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Abstract. In this document we collect some additional details about
the proposed method, an ablation study and results, that due to lack of
space were not included in the main manuscript.

1 Overview

In Section 2 we provide additional illustrations of our shape interpolation method.
In Section 3 we demonstrate the performance of our approach for shape recon-
struction highlighting the utility of our dual network for strong regularization
of recovering high-quality shapes from noisy point clouds, as mentioned in the
main manuscript. In Section 4 we provide an in-depth ablation study of our
network design. In Section 5 we demonstrate the performance of our approach
in the unsupervised case (when the training data is not in correspondence). In
section 6, we develop intuitive connections to Riemannian geometry. Finally, in
Section 7 we provide details of our architecture. Please note that we will release
our full implementation upon potential acceptance. Note also that we provide a
video as part of the supplementary materials.

2 Shape interpolation

2.1 Video and Comparison to Optimization-based Approaches

We provide a video which contains qualitative comparisons of interpolations on
DFAUST and SMAL test sets with our main baselines. Note that our approach
produces visually smoother interpolations with significantly lower distortions
than all baselines across all shape pairs.

In the video we also provide comparisons with optimization-based approaches
that achieve low distortion in Table 1 of the main manuscript. Specifically note
that methods such as GD Coord. 1) require the input shapes to be in 1-1 cor-
respondence 2) rely on expensive optimization at test time (for this reason, we
compute these interpolations at half of the frame-rate), and most importantly
3), as shown the accompanying video, as they are not learning-based, lead to
non-realistic intermediate shapes.
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2.2 Additional Illustrations & Evaluation

In Figure 1 we provide an additional qualitative comparison of the linear inter-
polations in the basic shape (PointNet) AE latent space and the interpolation
using our method. Our method preserves body type better (row 2) and interpo-
lates well between a pair of shapes where the end result differs highly from the
linear interpolation of the coordinates (row 4).

Fig. 1. We compare linear interpolations in PointNet AE latent space and interpolation
using our approach. We visualize the ratio between the linear interpolation of edge
lengths and edge lengths of the computed interpolations, to help highlight problematic
areas.

We further compare our method to other baselines on the SMAL animals
dataset. Table 1 reports the mean-squared variance of several shape features
during interpolation of 100 pairs among 50 shapes obtained by farthest points
sampling on this dataset. Note that our method produces significantly better
quantitative results across all shape features.
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edge length area (10−3) volume (10−2)

PointNet 2.068 3.742 2.754
GD L2 1.906 3.618 2.681
GD EL 1.899 3.585 2.575
3D Coded 9.359 16.922 19.969
Ours 1.538 2.975 1.728

Table 1. MS variance of various shape features obtained from interpolating 100 pairs
among 50 shapes obtained by farthest points sampling on animals dataset (SMAL)

We also test our method on real scans from the DFAUST dataset [3] in
Figure 2. We observe that our method leads to more realistic results with lower
distortion.

Fig. 2. We compare linear interpolations in PointNet AE latent space and interpolation
using our approach on real scans with artefacts.

3 Shape reconstruction

As mentioned in the main manuscript, our approach not only enables better
interpolation, but also results in more accurate reconstructions from noisy in-
put. Here we provide additional qualitative and quantitative evaluation of the
reconstruction performance and comparison to different baseline methods.
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Fig. 3. Reconstruction of meshes from point clouds containing 1000 points, sampled
from the underlying shape.

Recall that for our method, given a noisy unordered point cloud P , we re-
construct the shapes by using the following combination of our trained networks
decp(MEP (MPE(encp(P )))), which differs from the standard auto-encoder ap-
proach decp(encp(P )). Therefore, in this section we show that the additional
regularization provided by our mapping networks MEP ,MPE results in better
shape reconstruction.

To be fair to 3D-CODED, we normalize the total area of the output shapes.
We evaluate this method before (3D-CODED) and after (3D-CODED*) their
additional step of Chamfer Distance minimization. Note that in the case of
3D-CODED* additional optimization at test time is required to recompute the
latent code that best approximates the input. Our method, on the other hand,
performs the reconstruction in one shot.

In all of the experiments the training data is the combination of DFAUST
and SURREAL datasets, and the test data is the DFAUST test shapes, both
with and without noise.

