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Fig. 1. A visualization of the proposed approach (NAM), a generalization of the functional maps framework (FMAP). On the left, given a pair of shapes
equipped with an embedding (dotted boxes) and an unknown correspondence Π between them, we estimate an FMAP representation of Π as a linear operator
(blue), and our neural map representation (red). From these representations, we estimate Π depicted as texture transfer. On the right, we compare FMAP (blue)
and NAM (red) in challenging applications on point clouds: registration and deformation transfer. NAM outperforms its linear counterpart in all cases.

In this paper, we propose a novel approach to refine 3D shape correspon-

dences by leveraging multi-layer perceptrons within the framework of func-

tional maps. Central to our contribution is the concept of Neural Adjoint
Maps, a novel neural representation that generalizes the traditional solution

of functional maps for estimating correspondence between manifolds. Fos-

tering our neural representation, we propose an iterative algorithm explicitly

designed to enhance the precision and robustness of shape correspondence

across diverse modalities such as meshes and point clouds. By harnessing

the expressive power of non-linear solutions, our method captures intricate

geometric details and feature correspondences that conventional linear ap-

proaches often overlook. Extensive evaluations on standard benchmarks

and challenging datasets demonstrate that our approach achieves state-of-

the-art accuracy for both isometric and non-isometric meshes and for point

clouds where traditional methods frequently struggle. Moreover, we show

the versatility of our method in tasks such as signal and neural field transfer,

highlighting its broad applicability to domains including computer graphics,

medical imaging, and other fields demanding precise transfer of information

among 3D shapes. Our work sets a new standard for shape correspondence

refinement, offering robust tools across various applications.
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1 INTRODUCTION
Shape correspondence or shape matching is a fundamental task in

shape analysis, involving the estimation of pointwise correspon-

dences between discrete 3D shapes. This task has broad applications,

including statistical shape analysis [Bogo et al. 2014], medical imag-

ing [Magnet et al. 2023], and deformation transfer [Sumner and

Popović 2004], making it a key focus in recent research [Deng et al.

2022; Sahillioğlu 2020]. In the discrete setting, shape correspondence

consists of estimating a permutation between two shapes encoded

as a set of vertices (for meshes) or points (for point clouds) such that

this permutation respects some geometric or semantic similarity

between the shapes.

Despite recent developments, the problem of shape correspon-

dence remains a substantial challenge, particularly in complex set-

tings with strong variability between shapes. State-of-the-art meth-

ods often involve training procedures to learn features representing
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similarities between shapes, which commonly achieve good results.

However, despite their efficacy, they can fail if applied to shapes

that are too different from those used during training. In this sce-

nario, a robust method to refine correspondences at test time, which

should be independent of discretization and generalize well to shape

variations never seen at training time, becomes crucial.

We can broadly classify existing refinement solutions into intrin-

sic and extrinsic approaches. Intrinsic methods, such as those based

on the Functional Map [Ovsjanikov et al. 2012] framework, as [Melzi

et al. 2019b], assume isometry and can struggle with non-isometric

deformations. Conversely, extrinsic methods, such as [Li 2022], ex-

ploit constraints based on the 3D embedding of the shapes, which

are effective but computationally expensive and can struggle with

strong variations and topological noise.

Our proposed solution arises exactly in this context by address-

ing these limitations and being effective in the different scenarios,

handling both intrinsic and extrinsic challenges. From a theoret-

ical perspective, our method introduces a novel notion of Neural

Adjoint Map (NAM), a non-linear generalization of the functional

maps framework. Functional maps encodes correspondences as

linear operators between functional spaces defined on the shapes

by selecting appropriate functional bases. These bases effectively

serve as high-dimensional embeddings of the points and enable

correspondence estimation by aligning these embeddings. NAM

replaces the linear operator and extends to more general embedding

in the functional maps procedure, retaining the ability to handle

isometric pairs and extending the framework to non-isometric and

challenging cases. With NAM, we propose a novel correspondence

representation that leverages the computation of neural function

between high-dimensional embeddings. Combining linear and non-

linear modules, NAM encodes the correspondence as a smooth and

non-linear map, which acts like a functional map operator. Foster-

ing the NAM representation, we develop a refinement strategy to

compute accurate correspondences between shapes across different

modalities. We demonstrate the efficacy and applicability of our

refinement procedure across several scenarios, including isometric

meshes, non-isometric meshes, and point clouds. Moreover, we test

the capability of our method to exploit different high-dimensional

embeddings, showing remarkable flexibility.

To summarize, our contributions are:

• We define a novel non-linear representation for correspon-

dences inspired by the functional maps framework, but that

solves some of its limitations.

• We develop a refinement strategy to improve the accuracy of

estimated correspondences between shapes across different

modalities.

• We evaluate the proposed technique on different datasets by

comparing it with existing solutions.

• We test the refined correspondence by adopting them to target

challenging applications such as point cloud registration and

deformation transfer.

Many shape correspondence pipelines lack a unified method that

effectively refines correspondences, handling different modalities,

representations, and challenging scenarios. Our work proposes to

fill this gap in the context of refining correspondences, providing a

robust and versatile solution for refining shape correspondences.

2 RELATED WORKS

2.1 Shape matching with Functional Maps
A well-studied task for computer graphics applications is shape

matching, whose goal is to find correspondences between the el-

ements (points or vertices) of two discrete shapes, such as point

clouds or meshes.

In the case of meshes, Functional Maps framework[Ovsjanikov

et al. 2012] has achieved impressive results both exploiting optimiza-

tion procedures [Maggioli et al. 2025; Nogneng et al. 2018; Nogneng

and Ovsjanikov 2017; Ovsjanikov et al. 2016; Ren et al. 2019, 2018;

Rodolà et al. 2017] and more recent deep learning techniques [Cao

and Bernard 2023; Donati et al. 2022; Eisenberger et al. 2020; Litany

et al. 2017; Sun et al. 2023]. These methods exploit a functional repre-

sentation of the correspondence, which can be accurately estimated

on meshes and is particularly effective for isometric shapes. Recent

learning-based alternatives leverage this notion only at training

time as a regularizer to learn universal features [Cao et al. 2023; Sun

et al. 2023] from which they directly estimate the correspondence

at inference time.

However, functional maps and related techniques do not achieve

the same accuracy for non-isometric meshes. This performance gap

is due to the difference in the adopted functional representation of

the shapes when these are non-isometric. Furthermore, in dealing

with point clouds, the functional approach is not so effective be-

cause, in this setting, the surface information is less accurate and

the computation of the functional representation can be unstable

between shapes. For these reasons, follow-up solutions tried to deal

with these issues by proposing novel representations for the func-

tional space [Azencot et al. 2019; Hartwig et al. 2023; Kovnatsky

et al. 2013; Melzi 2019; Melzi et al. 2020, 2018] or learn more stable

representation for point clouds [Marin et al. 2020; Viganò and Melzi

2024]. An alternative approach is to learn different embeddings

based on reconstruction loss and solve for the correspondence using

these embeddings as features and without involving any functional

representation [Deng et al. 2023; Ginzburg and Raviv 2021]. Unfortu-

nately, these representations inevitably require tuning of parameters

to target different deformations or create a bias towards some other

category of shapes. Other recent approaches involve considering

attention mechanisms in the learning phase [Li and Harada 2022;

Raganato et al. 2023; Riva et al. 2024], also in the functional setting

[Li et al. 2022].

2.2 Map refinement
Despite the effectiveness of the state-of-the-art approaches, obtain-

ing a high-quality correspondence on any input pairs is still far,

even if necessary for real applications. For this reason, a line of

research focuses on designing a procedure to refine a given initial

correspondence. A good refinement should improve the quality of

any input correspondence as efficiently as possible.

