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Abstract. Transfer learning has long been a key factor in the advance-
ment of many fields including 2D image analysis. Unfortunately, its appli-
cability in 3D data processing has been relatively limited. While several
approaches for point cloud transfer learning have been proposed in recent
literature, with contrastive learning gaining particular prominence, most
existing methods in this domain have only been studied and evaluated
in limited scenarios. Most importantly, there is currently a lack of prin-
cipled understanding of both when and why point cloud transfer learning
methods are applicable. Remarkably, even the applicability of standard
supervised pre-training is poorly understood. In this work, we conduct
the first in-depth quantitative and qualitative investigation of supervised
and contrastive pre-training strategies and their utility in downstream 3D
tasks. We demonstrate that layer-wise analysis of learned features pro-
vides significant insight into the downstream utility of trained networks.
Informed by this analysis, we propose a simple geometric regularization
strategy, which improves the transferability of supervised pre-training.
Our work thus sheds light onto both the specific challenges of point cloud
transfer learning, as well as strategies to overcome them.

1 Introduction

Transfer learning is an integral part of the success of deep learning in 2D
computer vision, enabling the use of powerful pre-trained architectures, which
can be adapted with limited data on a broad range of downstream tasks and
datasets [6, 20, 57]. The advancement of transfer learning can be attributed to
several factors such as the availability of well-established architectures (e.g .
deep CNNs [20], ViTs [11]), an abundance of source data to train on (e.g .
ImageNet [10] among myriad others), as well as the development of different
pre-training strategies [23].

Unfortunately, the extension of such approaches to the 3D domain presents
several important challenges. First, and perhaps most importantly, large-scale
labeled datasets are scarce in 3D due to the complexity of data acquisition and
annotation as well as significant domain-specificity that creates imbalances across
data (e.g . synthetic CAD shapes [5, 24, 48], real scenes [9], non-rigid shapes [4],
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Fig. 1: Analyzing and improving point cloud transfer learning. In this work,
we perform the first in-depth study of the different components of network pre-training
that influence the outcome of point cloud transfer learning (components in solid or-
ange). This includes the source data domain in relation to the downstream target data,
the choice of architecture, the importance of early vs later layers, and the pre-training
design choices. We also show that improvements to the pipeline can be achieved through
regularization of the early layers, by promoting the prediction of geometric properties.

etc.). Such imbalances, coupled with limited training data, can strongly hinder
the applicability of transfer learning solutions [51].

Another key challenge in learning with 3D data is the nature of the data rep-
resentation, which most often comes in the form of unstructured point clouds,
potentially with attributes (e.g . spatial, color). This limits the use of architec-
tures that rely on regular grid structure, and furthermore, poses challenges due
to significant variability in sampling properties (density, acquisition artefacts,
etc.). As a result, while a large number of different architectures have been pro-
posed for 3D deep learning [16], there is a lack of universal solutions applicable
to an arbitrary scenario.

In spite of these challenges, several works have recently emerged aiming to
enable transfer learning for point clouds, especially by focusing on new pre-
training strategies, e.g ., [21, 49, 51]. Among these strategies, several approaches
have shown that self-supervised strategies (e.g . contrastive learning, point cloud
reconstruction) can improve performance on different downstream data (e.g .
shapes, scenes) and on select set of tasks and datasets.

Despite the growing number of these approaches, unfortunately, most existing
methods are only presented and evaluated in very specific settings, and missing
comparison to baselines such as supervised pre-training. Specifically, there are
several questions not addressed in existing literature, including: 1) The utility of
supervised compared to contrastive pre-training, 2) The role of the architecture’s
inherent properties in the success of point cloud transfer learning, and 3) The
impact of regularization strategies on the efficacy of point cloud pre-training.

By performing the first in-depth investigation of the most prominent ap-
proaches, we observe that in the linear probing setting, supervised pre-training
leads to superior performance compared to contrastive learning across almost
all tested architectures, even under relatively significant domain shift. This sug-
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gests that within 3D deep learning, contrastive learning does not always lead
to more “universally useful” features. At the same time, we also observe that in
the full fine-tuning scenario, contrastive pre-training can outperform supervised
learning. By analyzing gradients of pre-trained networks, we show that the early
layers learned with supervised pre-training are not easily adaptable across new
datasets, compared to those learned with contrastive learning. This sheds new
and specific light on the differences between these pre-training strategies in the
context of point cloud analysis. Finally, we demonstrate that a simple regular-
ization scheme applied to the early layers during supervised pre-training can
overcome this limitation and leads to networks that can be fine-tuned efficiently.

