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This supplementary document provides additional details and results about
the frameworks employed in our work. Specifically, we first describe the archi-
tectures that were used in our experiments in Sec. A. Then we detail in Sec. B
other pre-training approaches evaluated in our study with their respective con-
figurations. In Sec. C, we describe our transfer learning protocols and the cor-
responding optimization parameters. In Sec. D, we extend the analysis of the
discriminative ability of early layers and gradient norm to other configurations.
Finally, in Sec. E we provide additional results on our geometric regularization
approach.

A Architectures

The architectures used in our experiments were selected to be as similar as
possible to original implementations, some changes had to be made in order
to properly implement pre-training strategies and to keep a consistent encoder
architecture across them. These modifications were not intended to tailor the
architectures to get the best performance, but just to keep consistency.

Unless specified otherwise, encoders share a feature embedding dimension
of 1024 which is projected to a 128 per-point feature dimension for point-level
contrastive-learning and 256 feature dimension for shape-level contrastive learn-
ing (see Sec. B).

DGCNN: For both pre-training and fine-tuning, we employed the six-layer
deep part-segmentation architecture as proposed in the original DGCNN work
[11].

PointNet: Modifications were applied to the PointNet architecture to achieve
a uniform encoder suitable for both classification and segmentation tasks, result-
ing in performance differences from the original implementation.

PointMLP: We used the standard (non-elite) version of the original PointMLP
[7] implementation of the encoder. Although no benchmark or implementation
was initially provided for the semantic segmentation task, we add a simple de-
coder using the PointNet feature propagation module implemented in Point-
Net++ [9] to evaluate PointMLP on the semantic segmentation downstream
task, enable point-level contrastive learning and apply layer-wise geometric reg-
ularization.
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Fig. 7: Evaluation on (a) ModelNet40 and (b) ScanObjectNN classification tasks of
SC pre-trained models in comparison to supervised pre-trained model, using linear
probing (LP – solid bars) and fine-tuning (FT – dashed bars) settings. Random Init is
a randomly initialized model.

MinkowskiNet: We adopt the SR-UNet architecture originally proposed
in [4] and used in PointContrast [13]. Though this architecture is originally
tuned for segmentation tasks, its encoder can be effectively used for classification
tasks. We take 32 as the point feature embedding dimension, to be consistent
with PointContrast implementation.

PCT: We adopt the baseline PCT architecture [5] used for classification
(with downsampling module) for the classification downstream tasks. For the
segmentation task, we implement a version without downsampling as proposed
in the original paper since the implementation was missing. Each variation un-
derwent its own pre-training process.

Maintaining architectural consistency while exploring various pre-training
approaches posed significant challenges. Consequently, we prioritized maintain-
ing consistent parameterization across architectures over achieving the highest
possible performance.

B Pre-training

In addition to the supervised and point-level contrastive approach presented in
the main paper, we provide additional results on 2 other pre-training strategies:

– Shape-level contrastive learning (SC): Inspired by the commonly used
contrastive learning approach in 2D [3], which contrasts between entire im-
ages, we apply the same view generation technique used in the point-level
contrastive learning approach (denoted as PC) to generate a positive pair of
shapes. We add an MLP projection head to the encoder for contrastive loss
computation.

– Point-DAE: We follow the Point-DAE work [14], which investigates de-
noising auto-encoders for self-supervised pre-training on 3D point clouds.
They propose several corruption settings, but we select the affine + masking
corruption for its performance and generalizability and see if observations
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Table 5: Evaluation of denoising auto-encoder pre-training strategy. Shape
classification on ModelNet40 and ScanObjectNN, and 3D scene segmentation on S3DIS
across different pre-training strategies and architectures. Accuracy metric used for clas-
sification and mIoU metric for semantic segmentation. Bolded results represent best
evaluation metric for a specific dataset and architecture setting. RI is a randomly ini-
tialized model.