With the functional maps paradigm, intrinsic approaches refine

themaps iteratively by converting between pointwise and functional

representation [Magnet et al. 2022; Melzi et al. 2019b; Ren et al. 2020,
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2021]. These methods are efficient and robust to variations in the

discretization, but often fail in the case of non-isometric pairs. In

[Hartwig et al. 2023], the ZoomOut algorithm [Melzi et al. 2019b]

has been extended to perform upsampling of elastic basis, and the

same is done in [Viganò and Melzi 2024] for learned embeddings

[Marin et al. 2020]. These refinements work well but are limited

to pairs with similar discretizations and are too dependent on the

unstable quality of the representation.

An alternative refinement approach is to update the correspon-

dence by optimizing for an extrinsic deformation of the shapes.

These methods often define some encoding of the deformations and

compute explicit constraints such as ARAP energy [Sorkine and

Alexa 2007] or the Chamfer distance. These methods can achieve ac-

curate correspondences, but they are typically expensive. Recently,

NDP [Li 2022] and Nerfies [Park et al. 2021] optimize extrinsic defor-

mation by applying neural fields. These methods can realize good

registrations if the deformed shapes are near-rigidly alignable, but

they suffer in the case of pose variation or strong deformations. In

[Cao et al. 2023], the authors propose a method to improve learned

features at test time by minimizing Dirichlet energy. However, these

methods work only for a specific type of initialization; thus, they

cannot refine any input correspondence.

Instead, with NAM, we propose a method that can be applied both

on non-isometric meshes and point clouds, with any embedding

representing the shape, and can refine any input correspondences,

without the need of previous training. Table 1 summarises the prop-

erties of different refinement methods.

Method Intrinsic Non Isometric Point Cloud Fast Agnostic

ZO ✓ ✗ ✓ ✓ ✓
Elastic ZO ✗ ✓ ✗ ✓ ✓

NDP ✗ ✗ ✓ ✓ ✓
ULRSM ✓ ✓ ✗ ✗ ✗
NAM ✓ ✓ ✓ ✓ ✓

Table 1. Comparison of the properties of different refinement methods.
Intrinsic indicates that the method leverages intrinsic information, so it’s
more stable under strong pose variations. Non-Isometric and Point Cloud
indicate the kind of pairs a method can deal with. Fast means that the
refinement method has a computational time shorter than the average time
for estimating a correspondence. Agnostic indicates that the refinement
method can improve any input correspondence. Here are the reference for
each method: ZO [Melzi et al. 2019b], Elastic ZO [Hartwig et al. 2023], NDP
[Li 2022], ULRSM[Cao et al. 2023].

2.3 Neural Deformation Fields and Neural Prior
Neural fields, a tool of increasing interest in computer graphics,

recently met the shape correspondence task. In particular, most of

these approaches exploit neural fields to represent the non-rigid

transformation between the 3D extrinsic embeddings of the shapes.

Several works optimize for displacement fields between 3D coor-

dinates [Corona et al. 2022; Marin et al. 2024; Sundararaman et al.

2022], while NDP [Li 2022] and Nerfies [Park et al. 2021] optimize

for a warp field on a Fourier frequency bandwidth. Other works

[Aigerman et al. 2022; Sundararaman et al. 2024] adopt the repre-

sentation of deformations from [Sumner and Popović 2004] to learn

discretization agnostic fields. These methods achieve good results,

but they still rely on a mesh structure, and extending them to point

clouds is not straightforward.

In recent years, various works have leveraged the properties of

the so-called neural-prior to constrain optimization problems by

exploiting untrained neural networks. [Ulyanov et al. 2020], which

adopts the neural prior to deblur images, is the first work in this

direction. Follow-up works extend this idea to rigid registration [Li

et al. 2021], handle-guided shape-deformation [Tang et al. 2023],

and correspondence learning [Attaiki and Ovsjanikov 2023].

3 BACKGROUND AND NOTATION
3D shapes. Wemodel a 3D shapeX1 as a compact two-dimensional

manifold embedded in R3
. Along with the surface, we will consider

the space of squared-integrable real-valued functions defined on

the surface of the shape L2 (X1), defined as

L2 (X1) := {𝑓 : X1 → R, 𝑠 .𝑡 .
∫
X1

|𝑓 (𝑥) |2𝑑𝑥 < ∞}.

This functional space is known to be a Hilbert space with the inner

product

⟨𝑓 , 𝑔⟩L2 (X1 ) =
∫
X1

𝑓 (𝑥)𝑔(𝑥)𝑑𝑥 . (1)

From a computational point of view, we can discretize the shape

in different ways, such as point clouds and meshes, to name two

of the most adopted ones. These discrete representations usually

involve an unordered collection of 𝑛1 ∈ N points {𝑥𝑖 }𝑛1𝑖=0, repre-
sented by their 3D coordinates. In the discrete setting, each function

𝑓 : X1 → R is represented as a vector 𝑓 ∈ R𝑛1 , where each entry

𝑓𝑖 = 𝑓 (𝑥𝑖 ), ∀𝑖 ∈ {1, . . . , 𝑛1}. For each shape X1, we can consider the

mass matrix𝑀1 ∈ R𝑛1×𝑛1 , a diagonal matrix with entries equal to

the mass values𝑚𝑖 of each point 𝑥𝑖 of the discretized shape. With

this matrix, we can discretize the inner product in Equation (1) as

⟨𝑓 , 𝑔⟩L2 (X1 ) = 𝑓
⊤𝑀1𝑔. Another important operator is the Laplace

Beltrami Operator (LBO) [Levy 2006] Δ1 : L2 (X1) → L2 (X1), that
we can discretize as a matrix in R𝑛1×𝑛1 [Pinkall and Polthier 1993].

By computing the eigendecomposition of this operator, we obtain

its non-negative eigenvalues {𝜆𝑖
1
}𝑛1
𝑖=0

∈ R and associated eigenfunc-

tions {𝜙𝑖
1
}𝑛1
𝑖=0

∈ L2 (X1) that form an orthonormal basis (the LBO

basis) for L2 (X1). In the discrete setting, the number of these eigen-

functions is exactly 𝑛1. For efficiency reasons, it is common practice

to use only a truncated subset of the eigenfunctions associated with

the 𝑘 ≤ 𝑛1 smallest eigenvalues to provide a compact low-pass ap-

proximation of the functions in a Fourier-like representation.We can

store this truncated basis in a matrix Φ𝑘
1
= [𝜙1

1
, . . . , 𝜙𝑘

1
] ∈ R𝑛1×𝑘 .

Shape matching. If we consider two 3D shapes X1 = {𝑥𝑖 }𝑛1𝑖=1 and
X2 = {𝑦 𝑗 }𝑛2𝑗=1, we can consider a point-to-point correspondence 𝑇12

which maps each point 𝑥𝑖 into its corresponding point 𝑦 𝑗 . The goal

of shape matching is to estimate this correspondence. 𝑇12 can be

represented as the matrix Π21 ∈ R𝑛1×𝑛2 such that Π21 (𝑖, 𝑗) = 1, if

𝑇12 (𝑥𝑖 ) = 𝑦 𝑗 and Π21 (𝑖, 𝑗) = 0 otherwise. If the correspondence is

bijective, Π21 is a permutation matrix.

