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Abstract. We present a learning-based method for interpolating and
manipulating 3D shapes represented as point clouds, that is explicitly
designed to preserve intrinsic shape properties. Our approach is based
on constructing a dual encoding space that enables shape synthesis and,
at the same time, provides links to the intrinsic shape information,
which is typically not available on point cloud data. Our method works
in a single pass and avoids expensive optimization, employed by ex-
isting techniques. Furthermore, the strong regularization provided by
our dual latent space approach also helps to improve shape recovery in
challenging settings from noisy point clouds across different datasets.
Extensive experiments show that our method results in more realis-
tic and smoother interpolations compared to baselines. Both the code
and our pre-trained network can be found online: https://github.com/
mrakotosaon/intrinsic_interpolations.
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1 Introduction

A core problem in 3D computer vision is to manipulate and analyze shapes
represented as point clouds. Compared to other representations such as triangle
meshes or dense voxel grids, point clouds are distinguished by their generality,
simplicity and flexibility. For these reasons, and especially with the introduction
of PointNet and its variants [38,39,43], point clouds have gained popularity in
machine learning applications, including point-based generative models.

Unfortunately the flexibility of the point cloud representation also comes at
a cost, as it does not encode any topological or intrinsic metric information of
the underlying object. Thus, methods trained on point cloud data can, by their
nature, be insensitive to distortion that might appear on generated shapes. This
problem is particularly prominent in 3D shape interpolation, where a common
approach is to generate intermediate shapes by interpolating the learned latent
vectors. In this case, even if the end-shapes are realistic, the intermediate ones
can have severe distortions that are very difficult to detect and correct using only
point-based information. More generally, several works have observed that point
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Fig. 1. Intrinsic point cloud interpolation between points from an incomplete scan with
holes (left, reconstructed in first blue column) and points from a noisy mesh (right,
reconstructed in last blue column). Our method both reconstructs the shape better
and produces a more natural interpolation than a PointNet-based auto-encoder.

cloud-based generative models can fail to capture the space of natural shapes
[34,28], making it difficult to navigate them while maintaining realism.

In this paper, we introduce a novel architecture aimed specifically at injecting
intrinsic information into a generative point-based network. Our method works
by learning consistent mappings across the latent space obtained by a point cloud
auto-encoder and a feature encoding that captures the intrinsic shape structure.
We show that these two components can be optimized using shapes represented
as triangle meshes during training. The resulting linked latent space combines
the strengths of a generative latent model and of intrinsic surface information.
Finally, we use the learned networks at test time on raw 3D point clouds that are
neither in correspondence with the training shapes, nor contain any connectivity
information.

Our approach is general and not only enables smooth interpolations, while
avoiding expensive iterative optimization, but also, as we show bellow, leads
to more accurate shape reconstruction from noisy point clouds across different
datasets. We demonstrate on a wide range of experiments that our approach can
significantly improve upon recent baselines in terms of the accuracy of shape
recovery as well as realism and smoothness of shape interpolation.

2 Related Work

Shape interpolation, also known as morphing in certain contexts, is a vast and
well-researched area of computer vision and computer graphics (see [33] for a
survey of the early approaches). Below we review only most relevant works and
focus on structure-preserving mesh interpolation, and on recent learning-based
methods that operate on point clouds.

Classical methods for 3D shape interpolation have primarily focused on de-
signing well-founded geometric metrics, and associated optimization methods
that enable smooth structure-preserving interpolations. Early works in this direc-
tion include variants of as-rigid-as-possible interpolation and modeling [2,29,51]
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and various representations of shape deformation that facilitate specific trans-
formation types, e.g. [47,27,35,16,46] among many others.

A somewhat more principled framework is provided by the notion of shape
spaces [30,37] in which interpolation can be phrased as computing a shortest path
(geodesic). In the case of surface meshes, this approach was studied in detail in
[31] and then extended in numerous follow-up works, including [49,17,26,24,25]
among others. These approaches enjoy a rich theoretical foundation, but are
typically restricted to shapes having a fixed connectivity and can lead to difficult
optimization problems at test time.

We also note a recent set of methods based on the formalism of optimal
transport [6,44,10] which have also been used for shape interpolation. These
approaches treat the input shapes as probability measures that are interpolated
via efficient optimization techniques.

Somewhat more closely related to ours are data-driven and feature-based
interpolation methods. These include interpolation based on hand-crafted fea-
tures [19,28] or on exploring various local shape spaces obtained by analyzing
a shape collection [20,52,40]. Such techniques work well if the input shapes are
sufficiently similar, but require triangle meshes and dense point-wise correspon-
dences, or a single template that is fitted to all input data to build a statistical
model, e.g. [23,7,8].