To summarize, our main contributions are as follows:
1. We perform the first comparison, within a single consistent evaluation frame-

work, of supervised and contrastive pre-trained models using different point
cloud backbones, assessing their transfer learning performance on common
downstream data and tasks. We separate between the linear probing and
fine-tuning settings and analyze the difference in performance.

2. We observe a clear quantifiable difference in architecture’s layer properties
and find that, remarkably, for 3D architectures, even the first layers have
the ability to discriminate between downstream shape classes. Moreover we
show that supervised pre-training can lead to early layers that do not easily
adapt to new data.

3. To counteract this effect, we introduce a simple layer-wise geometric regu-
larization procedure on supervised pre-training, which leads to performance
improvement and outperforms contrastive learning in several settings. We
finally strongly correlate the improvement to the key signals identified in
layer gradient norm.

Throughout all our analysis, we take special care to make all models and evalu-
ation settings consistent and comparable.

2 Related Work

Transfer learning has facilitated myriad applications in 2D image analysis, such
as segmentation [19, 28], detection [37], style transfer [14], and medical image
analysis [30, 43], among others. This can be largely attributed to the success
of deep neural networks [20, 25] on the large-scale visual recognition dataset
ImageNet [10]. In contrast, research on generic 3D representation learning, driven
by the development of 3D deep learning techniques [8, 33, 47] in recent years, is
still emerging.

Contrastive learning has garnered growing attention recently as a promising
unsupervised representation learning paradigm, which can be conceptualized as
a dictionary look-up process [18]. In this process, a query and a set of keys are
encoded by some network, and a contrastive loss seeks to maximize the similarity
between the query and its single positive key and minimize that between the
query and its all negative keys.
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For contrastive pre-training in 3D, several studies have contributed to the
design of effective learning setups. In particular, Xie et al . introduced Point-
Contrast [51], which utilizes two rigidly transformed views of point clouds and
performs point-level feature contrasting in the two views. They demonstrated
that the pre-trained network brings noticeable improvement in downstream 3D
learning tasks, including object classification [5], part segmentation [52], seman-
tic segmentation [3,9], and object detection [9,40]. Follow-up works investigated
this direction further by constraining point contrasting in local regions [21],
adopting patch-level [12], object-level [36], object and point-level, or even scene-
level [22,56] contrasting, as well as incorporating image data into the 3D feature
contrasting via point-pixel pairs [26, 27]. However, most of the aforementioned
works focus on demonstrating effective representation learning with specific net-
work architectures and data modalities, lacking a systematic study of both when
and why contrastive pre-training enables 3D transfer learning. In response to this
gap, our work delves into the contrastive pre-training strategies across various
backbones and downstream tasks, aiming to reveal the essential aspects for a
successful 3D transfer learning.

To achieve self-supervised pre-training, several studies have examined an
alternative reconstruction-based learning strategy, such as recovering missing
points [46, 54], solving 3D jigsaw tasks [2, 7, 13, 38, 39], or augmenting auto-
encoding with clustering and classification tasks [17]. We refer the interested
reader to [41] for a more comprehensive study of this pre-training paradigm.

Finally, we note that several works have aimed to analyze the factors be-
hind successful transfer learning approaches in 2D image tasks [30,35,57]. These
works point to the special importance of early and mid-level features and to
layer-wise analysis of learned representations. Such analysis has not yet been
performed for 3D data, and our main objective is to fill this gap by performing
a first comprehensive investigation of this topic. As we mention below, our work
highlights the special nature of learning on 3D data, thus shedding light on the
challenges of point cloud transfer learning and possible ways to address them.