3.1 Functional Maps
A correspondence𝑇12 : X1 → X2 induces via pull-back a linear map

𝑇 𝐹
21

: L2 (X2) → L2 (X1), defined as 𝑇 𝐹
21
(𝑔) = 𝑔 ◦ 𝑇12 ∈ L2 (X1),
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∀𝑔 ∈ L2 (X2). If we equip the functional spaces with bases Φ1,Φ2,

we can represent each function as a vector of the coefficients of its

representation in the basis. Therefore, the functional map 𝑇 𝐹
21

can

be encoded as a matrix 𝐶21 that maps coefficients. For details on

this derivation, we refer to the supplementary.

Given Π21, the functional map can be explicitly computed as

𝐶21 = Φ†
1
Π21Φ2, (2)

where † denotes the Moore–Penrose pseudoinverse. This definition

holds for any basis even if the standard choice is the LBO basis.

Adjoint Operator. The functional map 𝑇 𝐹
21

univocally induces the

adjoint operator [Hartwig et al. 2023; Huang and Ovsjanikov 2017;

Pai et al. 2021] as the unique operator 𝑇𝐴
12

: L2 (X1) → L2 (X2),
that satisfies ⟨𝑇𝐴

12
𝑓 , 𝑔⟩L2 (X2 ) = ⟨𝑓 , 𝑇 𝐹

21
𝑔⟩L2 (X1 ) .

In the discrete setting, the adjoint operator 𝑇𝐴
12

corresponds to

a matrix Γ12 ∈ R𝑛1×𝑛2 that we can compute as Γ12 = 𝑀−1
2

Π⊤
21
𝑀1

[Pai et al. 2021]. In the case of isometric shapes with the same

connectivity Γ12 = Π⊤
21

= Π12.

Equipping the functional spaces with bases, as done in [Hartwig

et al. 2023; Pai et al. 2021], we can represent the adjoint operator as

the matrix:

𝐴12 = 𝑀
−1
2
𝐶⊤
21
𝑀1, (3)

where 𝑀𝑖 = Φ⊤
𝑖
𝑀𝑖Φ𝑖 . In the case of orthonormal bases, as with

LBO, 𝐴12 = 𝐶
⊤
21
. We refer to [Hartwig et al. 2023; Pai et al. 2021] for

further details.

Map conversion. The functional maps framework and related

shape matching solutions leverage functional maps to represent

the correspondence with a linear operator. On the full basis, the

correspondence can be recovered from the functional map. Indeed,

each point 𝑥 ∈ X1 can be represented through 𝛿𝑥 , the Dirac delta dis-

tribution centered in 𝑥 , defined as the unique distribution for which

holds that ⟨𝛿𝑥 , 𝑓 ⟩ = 𝑓 (𝑥), ∀𝑓 ∈ L2 (X1). By selecting a basis for the

functional spaces, a set of coefficients can encode this distribution

for every point on the two shapes in the corresponding coefficients.

For the LBO basis for instance, Φ1 (𝑥), the row corresponding to 𝑥

in the matrix Φ1, are the coefficients of 𝛿𝑥 . A common practice is to

leverage functional operators to transfer deltas from one space to the

other and recover the correspondence as the solution of the nearest

search (denoted 𝑁𝑆 and applied on rows for matrices) between the

spectral representations of deltas.

We can summarize the most related and impactful recovering

strategies as:

Functional maps [Ovsjanikov et al. 2012]: 𝑇12 = 𝑁𝑆
(
Φ1,Φ2𝐶

⊤
21

)
.

(4)

Adjoint operator [Pai et al. 2021]: 𝑇12 = 𝑁𝑆
(
Φ1𝐴

⊤
12
,Φ2

)
. (5)

Elastic [Hartwig et al. 2023]: (6)

𝑇12 = 𝑁𝑆

(
(
√︃
𝑀1Φ

†
1
𝑀−1
1

)⊤, (
√︃
𝑀1𝐶21Φ

†
2
𝑀−1
2

)⊤
)
. (7)

In [Hartwig et al. 2023], the authors derive (7) to generalize the func-

tional maps framework to non-orthonormal bases. (Φ†
1
𝑀−1
1

)⊤ are

indeed the coefficients of the Dirac delta distributions centered at

the points ofX1 for a generic basis Φ1. In the case of an orthonormal

basis, (4) and (7) are equivalent. In [Pai et al. 2021], the adjoint oper-

ator has been proven to be the operator that maps delta functions,

and so equation (5) is theoretically the most correct one, however

in practice, all these methods introduce approximations.

Truncated basis. Indeed, the above considerations are based on

the assumption of having a full basis, which represents the entire

functional space. But, functional map efficacy is based on adopting

a truncated basis with 𝑘 << 𝑛1, 𝑛2. In this way, we can optimize for

a compact functional map that acts as a low-pass filter, helping to

extract and optimize global map properties.

However, this introduces strong approximations in delta function

representation and in the point-to-point correspondences that can

be recovered from compact linear maps. Indeed, if we refer to the

row corresponding to 𝑥 in the matrix Φ𝑘
1
as the spectral embed-

ding of dimension 𝑘 of 𝑥 , the truncation induces a 𝑘 dimensional

embedding of the shapes, which cannot be completely aligned by

linear operators without imposing some prior on the embeddings

themselves, as we will prove in Section 4.2.

Our work tackle this limitation, proposing a new representation

that can represent a broader space of correspondences.

3.2 Refinement
To keep the advantages of optimizing compact linear functional

maps and overcome the limitations of having strong approximations

of shape representations, different methods proposed algorithms

to increase the basis dimension, increasing the accuracy of the

estimated correspondence.

Starting from a map with a reduced basis dimension 𝑘𝑖𝑛𝑖 , we can

refine it, iteratively converting the correspondence into a larger map

by increasing the basis dimension at each iteration with different

strategies:

ZoomOut [Melzi et al. 2019b]: iteratively computesmaps and

correspondences via Equations (2) and (4).

Iterative Meta Algorithm [Pai et al. 2021]: converts between
map via Equations (2) and (5). This method does not increase

map accuracy since the conversion does not enforce addi-

tional constraints on the map.

Elastic [Hartwig et al. 2023]: proposes a generalization of ZoomOut

to elastic bases by iteratively alternating the conversions in

Equations (2) and (7).

In this scenario, despite being based on the most theoretically

sounded conversion, the Iterative Meta Algorithm shows limitations,

since it is not regularized [Pai et al. 2021; Viganò and Melzi 2024].

ZoomOut and Elastic instead, are proven to minimize the following

energy

𝐸 = ∥𝐶21𝐴12 − 𝐼 ∥𝐻𝑆 (8)

where ∥ · ∥𝐻𝑆 is the Hilbert-Schmidt norm [Hartwig et al. 2023],

which in the case of orthonormal bases is equal to an energy on the

orthonormality of 𝐶21.

Considering LBO truncated basis, we can write Equation (4) in

terms of the adjoint operator as

𝑇12 = 𝑁𝑆 (Φ𝑘1 ,Φ
𝑘
2
𝐴12). (9)

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.



NAM: Neural Adjoint Maps for refining shape correspondences • 5

As proven in [Melzi et al. 2019b], the solution of (9) minimizes:

𝐸 (Π21, 𝐴12) = ∥Π21Φ
𝑘
2
𝐴12 − Φ𝑘

1
∥, (10)

where ∥ · ∥ indicates the matrix Frobenius-norm.

Looking at the bases as embeddings, the above discussions im-

ply that we can consider 𝐴12 as a regularized way of aligning the

embeddings minimizing Equation (10).

In the full basis, or for isometric shapes this map is the adjoint

operator.

Moreover, we can extend the action of the adjoint operator from

the operator that aligns the spectral embeddings to a map that aligns

high-dimensional embeddings minimizing (10).

