔, and impose a bijectivity loss explicitly

L𝑐𝑦𝑐𝑙𝑒 = ∥𝑔(𝑓 (𝑉1)) −𝑉1∥ + ∥ 𝑓 (𝑔(𝑉2)) −𝑉2∥ (8)

ALGORITHM 1: ZoomOut
1: Input: Π21
2: for 𝑘𝑖𝑛𝑖 ≤ 𝑘 ≤ 𝑘𝑒𝑛𝑑 do
3: Optimize for a Functional map𝐶𝑘21 minimizing Equation

∥𝜙𝑘1𝐶𝑘21 − Π21𝜙
𝑘
1 ∥

4: Compute Π21 = 𝑁𝑆 (Φ𝑘1 ,Φ𝑘2𝐶𝑘21 )
5: end for
6: Output: Π21

ALGORITHM 2: NeuralZoomOut
1: Input: Π21
2: for 𝑘𝑖𝑛𝑖 ≤ 𝑘 ≤ 𝑘𝑒𝑛𝑑 do
3: Optimize for a NAM ℎ minimizing Equation

∥Π21ℎ (𝜙𝑘2 ) − 𝜙𝑘1 ∥

4: Compute Π21 = 𝑁𝑆 (Φ𝑘1 , ℎ (Φ𝑘2 ) )
5: end for
6: Output: Π21

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: June 2025.
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Fig. 3. The Kinect Test Dataset: the 15 selected shapes of the Kinect dataset used for evaluation
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