Table 2 shows reconstruction results for several baselines on the 800 DFAUST
test shapes. We report the edge length accuracy (EL), rotation-invariant point
cloud reconstruction accuracy (PC) and per triangle area reconstruction accu-
racy (area). Note that our approach achieves the best overall reconstruction
accuracy, especially on the intrinsic quantities and gives slightly worse recon-
struction extrinsic loss (PC) compared to PointNet AE. We provide qualitative
examples in Figure 3. Note that our method leads to both preservation of the
overall shape structure and significantly less intrinsic distortion compared to all
baselines.
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EL (10−5) PC (10−4) area (10−8)

PointNet AE 3.023 2.120 2.454
Edge Length AE 3.127 - -
Ours L1,2,3 1.641 2.572 1.562
3D-CODED 6.323 5.803 5.485
3D-CODED* 6.284 4.260 5.409
PointNet++ 2.835 3.224 2.835

Table 2. Mean squared reconstruction losses on DFAUST testset. Edge length recon-
struction loss (EL), Point cloud coordinates reconstruction loss (PC) and per triangle
area difference

Table 3 (left) shows reconstruction performance on noisy point clouds. Note
that we test using our model which was trained on clean data. Each noisy point
cloud is obtained by adding Gaussian noise magnitude 5% of the scale of the
mesh to each vertex coordinate. We observe that our method outperforms the
other baselines for all the features. Figure 4 shows reconstructed meshes from
the noisy point clouds. Notice that our method performs better at recovering
the original pose and body type than the different baselines.

Noisy dataset Undersampled dataset

EL (10−5) PC (10−4) area (10−8) EL (10−5) PC (10−4) area (10−8)

PointNet AE 5.663 8.538 5.650 3.847 3.313 2.810
Ours 3.016 7.329 2.812 1.854 3.587 1.685
3D-CODED 8.553 10.463 7.058 6.219 6.898 5.341
PointNet++ 26.837 81.379 18.23 36.223 117.824 27.541

Table 3. Mean squared reconstruction losses on the DFAUST testset with noise (left)
or undersampled (right). We use 5% of the shape bounding box gaussian noise on the
testset. We randomly sample 500 points from the test shapes surfaces. We recall that
the network was trained on 1000 point clouds. We show the edge length reconstruction
loss (EL), the rotation invariant reconstruction loss (PC) and the per triangle area
difference

Table 3 (right) shows reconstruction results on simplified point clouds. We
randomly sample 500 points from the test shapes surfaces. We recall that the
network was trained on 1000 point clouds. We observe that our method is more
robust to under-sampling. In particular, and contrary to other methods, the
intrinsic properties remain competitive with the performance from Table 2.

We also demonstrate the generalization power across different datasets by
showing in Figure 6 examples of reconstructions from SCAPE dataset [1]. While
the simple PointNet AE, is still able to reconstruct the overall position of the
tested human, the output has distortions near the hands (left) and the legs
(right). Our method generates more natural meshes even though the dataset is
completely unknown with an entirely different underlying mesh, different body
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Fig. 4. Reconstructions from point clouds with 5% of the shape scale gaussian noise.

type and poses that are different to those seen at training. Note that we do not
display the color coding as we do not have access to ground truth edge lengths.

4 Ablation study

4.1 Architecture design

Importance of multiple separate networks We first test the utility of hav-
ing separate networks, rather than training a single network with a combined
loss. Specifically, in our study, we have observed that introducing intrinsic in-
formation directly during the training of the shape auto-encoder produces un-
realistic results with significant artefacts. (Fig. 7) We train two point-cloud AE
(auto-encoders) using: a combination of edge (Le) and point coordinate (Lrec)
losses and edge (Le), point coordinate (Lrec) and linearity losses (Llin)

Effect of separate networks training In our experiments, we fix the weights
of the shape AE and edge auto-encoder during the training of the mapping net-
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Fig. 5. We reconstruct a mesh from 500 points sub-sampled randomly from the ground
truth mesh. We use a network pre-trained on inputs of size 1000 points.

works. By doing so, we fix the latent space and generating capabilities of each
network. We believe that if this constraint is not respected, the shape AE and
edge auto-encoder can be indirectly trained for different losses and generate dis-
tortions in the generated shapes. Here, we train the mapping networks, edge
auto-encoder and shape AE at the same time. To make the training easier, we
use a pretrained shape AE and edge auto-encoder. As seen in Table 4, the re-
construction losses are better than before. However, the shape AE can produce
non natural reconstructions during interpolations as shown in Figure 8. We be-
lieve that if the shape AE and edge auto-encoder network were not pretrained,
the resulting reconstructed shapes would present even more distortions since
the pretrained shape AE can already generate decent natural looking shapes on
parts of the dataset.

Auto-encoder vs Variational auto-encoder During our study we compared
the performances of our pipeline using either a PointNet AE or a PointNet VAE.
The type of network did not result in significant differences. By instance the mean
squared variance of the edge length for our architecture trained with a VAE is
0.2301 and 0.2311 when trained with a AE (respectively 0.3760 and 0.3510 for
the simple VAE and AE without using our pipeline).
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Fig. 6. Shape reconstruction from SCAPE. We reconstruct from 1k random points on
the surface.