Our solution works in this direction, introducing a new functional

representation that is capable of representing a broader space of

correspondences relaxing the hypothesis of linearity of the map𝐴12

between truncated embedding and optimizing it following regular-

ized previous approach and extending them to new scenarios.

4 METHOD
In this paper, we focus for the first time on a neural representa-

tion of the operator that aligns the functional spaces defined on

2-dimensional surfaces embedded inR3
. More specifically, we design

a neural architecture to generalize the action of the adjoint linear

operator [Huang and Ovsjanikov 2017], which has been proven to

be the only functional operator that transfers delta distributions [Pai

et al. 2021] and is thus preferable for shape matching. We organize

the rest of this section as follows. We define our neural representa-

tion, analyze the role of non-linearity in the proposed solution, and

show that it can adapt to different bases for the functional spaces.

Finally, we propose a specific refinement technique designed to

exploit the properties of our representation.

4.1 Neural Adjoint Maps
We propose Neural Adjoint Map (NAM), a novel representation

to generalize, through a neural function, the action of the adjoint

operator between functional spaces approximated by truncated

embeddings.

We consider 𝐻 defined as the following space of functions:

𝐻 = {ℎ : R𝑘 → R𝑘 , such that (11)

ℎ(𝑦) = 𝑦𝐴 + 𝜎
(
𝜎 (𝑦𝑊 (1) )𝑊 (2) )𝑊 (3) } ,

where 𝜎 is an activation function,𝐴 ∈ R𝑘×𝑘 ,𝑊 (1) ∈ R𝑘×𝐾 ,𝑊 (2) ∈
R𝐾×𝐾

, and𝑊 (3) ∈ R𝐾×𝑘
are linear parametric transformations,

with 𝐾 ≠ 𝑘 .

Given two discrete shapes X1 and X2 represented by 𝑛1 and 𝑛2

points inR3
and their spectral embeddingsΦ𝑘

1
∈ R𝑛1×𝑘 ,Φ𝑘

2
∈ R𝑛2×𝑘

truncated to dimension 𝑘 , we can interpret 𝐻 as a space of function

between their spectral embeddings.

Leveraging the neural network solutions, we can parametrize the

functions in 𝐻 through an MLP. With this choice and assuming

there is a correspondence Π21 between the points of the shapes,

we can optimize for a neural function ℎ ∈ 𝐻 that best aligns the

embeddings Φ𝑘
1
and Φ𝑘

2
by minimizing the following energy

𝐸𝑁𝐴𝑀 (ℎ) = ∥Π21ℎ(Φ𝑘2 ) − Φ𝑘
1
∥ . (12)

We refer to the function ℎ ∈ 𝐻 that minimizes this energy as the

Neural Adjoint Map (NAM) associated with Π21.

If we restrict the space of solutions in Equation (12) to the space of

linear combination of Φ2, this loss is minimized by ℎ(Φ𝑘
2
) = Φ𝑘

2
𝐴12,

where 𝐴12 is the adjoint operator of the functional map induced by

Π21, as we discussed in Equation (10). For this reason, if the spectral

embeddings are the full bases or the two bases are linearly alignable

(i.e. the two shapes are isometric), NAM corresponds to the action of

the adjoint operator. In this sense, the NAM definition generalizes

the notion of the adjoint operator. Instead, if we consider truncated

bases and the shapes are not precisely isometric, the NAM gives rise

to a broader space of solutions that will better align the embeddings,

enabling more precise estimations of the correspondence, as we will

see in the experimental Section.

As proven by the following proposition, under specific hypothesis,

the minimization of Equation (10) induces the injectivity of the

neural function ℎ.

Proposition 4.1. Given a function 𝑔 : R𝑘 → R𝑘 such that
𝑔(Φ𝑘

1
) = Π21Φ

𝑘
2
, then a NAM ℎ realizes 𝐸𝑁𝐴𝑀 (ℎ) = 0 in Equation

(12) if and only if
ℎ ◦ 𝑔 = 𝐼1 (13)

where 𝐼1 is the identity function on Φ𝑘
1
.

We report the proof in the supplementary materials. Considering

the full LBO basis or isometric shapes, this proposition generalizes to

NAM the analogy between Equation (8) and Equation (10) described

in Section 3.2.

Point to Point conversion. Given a permutation Π21, we get a

corresponding NAM by estimating the MLP that simply minimize

𝐸𝑁𝐴𝑀 from Equation (12) as loss. In the opposite direction, given

a NAM ℎ, we can recover the correspondence by performing the

nearest search (𝑁𝑆) in the space of the spectral embedding of X1:

𝑇12 = 𝑁𝑆 (Φ𝑘1 , ℎ(Φ
𝑘
2
)) . (14)

This conversion method resembles its linear counterpart defined in

Equation (9).

4.2 The role of non-linearity
Crucial in our representation is the non-linear component that

defines the neural map (11). Indeed, assuming the linearity of the

adjoint map between truncated embedding is equivalent to imposing

some prior on the map that it represents. In the case of spectral

embedding, this prior is the isometry. Indeed it holds that

Proposition 4.2. Let’s assume to have a 𝑘 dimensional embedding
Ξ1 ∈ R𝑛×𝑘 . There will always be a Ξ2 ∈ R𝑛×𝑘 , in a (1:1) correspon-
dence with Ξ1, such that Ξ1 and Ξ2 are not linearly alignable i.e
�𝐴 ∈ R𝑘×𝑘 s.t. Ξ1 = Ξ2𝐴.

This is trivial, considering that the space of linear transformation

of Ξ1 is equivalent to R𝑘×𝑘 which is strictly contained in R𝑛×𝑘

which is the space of possible embedding of the given dimensions.

If we consider spectral embeddings, it holds that

Proposition 4.3. Φ𝑘
1
and Φ𝑘

2
are linearly alignable for any 𝑘 < 𝑛

iff the shapes are isometric.
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Fig. 2. Comparison between linear and NAM representation of ground truth
correspondence. On the 𝑥-axis the basis dimension 𝑘 . On the 𝑦-axis the
Mean geodesic error of the recoveredmap. The introduction of the non-linear
module induces a better alignment of the basis and consequently a better
correspondence estimation. This result is more evident for non-isometric
pairs. We note that as we increase the basis dimension the difference be-
tween the NAM representation and the linear one decreases.

𝜙25
1

(Φ30

2
𝐴12) [:, 25] ℎ12 (Φ30

2
) [:, 25]

Fig. 3. 25th basis function of 𝑋1 (left) transferred with different approaches
(linear in the middle and NAM on the right). We can see that NAM better
recovers the basis function on the target enabling a more precise alignment.

We prove this Proposition in the supplementary material. This

Proposition implies that if we convert a correspondence into a linear

functional operator that acts between two spectral embeddings, we

can aim to recover the correspondence only if we are implicitly as-

suming the correspondence to be an isometry. Considering a NAM,

we can overcome this limitation thanks to its non-linear compo-

nent. Indeed, if we consider two truncated spectral embeddings of

dimension 𝑘 forX1 andX2, assuming that they are linearly alignable

through the action of an adjoint operator is equivalent to assume

that:

{𝜙𝑖
1
}{𝑖=0,..,𝑘 } ⊂ 𝑠𝑝𝑎𝑛({Π21𝜙

𝑖
2
}{𝑖=0,..,𝑘 } ). (15)

This means that the basis functions of Φ𝑘
1
can be described by a

linear combination of Φ21Φ
𝑘
2
. However, the frequencies spanned by

different truncated spectral embedding can vary highly, even more

in the case of non-isometry. For this reason, looking for the space of

linear combinations of the embedding dimensions of Π21Φ
𝑘
2
cannot

give rise to a precise description of Φ𝑘
1
. However, if we consider

𝐻 (Φ𝑘
2
) = {ℎ(Φ𝑘

2
), ℎ ∈ 𝐻 }, we have

𝑠𝑝𝑎𝑛(Φ𝑘
2
) ⊂ 𝐻 (Φ𝑘

2
) (16)

and, since both NAM and linear transformation acts row-wise

𝑠𝑝𝑎𝑛(Π21Φ
𝑘
2
) ⊂ 𝐻 (Π21Φ

𝑘
2
) = Π21𝐻 (Φ𝑘

2
) (17)

where Π21𝐻 (Φ𝑘
2
) = {Π21ℎ(Φ𝑘

2
), ℎ ∈ 𝐻 }.