Most closely related to ours are recent generative models that operate directly
on unorganized point clouds [1,34,36]. These methods are often inspired by the
seminal work of PointNet and its variants [38,39] and are typically based on
autoencoder architectures that allow shape exploration by manipulation in the
latent space. Despite significant progress in this area, however, the structure of
learned latent spaces is typically not easy to control or analyze. For example, it
is well-known (see e.g. [28]) that commonly-used linear interpolation in latent
space can give rise to unrealistic shapes that are difficult to detect and rectify.

Common approaches to address these issues include extensive data augmen-
tation [22], adversarial losses that penalize unrealistic instances [34,5] or explicit
modeling of the metric in the latent space. The latter can be done by computing
the Jacobian of the decoder from the latent to the embedding space [13,42] or
using feature-based metrics at test time [32,18]. Unfortunately, as we show be-
low, such techniques either lead to difficult optimization problems at test time,
or can still result in significant shape distortion.

Contribution In this paper, we propose to address the challenges mentioned
above by building a dual latent space that combines a learned point-based auto-
encoder with another parallel encoding that captures the intrinsic shape metric
given by the lengths of edges of triangle meshes, required only during training.
This second encoding exploits the insights of mesh-based interpolation tech-
niques [31,25,41] that highlight the importance of interpolating the intrinsic
surface information rather than the point coordinates. We combine these two
encodings by constructing dense networks that “translate” between the two la-
tent spaces, and enable smooth and accurate interpolation without relying on
correspondences or solving expensive optimization problems at test time.
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3 Motivation & Background

Our main goal is to design a method capable of efficiently and accurately in-
terpolating shapes represented as point clouds. This problem is challenging for
several key reasons. First, most existing theoretically well-founded axiomatic 3D
shape interpolation methods [31,26,24,25] assume the input shapes to be rep-
resented as triangle meshes with fixed connectivity in 1-1 correspondence, and
furthermore typically require extensive optimization at test time. On the other
hand, learning-based approaches typically embed the shapes in a compact latent
space, and interpolate them by linearly interpolating the corresponding latent
vectors [1,50]. Although this approach is efficient, the metric in the latent space
is typically not well-understood and therefore linear interpolation in this space
may result in unrealistic and heavily distorted shapes. Classical methods such
as Variational Auto-Encoders (VAEs) help introduce regularity into the latent
space, and enable more accurate generative models, but offer little control on the
distances and thus interpolation in the latent space. To address this challenge,
several recent approaches have proposed ways to endow the latent space with
a metric and help recover geodesic distances [32,13,18]. However, these meth-
ods again typically involve expensive computations such as the Jacobian of the
decoder network, and optimization at test time.

Within this context, our main goal is to combine the formalism and shape
metrics proposed by geometric methods [31,25] with the accuracy and flexibility
of data-driven techniques while maintaining efficiency and scalability.

Shape Interpolation Energy We first recall the intrinsic shape interpolation
energy introduced in [31]. Suppose we are given a pair of shapesM,N represented
as triangle meshes with fixed connectivity, so that M = (VM , E), and N =
(VN , E), where V, E represent the coordinates of the points and the fixed set
of edges respectively. An interpolating sequence is defined by a one parameter
family St = (Vt, E), such that V0 = VM , and V1 = VN . Denoting by vi(t) the
trajectory of vertex i in St, the basic time-continuous intrinsic interpolation
energy of St is defined as:

Econt(St) =

∫ 1

t=0

∑
(i,j)∈E

(
∂‖vi(t)− vj(t)‖2

∂t

)2

dt. (1)

This energy measures the integral of the change of all the edge lengths in the
interpolation sequence. It can be discretized in time by sampling the interval
[0 . . . 1] with samples tk, where k = 1 . . . nk. When the time samples are uniform,
resulting in a discrete set of shapes {Sk}, this leads to the discrete energy:

Edisc({Sk}) =

nk∑
k=2

∑
ij∈E

(‖vi(tk)− vj(tk)‖2 − ‖vi(tk−1)− vj(tk−1)‖2)
2
. (2)

This discrete energy simply measures the sum of the squared differences between
lengths of edges across consecutive shapes in the sequence. The authors of [31]
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argue that computing a shape sequence between M and N that minimizes such
a distortion energy results in an accurate interpolation of the two shapes (more
precisely in [31] use squared edge lengths and employ an additional weak regular-
ization, which we omit for simplicity and as we have found it to be unnecessary
in our case). Note that both the continuous and discrete versions of the energy
promote as-isometric-as-possible shape interpolations. Specifically they aim to
minimize the intrinsic distortion by promoting intermediate meshes whose edge
lengths interpolate as well as possible the edge lengths of M,N , without requir-
ing the two input shapes to be isometric themselves.