Fig. 7. Simple AE trained with Le and Lrec (left) or Le, Lrec and Llin (right) produces
artifacts during interpolation.

4.2 Choice of losses

Importance of cycle consistency loss. We train the mapping networks with
direct reconstruction losses instead of cycle consistency losses as described in
section 4.2 with Lmap1, Lmap2, Lmap3 :

Ldirect(P,EP ) = αdrot(decp(MEP (ence(EP )))), P ) (1)

+ β‖el(decp(MEP (ence(EP )))))− EP ‖2

+ ‖dece(MPE(encp(P )))− EP ‖2

In Table 5, we observe that the quality of the map and the quality of the
reconstructions are worse. In Figure 9 we show the cumulative distribution func-
tion of the edge length reconstruction loss on the testset. While most shapes
seem to have reasonable edge reconstruction quality, outlier points make the re-
construction loss explode. Since cycle consistency is not enforced, the network

EL (10−5) PC (10−4) area (10−8)

Ours 1.666 2.611 1.554
Ours sim. train. 1.027 1.464 1.027

Table 4. Mean squared reconstruction losses on the DFAUST testset. We present
our main network and an alternative model where all three components are trained
simultaneously. Edge length reconstruction loss (EL), Point cloud rotation invariant
reconstruction loss (PC) and per triangle area difference (area).
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Fig. 8. Shape distortions are appearing during interpolation if the shape AE, edge
auto-encoder and mapping networks are trained at the same time.

Fig. 9. Cumulative distribution function of edge reconstruction loss on the DFAUST
testset for our network trained without cycle consistency with Ldirect.

can map shapes onto outliers in the shape space that do not correspond to
reasonable natural shapes.

Mapping losses In Table 6 we show an ablation study of the different losses
combinations (described in section 4.2 of the main manuscript) used for training
the mapping networks. The subscripts 1, 2, 3 denote the use of Lmap1, Lmap2,
Lmap3 respectively. We observe that when trained with Lmap2, Lmap3, so only in-
trinsic features, the model produces better intrinsic reconstruction performances
to the expense of the extrinsic reconstruction loss. On the contrary, when trained
with only Lmap1 and Lmap3 the network produces good point coordinate recon-
struction but worse intrinsic reconstruction performances. To combine the ben-
efits of the different losses, we choose to experiment with a model trained with
the 3 losses.
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EL PC area

PointNet AE 3.023 ∗ 10−5 2.120 ∗ 10−4 2.454 ∗ 10−8

Ours 1.641 ∗ 10−5 2.572 ∗ 10−4 1.562 ∗ 10−8

Ours Ldirect 0.1019 0.6289 1.338∗10−2

Table 5. Mean squared reconstruction losses on the DFAUST testset.

Cycle consistency and direct loss regularization Finally, we combine our
cycle consistency loss with direct versions of Lmap1, Lmap2, Lmap3 described in
equations from 1. In table 7, we observe that the models trained with cycle
consistency only and cycle consistency with direct losses produce comparable
results.

EL (10−5) PC (10−4) area (10−8)

Ours L2,3 1.595 14.816 1.490
Ours L1,3 2.301 2.245 2.113
Ours L1,2,3 1.641 2.572 1.562

Table 6. Ablation study on different mapping network losses. The subscripts 1, 2, 3
refer to Lmap1, Lmap2, Lmap3 respectively. We show the mean squared reconstruction
losses on DFAUST testset. Edge length reconstruction loss (EL), Point cloud coordi-
nates reconstruction loss (PC) and per triangle area difference

EL area (10−4) Volume (10−4)

Ours L1,2,3 0.231 1.261 0.342
Ours L1,2,3 with Ldirect 0.342 1.315 0.264

Table 7. We report the mean squared variance of the edge length (EL), per surface
area and total shape volume over the interpolations of 100 shape pairs. We compare
our method, and our method trained with extra direct losses.

Linearity regularization term in edge auto-encoder. We train a version
of our network without the linearity regularization term Llin described in Eq.
(6) of the main manuscript for training the edge auto-encoder. As seen in Table
8, the interpolations in the latent space of the edge auto-encoder are smoother
when the network is trained with the linearity term. In Table 9, we observe that
this term is also related to smoother interpolations of shapes.



Intrinsic Point Cloud Interpolation 11

EL

Edge AE 0.199
Edge AE no lin. reg. 1.777

Table 8. We report the mean
squared variance of the edge length
(EL) over the interpolation in the
edge length AE latent space of 100
shape pairs.

EL area (10−4) volume (10−4)

Ours 0.230 1.220 0.385
Ours no lin. reg. 0.245 1.361 0.430
Table 9. Interpolation losses for our network
where the edge auto-encoder is trained with and
without linearity regularization term. We report
the mean squared variance of the edge length
(EL), per surface area and total shape volume
over the interpolations of 100 shape pairs from
the DFAUST testset.