3 Datasets and Architectures

3.1 Datasets

Pre-training Dataset. Prior 3D transfer learning approaches [1,21,46,51] have
typically focused on pre-training datasets with limited domain shifts to down-
stream tasks, such as within the synthetic shape setting [5,48] or the real scene
scenario [3,9]. Interestingly, among them, PointContrast [51] argued against pre-
training on synthetic data and stated that supervised pre-training is an upper
bound to information gain from pre-training (see Sec. 3.1 therein). Our exper-
imental findings (Sec. 5), however, suggest that this is not always the case and
help to refine this statement. We thus select ShapeNet [5] to evaluate the utility
of pre-training with synthetic data, and focus on its transfer utility in down-
stream tasks with varying domain shifts, as elaborated below.
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Downstream Datasets and Tasks. To comprehensively investigate different
3D transfer learning scenarios, we consider downstream tasks encompassing both
1) synthetic vs. real data and 2) object vs. scene-level 3D data, which exhibit a
wide range of similarity to ShapeNet (51,300 annotated 3D synthetic shapes in
55 categories), used for pre-training:

– ModelNet40 [48] is a synthetic object-level dataset with 3D shapes resem-
bling those in ShapeNet. It consists of 12,311 shapes and 40 object classes
for the shape classification task, and 20 of these classes can be found in
ShapeNet.

– ScanObjectNN [45] is a real object-level dataset with scanned 3D shapes
featuring noise and background, vastly different from the clean shapes in
ShapeNet. There are 15,000 shapes and 15 object classes for the shape clas-
sification task, and 9 of these classes can be found in ShapeNet.

– S3DIS [3] is a real scene-level dataset consisting of 3D scans of 6 large-scale
indoor areas in office buildings and 13 semantic categories for the semantic
segmentation task.

3.2 Architectures

To provide an extensive study that tackles diverse 3D backbones, we follow a
broadly adopted categorization of 3D deep neural networks [50] and select a
diverse set of five representative architectures as follows:

– Point-based. PointNet [33] is a pioneering 3D backbone that is charac-
terized by its global nature in feature learning, which has been shown to be
beneficial in robust point cloud analysis [42], but, as we show below, can over-
fit to pre-training data. In addition, we consider PointMLP [29], which is a
recent extension of PointNet and its hierarchical version of PointNet++ [34],
and which effectively incorporates local geometry and residual MLPs.

– Graph-based. DGCNN [47] leverages graph convolution operations with
graphs constructed in the feature space, allowing it to capture both local
and global properties. This architecture has been shown to generalize well
between real and synthetic data [45] and has also demonstrated strong trans-
fer learning performance across various pre-training strategies [1, 38,46].

– Sparse convolutions. MinkowskiNet [8] is built upon generalized sparse
convolutions, which operate on voxels and benefit from the sparsity of point
clouds. This architecture is the backbone of PointContrast [51] for 3D trans-
fer learning. Below we compare it to other baselines and examine how its
reliance on density impacts its transfer learning capabilities.

– Transformer. Following the success of transformers in NLP and 2D vision
tasks, 3D transformer backbones have emerged for point cloud processing.
For the first time, we study the transfer learning capabilities of Point Cloud
Transformer (PCT) [15] in downstream tasks.

Our primary objectives in analyzing these architectures are three-fold: firstly,
to carry out a first comprehensive analysis of supervised pre-training perfor-
mance across diverse architectures. Secondly, we explore the relation between
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architectural properties and their performance in 3D transfer learning, consid-
ering both linear probing and fine-tuning scenarios. Thirdly, we aim to identify
shared properties that either hinder or contribute to successful transfer learning.

We adapt the layer configurations of these architectures to ensure consis-
tency across all explored pre-training strategies (Sec. 4). Further details on the
architecture configurations are provided in the supplementary materials.

4 Pre-training Approaches

As mentioned above, in our analysis, we focus on comparing supervised and con-
trastive learning approaches. Although our primary focus is on these pre-training
strategies, we include additional results to alternative methods (including shape-
level contrastive learning and a reconstruction-based approach PointDAE [55])
in the supplementary materials.

Supervised pre-training is a standard approach used in 2D computer
vision tasks to obtain generalizable feature embeddings. Interestingly, its utility
in the context of 3D transfer learning has not been extensively investigated in
previous studies with a few exceptions such as PointContrast [51] as mentioned
above. In training, we use the standard cross-entropy loss as a pretext objective:

Lce = −
∑
i

(yi · log(pi)), (1)

where yi is the ground truth label, and pi is the predicted probability of each
class i for an input shape. We also use data augmentation (translation, scale
and rotation) to avoid the orientation bias introduced by the oriented shapes of
ShapeNet, which are also present in the ModelNet40 downstream data.