Despite the simplicity and elegance of the intrinsic interpolation energy, min-
imizing it directly is challenging as it leads to large non-convex optimization
problems over vertex coordinates. Indeed, additional regularization is typically
required to achieve realistic interpolation across large motions [31,25]. Perhaps
even more importantly, the assumption of input shapes having a fixed triangle
mesh and being in 1-1 correspondence is very restrictive in practice.

Latent space optimization In the context of data-driven techniques the stan-
dard way to manipulate shapes is through operations in the latent space. This
is done by first training an auto-encoder (AE) architecture and then using the
learned latent space for shape manipulation. Specifically, an encoder is trained to
associate a latent vector lS to each 3D shape S in a training set via lS = enc(S),
while the decoder is trained so that dec(lS) ≈ S. Given two shapes M,N , the
interpolation is performed by first computing their latent vectors, lM , lN and
then constructing an interpolating sequence via St = dec(tlN + (1− t)lM ) [1,50].

Unfortunately, basic linear interpolation in the latent space can produce sig-
nificant artefacts in the resulting reconstructed shapes (see, e.g., Figure 2). More
broadly, the metric (distance) structure of the latent space is not easy to con-
trol, as the encoder-decoder architecture is typically trained only to be able to
reconstruct the shapes, and does not capture any information about distances
in the latent space.

3.1 Metric interpolation in a learned space

To overcome this limitation, perhaps the simplest approach is to use a learned
latent space, but to compute an interpolating sequence while minimizing the
intrinsic distortion energy of the decoded shapes explicitly. Namely, after training
an auto-encoder, given the source and target shapes with latent vectors lM , lN ,
one can construct a set of samples lk in the latent space and at test time optimize:

min
l1,l2,...,lk

Edisc({Sk}), s.t. Si = dec(li), i = 1 . . . k,

S0 = dec(lM ), Sk+1 = dec(lN ).
(3)

This operation employs the fact that a decoder can be trained to always produce
shapes that are in 1-1 correspondence, thus making it possible to compare the
decoded shapes {Sk}.
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To solve this problem, the samples lk can be initialized through linear inter-
polation of lM , lN , and Eq. (3) can optimized via gradient descent using the pre-
trained decoder network. This is more efficient than directly optimizing Eq. (2)
through the coordinates of the vertices, as the latent space typically has a much
smaller dimensionality. Intuitively, this procedure adjusts the latent vectors to
correct the distortion induced by using the Euclidean metric in the latent space.
In addition, the use of a pre-trained decoder acts as the regularization (required
by purely geometric methods) to produce realistic shapes.

Despite leading to significant improvement compared to the basic linear inter-
polation in the latent space, this approach has two key limitations 1) it requires
potentially expensive optimization at test time, and 2) its accuracy is limited
by the initial linear interpolation in the latent space. The latter issue is partic-
ularly prominent since the latent space is not related to the intrinsic distortion
energy and therefore linear interpolation can be a suboptimal initialization for
the problem in Eq. (3).

Intuition Our main intuition is that in the absence of any constraints, the in-
trinsic distortion energy Edisc is minimized by the family of shapes that linearly
interpolates the edge lengths between the source and the target. This, however
is not guaranteed to lead to actual 3D shapes, both because integrability condi-
tions must hold to ensure that edges can be assembled into a consistent mesh [48]
and because interpolated shapes might not be realistic from the point of view of
the training data. Therefore, we build two auto-encoder networks that capture,
respectively, point coordinates and lengths of edges of underlying meshes (avail-
able at training) so that Euclidean distances in the latent space depend linearly
on distances between lists of ordered edges. We then build two “translation” or
mapping networks across the two latent spaces. Finally, after training these net-
works, at test time, we linearly interpolate in the edge length latent space, but
recover each shape by mapping onto the shape space and reconstructing using
the shape decoder. As we show below, this results in smooth and realistic shape
interpolation without relying on correspondences or optimization at test time.

4 Method

4.1 Overview

Figure 3 gives an overview of our network. As mentioned above, it consists of
three main building blocks and training steps: a shape auto-encoder, an auto-
encoder of the edge lengths of the underlying mesh, and two “translation” net-
works that enable communication between the two latent spaces. These networks
are used at test time to endow given point clouds with intrinsic information which
is then used, in particular, for more accurate point cloud interpolation. We as-
sume that the training data is given in the form of triangle meshes with fixed
connectivity, while the input at test time consists of unorganized point clouds.
In the following section we describe our architecture and the associated losses,
while the implementation and experimental details are given in Section 5.
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Fig. 2. Linear interpolation in the latent
space of the shape AE produces artefacts,
as the interpolation is close to linear inter-
polation of the coordinates.

Fig. 3. Our overall architecture. We
build two auto-encoders that capture
the shape and edge length structure re-
spectively, as well as two mapping net-
works MPE and MEP that “translate”
across the two latent spaces.