In other words, the space generated by 𝐻 (Φ𝑘
2
) is broader than

the span of Φ𝑘
2
. For this reason, NAM yields to better capture the

image of deltas described by the spectral embeddings of the source

shape, and thus, any correspondence is better represented by NAM

than by a linear map.

To show some examples of the advantages provided by NAM,

we perform some experiments on the Deforming Things [Magnet

et al. 2022] dataset (DT4D), which is split into isometric and non-

isometric pairs (we refer to Section 5 for more details on the dataset).

In Figure 2, we show that NAM is better than the linear alternative

for representing correspondences. For different values of 𝑘 (basis

dimension on the 𝑥-axis), we encode a ground truth correspondence

with the adjoint linear representation (blue) and with our NAM (red).

Then we convert them back to a point-to-point map respectively

with Equations (9) and (14). On the 𝑦-axis, we report the mean geo-

desic error after the conversion computed as the geodesic distance

between the estimated match and the ground truth one on average

on all the points and all the isometric (square) and non-isometric

(circle) pairs. We can see that with NAM, we consistently obtain

more accurate correspondences for all 𝑘 . Furthermore, as expected,

the gap is more evident in non-isometric pairs.

In Figure 3, we report a comparison in the transfer of a function

of the LBO basis of X1, more specifically 𝜙25
1

(on the right), to X2

using the linear approach (middle) or NAM (right) both exploiting

bases of size 30 Φ30

1
and Φ30

2
. The colormap encodes the values of

the function: white is zero, blue is negative and red is positive. X1

and X2 are non-isometric, and we can see that the linear approach

loses many details while NAM is recovering the function more

precisely. This ability to recover the transferred signal coincides

with better alignment of the embeddings from which we estimate

the correspondence.

4.3 NAM Across Embeddings
We defined and motivated NAM by considering the LBO basis as

embedding. While this embedding is the most frequent choice in

the context of shape matching due to its smoothness and hierarchi-

cal structure, it often struggles to represent high-frequency signals

and does not perform well if the shapes are strongly non-isometric.

These limitations gave rise to the exploration of alternative embed-

dings in many applications.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.
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Fig. 4. Our approach applied to different embeddings with different dimen-
sionalities (𝑥-axis). The NAM representation (dashed lines) returns better
maps than the linear representation (dotted lines) for any embedding at any
basis dimension.

The definition of NAM can be applied universally across various

high-dimensional embeddings. In particular, among many possibili-

ties, we consider the following embeddings:

• Elastic Basis: Introduced in [Hartwig et al. 2023], these bases

are computed as the eigenfunctions of an elastic operator

that models elastic properties of shapes, such as bending

and stretching. They have been proven to represent high-

frequency signals and can be used in Functional maps-like

pipelines. However, this basis often struggles to represent

the global property of the shapes, and they are numerically

unstable.

• Random Fourier Features (RFF): Introduced in [Tancik et al.

2020], RFF are samplings of Fourier Radial Basis functions.

These embeddings are extrinsic and have been proven to be

well-suited for the efficient computation of high-frequency

neural functions. However, these embeddings can be sensitive

to topological issues because their computation is coordinate-

based.

Figure 4 illustrates a comparison between the linear (dotted lines)

and NAM (dashed lines) representations when applied to different

embeddings with different dimensions (𝑘 on the 𝑥-axis), including

LBO basis (red), elastic basis (purple), and RFF (blue). The NAM

representation consistently produces better maps than linear repre-

sentation.

Finally, NAMs also work effectively with other embeddings, such

as learned embeddings or direct 3D coordinates. In the Results sec-

tion, we demonstrate the impact of NAM in such cases. Furthermore,

our definition aligns well with the concept of Neural Operator, re-

cently introduced in [Kovachki et al. 2024].

We remark that we build the notion of NAM inspired by the action

of the adjoint operator in the case of spectral embeddings. [Hartwig

et al. 2023] extends the ZoomOut algorithm to any basis. Similarly,

we could build NAM considering slightly different formulations.

In supplementary materials, we discuss this issue and propose a

variant of NAM that generalizes to any basis. However, this def-

inition requires selecting an embedding with linear independent

dimensions and thus does not generalize to all embeddings, as our

current definition does.

4.4 Neural ZoomOut
Considering the NAM representation, we design a refinement al-

gorithm to improve the accuracy of an estimated correspondence.

We design an iterative algorithm, namely Neural ZoomOut (NZO),

exploiting the NAM representation and following previous methods

described in Section 3.2. NZO iteratively converts a correspondence

into an NAM and then recovers the correspondence via the nearest

search, augmenting the embedding dimension in the conversion to

an NAM at each iteration as described in Algorithm 1.

ALGORITHM 1: Neural ZoomOut (NZO)

1: Input: Π21

2: for 𝑘𝑖𝑛𝑖 ≤ 𝑘 ≤ 𝑘𝑒𝑛𝑑 do
3: Optimize for ℎ minimizing Equation (12)

4: Compute Π21 = 𝑁𝑆 (Φ𝑘
1
, ℎ (Φ𝑘

2
) )

5: end for
6: Output: Π21

By construction Neural ZoomOut, is a generalization of ZoomOut

[Melzi et al. 2019b] that extends to any embedding. In particular,

is trivial to show that if we restrict the space of solution of (12) to

the space of linear mapping Φ𝑘
2
𝐴, then (Φ𝑘

1
)†Π21Φ

𝑘
2
𝐴 = (Φ𝑘

1
)†Φ𝑘

1

which is 𝐶21𝐴 = (Φ𝑘
1
)†Φ𝑘

1
= 𝐼 . This means that in the linear case,

minimizing for ℎ is equal to computing the right inverse of 𝐶21. If

we have two isometric shapes with orthonormal bases, this is equal

to computing the adjoint 𝐶⊤
21
, so NZO coincides with ZoomOut in

the case of isometry. Combining the ZoomOut procedure with the

representation capabilities of the non-linear module of a NAM, we

get a flexible alternative to the Zoomout algorithm that we can

apply to other embeddings.

Alternating Neural ZoomOut. The flexibility of NZO is intriguing,

but with the possible unstructured nature of other embeddings,

defining a notion of hierarchy to guide the iterative process of NZO

could be problematic. For this reason, we define a new algorithm

that can alternately change the selected embedding to leverage

different representations. At each process iteration, we convert and

recover the point-to-point map in a NAM twice: the first time with

the spectral embedding Φ and the second with another embedding

𝐹 as outlined in Algorithm 2.