Contrastive pre-training is employed for comparisons with supervised pre-
training. We use point-level contrastive learning, based on PointContrast [51].
Specifically, for contrastive pre-training, we first introduce a set of invariances by
applying data augmentation. We start by normalizing a point cloud and perform
random geometric transformations, including translation with magnitude of 0.5,
scaling between 80% and 125%, and rotation of magnitude 45◦. We also simulate
partial data by cropping 50% the point cloud.

More details about transformations can be found in the supplementary ma-
terials. By combining these transformations, we start from an input point cloud
and generate two augmented views Pi and Pj .

For point-level contrastive learning, we contrast between points rather than
entire objects. This models point-level information and also naturally leads to
more data for constructing positive and negative pairs. Positive pairs are ob-
tained by matching points from different views. We use the PointInfoNCE Loss,
introduced in [51] as the pretext objective:

LContrastive = −
∑

(i,j)∈P

log
exp (hi · hj/τ)∑

(·,k)∈P exp (hi · hk/τ)
, (2)
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Fig. 2: Evaluation on (a) ModelNet40 and (b) ScanObjectNN classification tasks of
different pre-trained models, using linear probing (LP – solid bars) and fine-tuning (FT
– dashed bars) settings. Random Init is a randomly initialized model. Transfer learning
performance depends on pre-training scheme, architecture and evaluation protocol.

where hi are point features obtained by attaching a decoder to the encoder fθ,
τ is a temperature parameter, and P is the set of matched points.

More pre-training details are provided in the supplementary materials, where
we also review the same contrastive scheme applied at shape-level, rather than
the point-level.

5 Transferring to Downstream Tasks

5.1 Approach

In order to evaluate the effectiveness of supervised pre-training relative to self-
supervised methods, such as contrastive learning, we employ both linear probing
and fine-tuning strategies of pre-trained models across various architectures,
datasets, and tasks. Linear probing assesses the quality of the representations
learned during pre-training by training a linear classifier on top of the frozen
backbone weights, while fine-tuning involves adjusting all weights of pre-trained
models to new tasks or datasets. Our first goal is to establish a comprehensive
comparison for supervised vs. contrastive pre-training, which has been largely
omitted in existing literature [1, 38, 46], and to identify the scenarios in which
supervised pre-training can be beneficial.

In the full fine-tuning setting, we adhere to standard learning practices for
each architecture. The precise details of the fine-tuning parameters, including
learning rates, batch sizes, and optimization algorithms, are documented in the
supplementary materials.

5.2 Results

Our first set of results are summarized in Figures 2a, 2b and Table 1. Below, we
discuss several key observations.
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Table 1: Evaluation on S3DIS semantic segmentation fine-tuning of pre-trained mod-
els. IoU metric used. Random init is a randomly initialized model.

Architecture Random Init Supervised Contrastive

DGCNN 49.82 49.07 49.99
PointNet 46.21 37.46 43.48
PointMLP 56.59 55.7 58.00
MinkowskiNet 66.89 64.07 60.97
PCT 50.8 50.7 52.34

Transfer learning via linear probing. We first note that supervised pre-
training consistently demonstrates superior performance across the majority of
architectures in the linear probing setting (solid bars in Figures 2a, 2b). This
suggests that supervised pre-training can produce general-purpose, discrimina-
tive features that are useful even under fairly significant domain shift (e.g., syn-
thetic shapes in ShapeNet vs. real scans in ScanObjectNN). Interestingly, linear
probing with supervised pre-training can even surpass results obtained with full
fine-tuning when the domain shift is small, as seen in ModelNet40 (Figure 2a).
We find the utility of supervised pre-training in this scenario noteworthy as it
can refine the common belief that contrastive learning leads to more “universally
useful” features.

Unique architectural properties. While supervised pre-training generally leads
to useful final layer features, the results significantly depend on the choice of
architectures. Specifically, we observe that the hierarchical nature of DGCNN
and PointMLP results in more general features compared to global architectures
such as PointNet. In addition, PCT’s transformer architecture is adept at cap-
turing global dependencies which overfits less with unsupervised (contrastive)
pre-training.