Pre-training Strategy ModelNet40 [12] ScanObjectNN [10] S3DIS [1]

Linear Probing

DAE + DGCNN 92.00 72.31 -

DAE + PointMLP 91.15 73.46 -

DAE + PCT 89.33 65.82 -

Fine-tuning

DAE + DGCNN 92.69 84.98 51.4
RI + DGCNN 92.61 83.96 49.82

DAE + PointMLP 93.18 85.5 59.24
RI + PointMLP 92.65 85.43 56.59

DAE + PCT 91.4 77.65 50.87
RI + PCT 91.19 76.72 50.8

made in our work are still relevant for this type of pre-training. One advan-
tage of this simple scheme is that it can be used with different type of 3D
backbones, unlike other masked pre-training methods that are exclusive to
vanilla or vision transformers (e.g . Point-MAE [8])

Although we focus on contrastive vs supervised pre-training, our evaluations
span supervised, point-level, and shape-level contrastive pre-training methods,
alongside a reconstruction-based approach. We concentrate on single modality
(3D) pre-training, but multi-modal pre-training methods are also viable for com-
parison.

Efforts were made to standardize pre-training settings across architectures
and methods to reduce biases due to parameter differences.

When using contrastive pre-training, we introduce a set of invariances by ap-
plying data augmentation. We start by normalizing the point cloud and perform
random geometric transformations, including translation with a magnitude of
0.5, scaling between 80% and 125% and rotation of magnitude 45◦. These trans-
formations and their values are typically used in data augmentation schemes for
object-level datasets. We additionally simulate partial data to obtain complex
shapes that are more challenging for the contrastive pretext task. This is done
by cropping the original shape to a certain percentage. We experimented with
several crop ratios ranging from 0.2 to 0.8 and found that 0.5 gives the best
evaluation performance.
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Fig. 8: t-SNE plots of the first-layer feature activation for PointMLP under
(a) Point-DAE and (b) SC pre-training. Both pre-training strategies produce
discriminative early layers.

The ADAM optimizer [6], with a learning rate of 10−3 and a weight decay of
10−6, is used for 100 epochs and a batch size of 32. Although this epoch count
may seem low for Point-DAE pre-training, it was chosen to maintain consistency
in comparisons. Temperature settings for SC and PC pre-training are set at 0.1
and 0.4, respectively, following conventions established in PointContrast [13].
For MinkowskiNet, a voxel size of 0.1 was selected after testing ranges from 0.1
to 0.5, showing optimal pre-training outcomes. Pre-training is conducted on the
entire ShapeNetCoreV2 dataset [2].

C Evaluation

C.1 Settings

We maintained consistent linear probing and fine-tuning optimization parame-
ters across downstream classification tasks, utilizing an SGD optimizer with a
learning rate of 10−3, a weight decay of 10−6, training for 200 epochs, and a
batch size of 32. For semantic segmentation tasks on S3DIS, the batch size was
adjusted to 24, and the training duration was set to 100 epochs. For Minkowsk-
iNet, we applied a voxel size of 0.1 for shape classification and 0.5 for semantic
segmentation on S3DIS.

Data augmentation for ModelNet40 classification included random geometric
transformations such as translations (up to 0.2 units) and scalings (between two-
thirds and one and a half times the original size), with additional rotations for
ScanObjectNN classification. For MinkowskiNet, we adopted the PointContrast
data augmentation scheme, excluding transformations for semantic segmentation
tasks.

In our primary study, linear probing was not conducted for semantic seg-
mentation due to the absence of a pre-trained decoder for supervised and SC
contrastive pre-training. This approach is less common for this task, as encoder
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Fig. 9: Gradient norm analysis for pre-trained models. Evaluation includes SC
and Supervised pre-training across MinkowskiNet, PointMLP, and PCT. The x-axis
represents convolutional layers at various depths.
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Fig. 10: Gradient norm analysis for pre-trained models. Evaluation includes SC,
Point-DAE and Supervised pre-training. The x-axis represents convolutional layers at
various depths.

weights typically generate feature embeddings for the entire input, not point-
wise. For PC pre-training with DGCNN, keeping the encoder and decoder frozen
while training only the last layer resulted in a significantly lower mIoU score
(24.09%) compared to fine-tuning (49.99%).

C.2 Additional results

Shape-level contrastive pre-training (SC). We evaluate transfer learning
performance of shape-level contrastive learning in comparison to supervised pre-
training in Figure 7. Compared to the conclusions made for point-level con-
trastive learning (PC) being better for fine-tuning but worse for linear probing
than supervised pre-training, we find that SC follows the same pattern except
in cases like MinkowskiNet where it under-performs. This showcases that deep
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Table 6: Fine-tuning of geometric regularized pre-trained models on dif-
ferent downstream data/tasks. Shape classification on ModelNet40 and ScanOb-
jectNN with more architectures. Regularization can improve downstream performance
of supervised pre-training.