Despite its simplicity, this new refinement, namely Alternating

Neural ZoomOut (NZO*), refines any correspondence, merging dif-

ferent properties from different embeddings. If the second embed-

ding adopted is extrinsic, it can substitute for an additional explicit

extrinsic regularization. However, since our representation is gen-

eral to any embedding, it can be applied to 3D coordinates and

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.
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LBO Elastic RFF

Final Mean Final Mean Final Mean

LBO 0.72 0.78 0.83 0.87 0.752 0.77
Elastic 1.23 1.37 1.49 1.70 1.12 1.19

RFF 0.83 0.87 0.90 0.93 0.90 0.93

Table 2. Comparison of refinement methods NZO and NZO* on different
embeddings. On the diagonal, we highlight the entries that refer to NZO.
For NZO*, on the rows, we have the first embedding selected (lines 3 and 4 of
Algorithm 2) and on the columns the second one (lines 5 and 6 of Algorithm
2). For each refinement, we report the ratio between the average geodesic
error of the final refined map (Final) and the one of the initialization and
the mean value of this ratio in all the iterations (Mean) (smaller is better).

ALGORITHM 2: Alternating Neural ZoomOut (NZO*)

1: Input: Π21

2: for 𝑘𝑖𝑛𝑖 ≤ 𝑘 ≤ 𝑘𝑒𝑛𝑑 do
3: Optimize for a NAM ℎ minimizing Equation (12)

4: Compute Π21 = 𝑁𝑆 (ℎ (Φ𝑘
2
),Φ𝑘

1
, )

5: Optimize for a NAM
˜ℎ minimizing Equation (12) with another

embeddings 𝐹1, 𝐹2

6: Compute Π21 = 𝑁𝑆 ( ˜ℎ (𝐹2 ), 𝐹1 )
7: end for

optimized with additional energies, such as Chamfer distance, elas-

tic energies, and Dirichlet smoothness losses, adding them as losses

in the optimization of the NAM. We leave these explorations as

future directions.

In Table 2, we report the performance of NZO and NZO* for

50 non-isometric shape pairs from DT4D, exploiting different em-

beddings. We obtain all the results from an initial correspondence

extracted from a ground truth functional map of dimension 20 en-

coded in the spectral embeddings. NZO on the spectral embedding

(LBO) achieves the best result in the final map, while the combina-

tion of LBO and RFF with NZO* has the best results in mean on the

iterations. NZO and NZO* will refer to these two configurations

when not explicitly said. From this Table, we can infer that the

spectral embedding is the best choice in NZO* for lines 3 and 4 in

Algorithm 2.

5 EXPERIMENTS
In this section, we demonstrate the versatility and effectiveness

of our method for refining correspondences in a broad range of

scenarios. Furthermore, we assess the robustness of the proposed

solution to different initializations, showing that it is the only tech-

nique to reduce the error in any case from very accurate to noisy

initializations. Finally, we ablate on our design choices, showing the

role of each component of our solutions.

5.1 Experimental setting
Datasets. To prove the flexibility of ourmethod, we select different

datasets that cover some difficult scenarios in which classical func-

tional solutions often fail. In particular, we consider near-isometric

meshes, non-isometric meshes, and point clouds. We consider the

following datasets:

• SHREC19: a dataset of near-isometric human meshes with

different connectivity [Melzi et al. 2019a].

• DT4D: a dataset of triangular meshes representing humanoid

subjects, divided into intra-class pairs with isometric deforma-

tion (DT4D intra) and non-isometric inter-class pairs (DT4D
inter) pairs [Magnet et al. 2022].

• SMAL: composed of meshes that represent quadrupeds from

different classes in varying poses with large non-isometric

deformations [Zuffi et al. 2017].

• FAUST scan: a collection of point clouds obtained from hu-

man scans [Bogo et al. 2014].

• KINECT: a new dataset of 15 point clouds extracted from

the BEHAVE dataset [Bhatnagar et al. 2022]. This dataset is

composed of Kinect acquisitions of humans interacting with

objects.

In the case of meshes, we evaluate our performance on subsets

of the datasets, considering the test set coming from the train-test

split which arises from previous experiments in the literature, and

more specifically, we consider the one from [Cao et al. 2023].

For the FAUST scan dataset, composed of point clouds, we selected

the last 20 shapes of the training set [Bogo et al. 2014], for which

is available the ground truth registration with the SMPL template

[Loper et al. 2015]. Finally, the KINECT dataset is composed of 15

point clouds, for which an SMPL Mocap registration is provided.

This lets us recover a ground truth to evaluate the maps. Details on

how we built this test set on the Supplementary material. We note

that we consider point clouds composed of 10𝐾 points randomly

sampled from the original data.

Evaluation metrics. In our experiments, we evaluate the effective-

ness of our methods by considering an accuracy metric. For every

shape couple, we compute the accuracy of the estimated point-to-

point correspondence 𝑇12 with respect to the given ground truth

𝑇
𝑔𝑡

12
using the standard evaluation method from [Kim et al. 2011].

Since we compare both intrinsic and extrinsic methods, we report

the error in terms of the geodesic distance (Geod) and the Euclidean

distance (Eucl).

Moreover, to evaluate the improvement achieved by a refinement

technique with respect to the initialization, we compute the im-

provement ratio 𝑟 , defined as the difference between the error of

the input and output maps of the refinement methods.

𝑟 = (𝐺𝑒𝑜𝑑𝑖𝑛 −𝐺𝑒𝑜𝑑𝑜𝑢𝑡 )/𝐺𝑒𝑜𝑑𝑖𝑛 ∗ 100 , (18)

This metric is a relative measure of the performance of each com-

petitor.

Implementation details. The official implementation can be found

at https://github.com/gviga/NAM-NeuralAdjointMaps. Our method

is implemented in PyTorch [Paszke et al. 2019] and, given its sim-

plicity, does not depend on any particular component or additional

library. The optimization of NAM is performed via gradient descent

with ADAM optimizer [Kingma and Ba 2017]. In the upsampling

phase, we consider 𝑘𝑖𝑛𝑖 = 20 and 𝑘𝑒𝑛𝑑 = 200, with a step of 20. The

nonlinear module is composed of 2 layers with a width of 𝐾 = 128.

We perform an ablation on these choices in the supplementary.

The LBO eigenfunctions are computed using the cotangent weights

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.
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Near-isometric Non-isometric Pointclouds
SHREC19 DT4D intra SMAL DT4D inter FAUST scan KINECT

Geod Eucl r Geod Eucl r Geod Eucl r Geod Eucl r Geod Eucl r Geod Eucl r

INI 7.88 7.37 0 0.90 0.75 - 7.10 5.45 - 4.52 1.42 - 14.18 10.1 - 34.2 34.7 -

ZO 6.51 5.01 17 1.06 0.71 -18 6.02 4.54 15 5.33 2.35 -18 13.3 9.4 6 56.4 95.9 -65

NDP 9.88 5.78 -25 3.87 3.01 -319 7.74 2.9 -9 6.67 1.74 -48 13.7 8.2 3 30.4 22.9 13

ULRSM ref 4.66 2.8 40 0.85 0.5 6 3.87 0.99 45 6.68 5.24 -48 NA NA NA NA NA NA

NZO 6.66 5.23 15 0.99 0.64 -10 4.39 1.23 38 4.12 1.05 9 12.9 8.7 9 29.3 26.3 14

NZO* 6.64 5.13 16 1.97 2.6 -119 3.97 1.01 44 4.20 1.16 7 12.8 8.6 10 28.3 25.2 17
Table 3. Shape Matching: Comparison of different refinement methods across diverse scenarios. The best result is highlighted in bold, and the second best is
in Blue. Isometric results (left), Non-Isometric results (middle), and Pointclouds results (right). In the last column, we report the mean improvement of the
geodesic error between the datasets considered.

scheme [Pinkall and Polthier 1993] for meshes and robust lapla-

cian [Sharp and Crane 2020] for point clouds. For initializations

and competitors, we consider official implementations and model

checkpoints provided by the authors.