5 Interpolation in the unsupervised case

Our method can be adapted to an unsupervised context where the 1-1 correspon-
dences are not provided during training. The training process can be described
in 3 steps: We first train a point cloud auto-encoder that takes unordered point
clouds and outputs an ordered point clouds where the order corresponds to
given template T . Then we train the edge auto-encoder by using the output of
the shape auto-encoder as training data. Finally, we train the mapping networks
as described in the main manuscript.

We first initialize the weights by pre-training the shape AE network to output
a chosen template mesh using a variant of the reconstruction loss Lrec described
in Eq. 4 of the main manuscript.

LrecInit(P ) =
1

n

n∑
i=1

‖Ti − P̃i‖2, where P̃ = decp (encp(P )) . (2)

Then we train the model using Chamfer Distance (CD) from Eq. (3) while
encouraging the network to maintain the learned triangulation from step 1 by
using regularization terms similar to those used in [4] described bellow.

CD(P̃ , P ) =
1

n

∑
pi∈P̃

min
pj∈P

‖pi − pj‖22 +
1

n

∑
pj∈P

min
pi∈P̃

‖pj − pi‖22 (3)

Lreg
e (EP̃ ) = ‖EP̃ − ET ‖22,where P̃ = decp(encp(P )) (4)

Lreg
lap (P̃ ) = ‖L ∗ (P̃ − T )‖22,where L is the graph laplacian (5)

We compare our method to unsupervised versions of PointNet AE and 3D
Coded. We report numerical evaluation of the interpolations in Table 10. Note,
that our method leads to improved shape features compared to other methods.
In Figure 10, we observe that our method produces more realistic shapes, in
particular it produces better arms and heads than PointNet AE and better arms
than 3D Coded.



12 M-J. Rakotosaona et al.

EL area (10−4) volume (10−5)

3D Coded (unsupervised) 0.982 4.140 16.054
PointNet AE (unsupervised) 0.597 3.508 5.251
Ours (unsupervised) 0.398 2.752 4.718

Table 10. We report the mean squared variance of the edge length (EL), per surface
area and total shape volume over the interpolations of 100 shape pairs. We highlight,
while all models produce worse results than their supervised equivalents, our method
leads to better interpolations.

6 Geodesics in non flat domains

As mentioned in the main manuscript the two auto-encoders of our architecture
can be interpreted as parametrizing the space of realistic shapes and endowing
this space with metric (distance) structure. Specifically, the shape auto-encoder
aims to recover realistic 3D shapes, and we can compare shapes by computing
the Euclidean distance between their associated latent vectors in the edge-length
auto encoder. Below we explore the relation between linear interpolation and
geodesic paths on curved surfaces.

First we note that a classical result in differential geometry (a consequence of
Gauss’s Theorema Egregium) states that it is impossible to parametrize a curved
surface using a Euclidean coordinate system while mapping geodesic paths to
straight line segments [2] (Chapter 3.1). This directly implies (up to mild gener-
icity conditions such as smoothness) that there does not exist an auto-encoder
network that is both bijective onto some latent space and allows to recover
geodesics through linear interpolation of the latent vectors. Said differently, lin-
ear interpolation in the latent space only allows to recover a flat metric on the
space of shapes, while the intrinsic distortion metric can induce curvature in
shape space [5].

Nevertheless, we observe that in certain cases linear interpolation can be used
to recover geodesic paths even for non-flat domains, if the shape is embedded
into a larger space. Specifically, consider the standard sphere Sn−1 embedded in
Rn and two points p, q ∈ Sn−1 that are not polar opposites. Now, construct a
line segment linearly interpolating p, q in Rn and then project this line segment
onto Sn−1. It is clear that the projected segment will recover the geodesic path
on the sphere, despite using a linear interpolation in Euclidean space.

This simple example illustrates that if a surface is embedded in a larger space
(so that the map from the surface to this space is not a parametrization as it
is not invertible) points in that space can be mapped onto the surface through
projection. While the projection will necessarily introduce distortion, it can nev-
ertheless help recover geodesic paths by providing projected points informed by
the metric in the embedding space. Although simple and very special, this ex-
ample points at the interest in studying the relation between the latent spaces
of auto-encoders and Riemannian metrics, which we leave as exciting direction
for future work.
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Fig. 10. Interpolation between shapes when trained with no 1-1 correspondences at
train time. Our method produces more realistic shapes.

7 Architecture details

We present the detailed architecture of the shape AE, edge length AE and map-
ping networks in Figure 11, 12, 13.

We implemented the presented architectures using Tensorflow and the Adam
optimizer for training. Our complete implementation will be released upon ac-
ceptance.
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