Pre-training Strategy PointNet MinkowskiNet PointMLP PCT

ModelNet40 accuracy

Supervised 90.30 91.37 92.65 91.56
Supervised + regularization 90.34 92.54 92.94 91.64

ScanObjectNN accuracy

Supervised 75.95 85.63 88.24 78.07
Supervised + regularization 76.68 85.81 87.23 77.69
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Fig. 11: Layer-wise gradient norm of a model pre-trained on ScanObjectNN for two
different downstream datasets.

sparse architectures prefer point-wise pretext tasks.
Reconstruction type pre-training. Results for Point-DAE, a denoising auto-
encoder (with affine and masking corruptions), indicate modest linear probing
performance but promising fine-tuning results, especially in semantic segmenta-
tion tasks, highlighting the potential of reconstruction-based pre-training. The
superior performance in semantic segmentation is correlated to the nature of the
pretext task, which is focused on the point-level rather than the shape-level, as
for contrastive pre-training. We specifically avoided MinkowskiNet because of
the variable number of points in an input which makes it incompatible with the
baseline framework of Point-DAE, and PointNet because of its global architec-
ture which overfits to the pretext task.

D Analysis

Discriminative capability of early layers. As depicted in Figure 8, both
shape-level contrastive learning (SC) and reconstruction-type pre-training (Point-
DAE) lead to distinguishable clusters in feature space, indicating that discrim-
inative early layers are common across pre-training strategies. This effect, not
observed in 2D vision as discussed in the main paper, can be attributed to the
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Table 7: Fine-tuning of geometric regularized pre-trained models on seman-
tic segmentation of S3DIS scenes. For relevant architectures, regularization can
improve downstream performance of supervised pre-training.

Pre-training Strategy PointMLP PCT

S3DIS mIoU

Supervised 55.7 50.7
Supervised + regularization 56.74 51

Table 8: Accuracy evaluation of geometric regularization on different layers
for DGCNN. Using only the first two layers of DGCNN provides the best features
for fine-tuning on ModelNet40 classification task.

Layer regularized conv1 conv2 conv3 conv4 Output layer

Supervised + layer-regularization 92.65 93.34 93.18 92.9 93.06

nature of 3D inputs.
Gradient norm of layer weights for other architectures. We general-
ize the results found in the main paper on gradient norm of layer weights for
different architectures and other pre-training strategies. First, we see in Fig-
ure 9 that supervised pre-training produces low gradient norm value for first
layers across all studied architectures, although the exact pattern of the gradi-
ent norm curve changes through different convolutional layers from architecture
to another. Second, these results correspond to shape-level contrastive learn-
ing, where the results resemble the point-level contrastive learning one. Third,
reconstruction-type pre-training strategies like Point-DAE result in higher gra-
dient norm values, as shown in Figure 10, but still lower than those from con-
trastive learning strategies, potentially explaining the reduced performance of
Point-DAE.
Gradient norm of layer weights for other source data. We highlight
that our key observations on the difference of adaptability between pre-training
methods are not unique to the ShapeNet source data. As shown in Figure 11,
in the setting where source data (data used for pre-training) is ScanObjectNN,
the early layers are also less adaptable for supervised pre-training compared to
contrastive pre-training.

E Regularization

Our geometric regularization technique proved beneficial in enhancing the per-
formance of supervised pre-training for the DGCNN architecture, as reported in
Table 3 of the main document. Expanding upon this, Tables 6 and 7 illustrate the
effectiveness of this method for additional architectures across various tasks. The
observed improvements across different architectures indicate the versatility of
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our regularization method in augmenting pre-training effectiveness, irrespective
of the specific model.

Particularly, for architectures like PointMLP, which already show a prefer-
ence for supervised over contrastive pre-training, geometric regularization further
elevates performance in challenging scenarios, such as S3DIS scene segmentation,
where supervised pre-training alone may fall short.

Through empirical testing to determine the optimal layers for regularization,
we discovered that targeting early layers for regularization yields better outcomes
than applying it to the encoder’s output layer alone. This finding, presented
in Table 8, suggests future research should carefully consider which layers to
regularize, as early layers appear more beneficial for this purpose, potentially
guiding more effective regularization strategies in 3D model pre-training.
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