5.2 Shape matching
In Table 3 we gather our quantitative evaluation on all the datasets,

considering the scenarios of near-isometric meshes, non-isometric

meshes, and point clouds.

In the context of near-isometric and non-isometric shape match-

ing, the state-of-the-art for computing correspondences are rep-

resented by learned approaches. The works of [Cao et al. 2023;

Sun et al. 2023] represent a de-facto standard for shape matching.

Both methods are based on learning universal features regularized

by functional maps modules. In the case of triangular meshes, we

consider [Cao et al. 2023] to initialize the maps. In the case of Point-

cloud, we consider the method proposed in [Cao and Bernard 2023],

which learns universal features for point clouds considering mesh

information at training time.

We compare our methods with three representative methods:

a fully intrinsic method, the Zoomout algorithm (ZO)[Melzi et al.

2019b], a fully extrinsic method, the Deformation Pyramid (NDP)

algorithm [Li 2022], and, for meshes, the refinement method specifi-

cally designed for the initialization [Cao et al. 2023], that we indicate

with (ULRSM ref). We note that other functional-map based refine-

ments [Magnet et al. 2022; Pai et al. 2021; Ren et al. 2021], which

derive from [Melzi et al. 2019b], could be redefined following our

new definition.

Near-isometric meshes. In the case of near-isometric meshes, the

performance of NZO is in line with the ZO algorithm. These results

validate our previous analysis since the effect of NAM is negligible

in the case of isometric pairs, and it could slightly decrease the

performances given the harder optimization induced by the larger

number of parameters. Thus, the linear representation and the en-

ergy minimized by our algorithm are those of ZO. Instead, ULRSM

ref returns the best accuracy, minimizing additional smoothness

constraints. We note that in the DT4D dataset, NZO decreases the

accuracy of the map. We stress that this unique behavior is given

by the extreme initialization quality, which is so accurate that its

projection to low frequency can only decrease its quality. In this

scenario, we should choose a bigger initial basis dimension. We

show the effect of this choice in the supplementary material.

SMAL 5K DT4D inter 8K
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Fig. 5. Mean refinement time for eachmethod on two datasets with different
numbers of points, indicated in the 𝑥-axis.

Non isometric meshes. In more challenging scenarios the results

indicate the need to consider our refinement method. The perfor-

mances of NZO and NZO* are comparable to the ones of ULRSM

ref in the SMAL dataset. However, our methods are the only ones

that can improve the correspondence estimated on the DT4D in-

ter dataset. Indeed, the alternatives even decrease the accuracy of

the initial maps in this scenario, showing less flexibility than our

solutions. Moreover, in Figure 5, we consider the mean time spent

refining a map. We notice that NZO is the second fastest method.

As expected it is slower than ZO, given the more parameters that

need to be optimized. Our method is comparable to NDP, however,

it seems that it scales better with the number of points of the shapes.

However, most notably, it takes 75% less time to perform refinement

than ULRSM ref [Cao et al. 2023].

Point Cloud. If we consider unstructured data, the challenge of

computing correspondences is even more challenging because of

the lack of geometrical information. Having a good refinement is

crucial if we consider that many trained approaches do not scale

well to high-resolution point clouds and are often optimized for

point clouds with a fixed number of points, such as [Lang et al. 2021;

Li and Harada 2022].
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10 • Giulio Viganò, Maks Ovsjanikov, and Simone Melzi

GT(20x20) ULRSM ULRSM One-shot Diff3D

Init 4.27 7.10 9.21 31.8

ZO 8.29 6.02 6.45 24.7

NDP 5.17 7.74 8.58 25.1

ULRSM ref NA 3.87 4.98 NA

NZO 3.5 4.39 5.18 22.6

NZO* 3.0 3.97 5.12 22.0
Table 4. Refinementmethod applied to different initialization. ULRSM refers
to the method of [Cao et al. 2023]. One shot refers to the same method in
which the basis dimension is 30 and the training has been only conducted
for 1 epoch. Diff3D refers to [Dutt et al. 2024]. GT20x20 refers to a map
computed from a ground-truth functional map of dimension 20.

From our experiments, we note that our approach returns the

best geodesic error in both the datasets considered. Moreover, we

note how using extrinsic features highly improves the results of

our method. This outcome highlights that having a method that

works both with intrinsic and extrinsic representation is the best

alternative in the case of point clouds, where the intrinsic operator’s

computation can be unstable and noisy. Indeed, we stress that our

method, as well as other spectral approaches, requires a reasonable

estimate of the Laplace-Beltrami eigenfunctions, or other surface-

aware representations, which in turn depend on a good local surface

approximation. However, it can also return good estimates in these

challenging scenarios compared to the previous approaches.

However, we need to note that, differently from themesh scenario,

the initializations considered do not return accurate results. Our

method can refine the correspondences considered but the problem

of having robust initializations for pairs of point clouds is still an

open problem.

5.3 Robustness
Different initializations . Other than [Cao et al. 2023], our method

can be applied as a refinement of other methods to find correspon-

dences. To test this, we consider alternative possible initializations

to assess the robustness of our method in refining any correspon-

dence. In Table 4 and in Table 5, we consider respectively the SMAL

datasets and the FAUST Scan dataset with different possible initial

correspondences. Our method improves any initial correspondence,

showing unprecedented flexibility. In particular, the result of re-

fining a ground-truth map 20𝑥20 indicates that, in the presence of

a good refinement, the problem of shape matching reduces to the

problem of aligning very compact representations in challenging

scenarios.

Different embeddings . We assess the robustness of our method by

considering other embeddings. Recently, different works proposed

to substitute the LBO basis with other bases or learned embeddings;

some methods propose a compatible refinement stage. For instance,

learned embeddings such as LIE [Marin et al. 2020] and NIE [Jiang

et al. 2023] have been proposed as a valuable alternative to the

Laplacian basis. For the first, [Viganò and Melzi 2024] proposed a

dedicated refinement. Moreover, we consider the elastic basis pro-

posed by [Hartwig et al. 2023] and its refinement. Our method can be

extended to these bases, showing an unprecedented generalization

capability.

GT(20x20) SSMSM Lepard NearestNeighbour

Init 5.43 14.18 17.5 31.5

ZO 41.5 13.3 17.8 30.3

NDP 7.01 13.7 13.9 29.3

NZO 3.1 12.9 13.8 29.6

NZO* 2.97 12.8 12.9 29.1
Table 5. Refinement method applied to different initialization. SSMSM
refers to the method of [Cao and Bernard 2023]. Lepard refers to the super-
vised method of [Li and Harada 2022]. NearestNeighbour refers to a map
computed performing nearest neighbor between the 3d coordinates of the
shapes. GT20x20 refers to a map computed from a ground-truth functional
map of dimension 20.

Dataset Init Baseline NZO

ELASTIC [Hartwig et al. 2023] ELASTIC 14.34 2.37 1.69
NIE [Jiang et al. 2023] FAUST 14.24 NA 12.8
LIE[Marin et al. 2020] FAUST 1k 2.33 1.95 1.84

Table 6. Performance of our method with different embeddings. For each
representation, we consider a refinement specifically designed for it. For
Elastic, the baseline is their iterative refinement, for LIE, the baseline is
[Viganò and Melzi 2024]. NIE does not present a refinement in its original
work, and in this case we consider 𝑘𝑖𝑛𝑖 = 10, 𝑘𝑒𝑛𝑑 = 20.

We replicate some of the experiments proposed in these works.