Transfer learning with fine-tuning. We observe a notable shift of behav-
ior when performing full fine-tuning, compared to linear probing, as shown in
Figures 2a, 2b (dashed bars). We remark that for several architectures, such
as DGCNN, MinkowskiNet and PCT, contrastive pre-training leads to better
results compared to supervised learning under full fine-tuning (with a ∼0.1%
accuracy advantage in the on-par scenarios). This suggests that the utility of
pre-trained models highly depends on how those models are used in the down-
stream tasks. Specifically, we note that the utility of final layer features (such as
with linear probing) is not always a good predictor for the performance under
fine-tuning, as shown, e.g., in the case of DGCNN. In Section 6 we analyze this
behavior in depth and observe the critical role of early layers and their ability to
adapt to downstream data. Our analysis also highlights that the types of solu-
tions obtained with supervised and contrastive pre-training are different, making
a distinction between generalizable (features ready to be used in multi-task set-
tings) and adaptable features.
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Fig. 3: t-SNE plots of the first-layer feature activation for different architectures and
pre-training schemes. We use the ModelNet10 evaluation set, which is a subset of
ModelNet40 containing 10 classes, each represented by a different color. Clusters are
formed even in the feature space of first layers, which implies their discriminative
capability. Visualization on additional architectures can be found in the supplementary.

In addition, we note that for most architectures, including MinkowskiNet,
supervised pre-training is not an “upper bound” to information gain from pre-
training, differently from the claim made in [51], and that other pre-training
strategies can lead to better results.
Unique architectural properties. PointNet, with its global feature aggregation
strategy, tends to overfit to the source training dataset, and is thus not able to
extract information that is useful for fine-tuning. MinkowskiNet’s performance
is influenced by variations in point cloud density and scale. Its ability to process
large-scale scenes explains its high semantic segmentation performance (Table 1),
but highlights its dependence on the sampling density for effective transfer learn-
ing.

6 Feature Analysis

The inconsistency in the effectiveness of pre-training approaches across transfer
learning scenarios leads us to explore the intrinsic properties that contribute to
the transferability of model features. Our focus is particularly on the behavior
of early layers, given their established importance in 2D transfer learning [53].
Discriminative capability of early layers. To illustrate the behavior of the
early layers, we plot a t-SNE visualization of the first-layer features of pre-trained
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Table 2: Linear SVM classification of features extracted from the first and last layers
for different architectures and pre-training strategies. Downstream task is classification
on ModelNet40. The 1st layer’s evaluation displays remarkably high accuracy, not that
far from the last layer’s evaluation accuracy.

Architecture Supervised Contrastive

1st Layer Last Layer 1st Layer Last Layer

DGCNN 81.80 90.92 81.15 89.87
PointNet 79.37 88.24 79.29 86.46
PointMLP 82.69 91.32 74.59 89.7
MinkowskiNet 77.51 88.4 70.74 87.72
PCT 78.9 90.55 77.9 89.87

models in Figure 3 on the ModelNet10 dataset. We observe the appearance
of discernible clusters even in these early layers and without any fine-tuning.
This clustering in the feature space suggests that early layers possess a class-
discriminative capacity. This points to the potential of early layers to contribute
significantly to the downstream task, unlike in the 2D domain where early layers
are typically "universal" and do not need to be adapted [31].

To analyze this behavior quantitatively, we used a linear SVM to evaluate
the utility of early layer features against those from output layers. The results,
presented in Table 2 highlight the remarkable classification performance of the
early layers even with a simple linear probing on a new downstream dataset.
This behavior is observed for all studied architectures. As a point of comparison,
we evaluated the first layer of the EfficientNetB0 [44] backbone pre-trained with
ImageNet [10] on the Oxford-IIIT Pet Dataset [32], resulting in 10% classification
accuracy (against 92.28% obtained using the output layers), which showcases the
low discriminative capability of early layers in the 2D domain.

As observed in Section 5, the utility of final layer features is not always a
good predictor for the performance under fine-tuning for 3D transfer learning.
Coupled with the discriminative power of early layers revealed above, this leads
us to investigate how the network weights change and what factors contribute
to successful fine-tuning.
Gradient norm of layer weights. To understand how the models behave
in the fine-tuning setting, we analyze the norm of the gradients of pre-trained
networks with respect to downstream data. Figure 4 shows the layer-wise gradi-
ent norm, computed using a cross-entropy loss on the downstream training data
using frozen pre-trained weights. We observed that for contrastive pre-training,
early layers exhibit a higher gradient norm compared to the last layer. This
finding further substantiates the need, not only for last layers, but also for early
layers to adapt to new data/tasks when dealing with 3D data for successful
transfer learning.

As shown in Figure 4 supervised pre-trained models demonstrate a low gra-
dient norm, with the disparity between supervised and contrastive pre-training
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Fig. 4: Layer-wise gradient norms of pre-trained models on downstream ModelNet40
and ScanObjectNN datasets using DGCNN and PointNet. Supervised pre-training
shows low gradient norms, especially in early layers. Further analysis across archi-
tectures is provided in the supplementary.

being more prominent especially in the early layers. The low gradient norm in
supervised pre-training suggests that the learned features are confined to a local
region of the optimization landscape. This implies that these features are less
prone to adaptation when exposed to new data or tasks during fine-tuning, which
aligns with our previous observations regarding the limited adaptability of su-
pervised features under significant data shifts (Section 5.2). In contrast, features
developed through contrastive pre-training, particularly in the early layers, show
greater potential for adapting to new inputs, thereby enhancing their success in
fine-tuning.

We note that this adaptability is not the same as feature generality, since the
latter typically applies only to the final layers, which, as shown in Section 5 can
be informative (in linear probing) despite not being adaptable (in fine-tuning),
e.g., for supervised pre-training.

7 Layer-wise Geometric Regularization

7.1 Normal Prediction

The qualitative insights of our analysis have revealed various challenges in pre-
training that can hinder effective transfer learning. Specifically, we have observed
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Table 3: Evaluation of geometric regularization of supervised and contrastive pre-
training. Evaluations on Shape classification on ModelNet40 and ScanObjectNN, and
3D scene segmentation on S3DIS with DGCNN architecture. Regularization improves
downstream performance of supervised pre-training in the fine-tuning setting.

Pre-training ModelNet40 ScanObjectNN S3DIS

Supervised 92.78 84.94 49.07
Supervised + regularization 93.34 85.91 49.88

Contrastive 92.78 85.05 49.99
Contrastive + regularization 93.18 85.39 50.44

a correlation between low gradient norms in early layer weights and diminished
fine-tuning performance, indicating a decreased adaptability of the learned fea-
tures when moving from source to downstream tasks.

Given these insights, our objective is to improve the standard pre-training
method while adhering to the pre-text task. We achieve this by implementing a
straightforward regularization strategy designed to enhance the geometric and,
consequently, more universally applicable characteristics of the learned features.

As highlighted in our analysis, effective regularization to pre-training should
promote low-level features, particularly in early layers, that can adapt better to
unseen data. Besides, the regularization needs to leverage properties intrinsic to
input point clouds. We find that predicting geometric properties as an auxiliary
task aligns with these criteria, as it promotes local, category-agnostic attributes
of input point clouds. A practical method to achieve this is to predict point-
wise normal vectors, a task that can be achieved without extra labels by using
estimation methods such as PCA, or by extracting them from raw meshes when
available.

We apply this regularization only to a set of early layers, whereas the output
features of the entire architecture continue to serve the primary pre-text task.
This strategy infuses purely geometric information into early layers with the
goal of making them universally applicable and reducing the dependency to the
pre-text task. Let Hnormal(fl) denote the normal prediction head, fl the point-
wise features of layer l, and n the ground truth normals. The combined training
objective comprises the pre-training loss Lpre-train and the regularization loss
Lregul. We use absolute cosine similarity in Lregul since estimated normals are
not oriented. Our total pre-training loss can be formulated as:

Ltotal = Lpretrain + Lregul (Hnormal(fl),n) . (3)

7.2 Evaluation

The experimental setup for pre-training and fine-tuning remains consistent with
our previous evaluation. We use normals computed through PCA on local neigh-
borhoods comprising 30 points within point clouds of size 2048. We explore
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Fig. 5: Layer-wise gradient norms of supervised pre-trained models with and without
regularization on downstream ModelNet40 and ScanObjectNN datasets using DGCNN.
Regularization increases the gradient norm values, especially in early layers.

the optimal number of layers required for the most effective regularization, and
find that regularizing the features of the first two layers yields the best results.
Through empirical testing to determine the optimal layers for regularization, we
discovered that targeting early layers for regularization yields better outcomes
than applying it to the encoder’s output layer alone. Ablation of layer choice
and other architectures is included in the supplementary.