In Table 6, we show our results. Adapting our refinement to the

proposed embeddings, we can compare its performance with algo-

rithms (indicated as baseline) designed explicitly for the considered

representation. Also in this case we can obtain good refinement,

showing that the NAM representation and NZO refinement sets

themselves as a universal framework that can be applied to any

high-dimensional embedding.

5.4 Ablation
We conducted ablations on 50 random pairs from the SMAL dataset

To show the role of each choice that we made to implement the

NAM representation and the NZO algorithm.

The goal of NAM is to provide a smooth invertible representa-

tion of maps between shapes. We compare our approach to other

possible alternatives, which include: (A) learning a neural defor-

mation field between the 3D points of the shapes and (B) learning

two forward and backward deformation fields explicitly imposing a

bijectivity loss. In the first plot of Figure 6, we show the geodesic

error of recovered maps during the optimization of neural functions

to represent a ground-truth correspondence. We note that working

between functional representations results in more efficient and reg-

ular optimizations. On the other hand, working with 3d embeddings,

we can impose additional regularizations, like volume preservation

or non-rigidity terms. However, this would lead to a more expensive

optimization, which is not ideal for refinement.

We further evaluate key design choices of NAM, such as the

impact of the non-linear module and its activation function. Figure

6 shows that considering a hybrid model is the only way to obtain

an accurate refinement. ReLU-like activations outperform other

non-linearities, as shown in Figure 6. In the supplementary, we

report additional details on the ablations and on the hyperparameter

choices of the model.
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Fig. 6. Ablation studies on NAM. (Left) Conversion errors at different stages of the optimization. (Center) Linear vs. non-linear modules, showing both modules
are necessary for effective refinement. (Right) Ablation on the nonlinear function: ReLU-like activations yield the best results.

Source

ULRSM

ULRSM ref ZO NDP

NZO NZO*

Fig. 7. Texture transfer on a strong non-isometric pair from the SHREC20
dataset [Dyke et al. 2020]. We note that ZO algorithm fails to transfer the
signal between regions in which the geometry changes a lot, e.g., the face. At
the same time, NDP fails in regions in which there is a strong pose variation,
e.g., the tail. Our method instead returns an overall smooth transfer.

6 APPLICATIONS

6.1 Signal transfer
A typical application of shape matching is the transfer of signals

between two shapes. Indeed, let us assume that we have a signal on

the surface of a mesh or a point cloud. The signal can be defined

as a function 𝜓2 : L2 (X2)2 → R𝑑 , where 𝑑 is the dimension of

the signal, e.g. 3 for deformations, 2 for UV maps, 3 for colors or 1

for scalar functions. If we have access to the permutation Π21, the

transferred signal can be defined as𝜓1 = Π21𝜓2. Using a functional

map can be useful to obtain a smooth signal transfer. Indeed, we

can directly map the signals’ coefficient using a 𝐶21 as

𝜓1 = Φ𝑘
1
𝐶21 (Φ𝑘2 )

†𝜓2 . (19)

This is convenient, especially when the shape discretization varies

between the shapes, and we want a smooth signal transfer. This

functional map can be computed between any embedding, for in-

stance, with NZO we report transfer with functional maps on LBO

eigenfunctions. For NZO* solution, instead, we transfer the signal

considering the RFF as embeddings in (19).

Texture transfer. In Figure 7 and 8, we show the performances

of the refinements in transferring textures between strong non-

isometric pairs from the SHREC20 [Dyke et al. 2020], DT4D [Mag-

net et al. 2022] and SMAL [Zuffi et al. 2017] datasets. Our methods

return texture transfers that present improved accuracy in high-

frequency parts of the shapes. Interestingly, focusing on the first

example proposed, we can see that the map refined by NZO presents

a high-frequency artifact that comes from an error in the initializa-

tion (in the forehead of the target shape). This highlight the fact

that a NAM can represent high-frequency signals.

Coordinate transfer and registration. As textures, we can transfer

coordinates to perform registration. In these scenarios, linear models

often struggle since the spectrum does not represent high-frequency

extrinsic signals. For this reason, with NAM, we can leverage Ran-

domized Fourier Features. In Figure 9 we show a qualitative example

of our coordinate transfer. We note that NZO* outperforms NZO in

terms of smoothness of the transfer and precision in the protrusion

of the point clouds. We stress that our method does not explicitly

minimize registration losses like chamfer distance. However, it can

still recover a lot of information and get results comparable with

methods that explicitly does, such as NDP.

6.2 Neural Field Transfer
In recent works, neural field-based parametrization of signals has

become a standard in the community. Having a smooth neural
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Source ULRSM ULRSM ref ZO NDP NZO NZO*

Fig. 8. Texture transfer for different refinement methods. The red circles indicate notable errors, green circles indicate improved mapping.

Source Target Ini ZO NDP NZO NZO*

Fig. 9. Coordinate transfer on KINECT. We consider results obtained in the refinement of a ground-truth functional map 20x20 indicated as Ini.

representation of the correspondence is particularly useful in this

scenario. Moreover, our representation is convenient not only for

its neural nature but also since it is compatible with Randomized

Fourier features (RFF) and the Laplace Beltrami operator. This design

choice makes it ideal for transferring neural fields. RFF and LBO

eigenfunctions are indeed two of the most common domains in

which neural fields are defined [Koestler et al. 2022; Tancik et al.

2020].

Deformation Transfer. We can consider deformation transfer as

an example of this scenario. Let us assume we receive as input the

shape A with a neural deformation field 𝑑𝐴 defined on its RFF or

LBO eigenfunctions. If we assume to have an additional deformed

shape B, we can transfer the deformation field from A to B by simply

combining a NAM ℎ with the neural field 𝑑𝐵 = 𝑑𝐴 ◦ ℎ. In Figure

10, we show this example on the FAUST Scan dataset [Bogo et al.

2014]. We note that intrinsic methods fail to accurately transfer the

deformation between the protrusions of the shapes, while NZO*,

mapping extrinsic representation can obtain near-optimal results.

7 Conclusions
In this work, we designed a new neural representation for shape cor-

respondences that extends the properties of the classical functional

maps to work with any embedding, even in challenging scenarios.

Limitations and Future Works. However, the quality of the recov-

ered correspondences still depends on the properties of the embed-

dings. For example, the performances of our NZO* still suffer from

topological noise. Moreover, despite being quite efficient compared

with neural alternatives, its performance can be improved by con-

sidering other optimization strategies, such as the one implemented

in [Li 2022]. Moreover, we implement the new NAM representation

only in the context of refinement. An intriguing future direction

would be to integrate NAM in learning pipelines during the training

phase to learn better features, as in [Donati et al. 2020] or better

embeddings, as in [Marin et al. 2020].

In conclusion, NAM is a neural solution that extends recently

proposed alternatives for functional representation and refinement

of shape correspondences. Evaluations on standard benchmarks

and challenging datasets demonstrate that this approach achieves
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𝑉𝐴 𝑉𝐴 + 𝑑𝐴 𝑉𝐵

ZO NZO

NDP NZO*

Fig. 10. Neural deformation transfer between non-isometric shapes. For
ZO and NZO, the deformation field is defined on the LBO, and for NDP
and NZO* it is defined on the RFF. Intrinsic approaches fail to transfer
good deformations from one shape to the other, while considering extrinsic
representations, as in NZO* and NDP, we can get near optimal field transfer.

state-of-the-art accuracy. NAM can handle isometric cases and gen-

eralize to model other deformations among shapes. They capture

intricate geometric details that conventional linear approaches often

overlook. NAM can be applied to various embeddings represent-

ing 3D shapes, can refine any input correspondence, and is effec-

tive across different scenarios, including isometric meshes, non-

isometric meshes, and point clouds.
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