When comparing between baseline and regularized supervised pre-training,
Table 3 shows notable improvement (1% gain) in all evaluated downstream data
and tasks. This improvement is also correlated to an increase in gradient norm
values as shown in Figure 5. These results highlight the potential of layer-wise
regularization and encourages its use for future supervised pre-training.

Despite the primary goal of addressing the limitations of early layers in su-
pervised pre-training through this regularization technique, we also explore its
application in other pre-text tasks, such as contrastive learning. According to
Table 3, incorporating our regularization into contrastively pre-trained models
can benefit fine-tuning especially under strong domain shift. This suggests that
layer-wise regularization can be a useful general approach for diverse transfer
learning strategies.

8 Summary and Key Takeaway Remarks

Our findings emphasize several critical aspects of pre-training strategies and
their impact on transfer learning performance across different architectures.

The choice of evaluation protocol is critical. Supervised pre-training excels
in linear probing often surpassing contrastive pre-training. This highlights its
potential for universal task ready features. However, this approach falls behind
contrastive learning in fine-tuning, emphasizing the importance of feature adapt-
ability.

The architecture also influences pre-training outcomes. We find that simpler
models that capture global features such as PointNet fail at transferring learned
knowledge when fine-tuned. More local point-based methods such as PointMLP
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benefit greatly from pre-training, especially with supervised pre-training. Trans-
formers benefit more from contrastive learning. Complex architectures that pro-
cess large scale data such as MinkowskiNet, which is based on sparse convolutions
can boost the transfer learning performance under small domain shift (e.g . scenes
to scenes, shapes to shapes) but can be sensitive to changes in data sampling.
Graph-based such as DGCNN with local and global feature extraction, can be
pre-trained and fine-tuned efficiently, although they do not always exhibit the
best overall performance.

Second, we observe that unlike the 2D case, features learned even in the
earliest layers of 3D architectures tend to be class-specific, which can hinder
their utility in transfer learning. This highlights the importance of adaptability
of early layers for point cloud transfer learning.

Finally, regularizing exclusively early layers using geometric signals can im-
prove pre-training in several settings, particularly for supervised pre-training.
This approach addresses the lack of general-purpose low-level 3D features. This
insight also opens the door for future research to focus on early layer-wise regu-
larization rather than applying it uniformly across the entire model.

9 Conclusion, Limitations and Future Work

In this paper, we have conducted the first in-depth qualitative and quantitative
investigation of the key factors when performing point cloud transfer learning
with supervised vs contrastive pre-training and proposed a regularization ap-
proach informed by this analysis. We evaluated several architectures under pre-
training approaches and found that their performance changes with the transfer
learning protocol. We also examined early layer importance through their dis-
criminative capability and fine-tuning adaptability, shedding light on their utility
and importance for point cloud transfer learning. Finally, we correlated this anal-
ysis with a new regularization approach that targets early layers to improve on
downstream performance. Overall, our work establishes a consistent evaluation
framework, presents detailed analysis tools, and proposes an appropriate sim-
ple method for successful transfer learning on point cloud data, which can both
inform and allow to compare future designs.

As our main focus was on the careful analysis of the factors that contribute
to successful transfer learning for point clouds, we did not investigate all pos-
sible combinations of the source datasets, architectures, pre-training strategies,
fine-tuning approaches, and downstream tasks. The resulting combinatorial com-
plexity would incur very significant computational costs, and furthermore might
obscure the possible analytical insights. Nevertheless, in the future, an analysis of
other tasks and pre-training strategies can fit within and complement the frame-
work that we established. Finally, as suggested by our analysis, there is currently
a need for new architectures and pre-training approaches, that are robust under
changes of sampling density and can lead to multi-scale features, which would
generalize and adapt to new downstream data. Exploring the possible solution
space is an exciting direction for future work.
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