4.2 Architecture

Shape auto-encoder. Our first building block (Fig. 3 top) consists of a shape
auto-encoder, based on the PointNet architecture [38]. We denote the encoder
and decoder networks as encp and decp respectively (we provide the exact im-
plementation details and compare to a VAE in the supplementary). To train this
network we use the basic L2 reconstruction loss, since we assume that the input
shapes are in 1-1 correspondence. This leads to the following training loss:

Lrec(P ) =
1

n

n∑
i=1

‖Pi − P̃i‖2, where P̃ = decp (encp(P )) . (4)

Here P is a training shape, the summation is done over all points in the point
cloud, and Pi represents the 3D coordinates of point i.

Importantly, our point-based encoder encp inherits the permutation invari-
ance of PointNet [38], which is crucial in real applications. Specifically, this allows
us to encode arbitrary point clouds at test time even if they have significantly
different sampling and are not in correspondence with the training data.

Edge length auto-encoder As observed in previous works and as we confirm
below, the shape AE can capture the structure of individual shapes, but often
fails to reflect the overall structure of shape space, which is particularly evident
during shape interpolation. We address this by constructing a separate auto-
encoder whose latent space captures the intrinsic shape information, and by
learning mappings across the two latent spaces.

For this, we first build an auto-encoder (ence, dece) with dense layers that
aims to reconstruct a list of edge lengths. Note that since we assume 1-1 corre-
spondence at training time, the list of lengths of edges can be given in canonical
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(e.g., lexicographic with respect to vertex ids) order. We therefore build an auto-
encoder that encodes this list into a compact vector and decodes it back from the
latent representation. Our training loss for this part consists of two components:
an L2 error on the predicted edge lengths and an additional term that promotes
linearity in the learned latent space:

Le(EA) = ‖dece(ence(EA))− EA‖2 (5)

Llin(EA, EB) =

∥∥∥∥dece(ence(EA)) + dece(ence(EB))

2

−dece

(
ence(EA) + ence(EB)

2

)∥∥∥∥2 . (6)

Here EA, EB are the lists of edge lengths corresponding to the triangle meshes
A,B given during training. Our motivation for the loss Llin is to explicitly en-
courage linear structure, which promotes smoothness of interpolated edge lengths
and thus, as we show below, minimizes intrinsic distortion.

Mapping networks Given two pretrained auto-encoders described above, we
train two dense mapping networks that translate elements between the two latent
spaces. We use MPE and MEP to denote the networks that translate an element
from the shape (resp. edge) latent space to the edge (resp. shape) latent space.

To define the losses we use to train these two networks, for a training mesh
A we let lA = encp(A) denote the latent vector associated with A by the shape
encoder. Recall that when training the shape AE we compare A with decp(lA).
To train our mapping networks MPE and MEP we instead compare A with
decp (MEP (MPE(lA)). In other words, rather than decoding directly from lA we
first map it to the edge length latent space (via MPE). We then map the result
back to the shape latent space (via MEP ) and finally decode the 3D shape. We
denote the shape reconstructed this way by Ã = decp(MEP (MPE(encp(A)))).

We compare Ã to the original shape A, which leads to the following loss:

Lmap1(A) = drot(Ã, A). (7)

Here drot is a rotation invariant shape distance comparing the original and re-
constructed shape. We use it since the list of edge lengths can only encode a
shape up to rigid motion [21]. Specifically, we first compute the optimal rigid
transformation between the input shape A and the predicted point cloud Ã us-
ing Kabsh algorithm [4]. We then compute the mean square error between the
coordinates after alignment. As shown in [28] this loss is differentiable using the
derivative of the Singular Value Decomposition.

Our second loss compares the edge lengths of the reconstructed shape Ã to
the edge lengths of A. For this we use the standard L2 norm squared:

Lmap2(A) = ‖EA − EÃ‖
2
2, (8)

where EA denotes the list of edge lengths of shape A.
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Our last loss considers a similar difference but starting in the edge length
latent space, rather than the shape one. Specifically, given a shape A with the
list of edge lengths EA, we first encode it to the edge length latent space via
ence(EA). We then translate the resulting latent vector to the shape latent space
(via MEP ) and back to the edge length latent space (via MPE), and finally
decode the result using dece. This leads to the following loss:

Lmap3(A) = ‖dece(MPE(MEP (ence(EA))))− EA‖22, (9)

Our overall loss is then simply a weighted sum of three terms αLmap1 +
βLmap2 + γLmap3 for shapes given at training where γ is non-zero. We evaluate
other possible losses in the supplementary materials.

Network Training To summarize, we train our overall network architecture
described in Figure 3 in three separate steps. First we train the shape-based
auto-encoder using the loss given in Eq. (4). Then we train the edge length
auto-encoder using the sum of the losses in Eq. (5) and Eq. (6). Finally we train
the dense networks MEP and MPE using the sum of the three losses in Eq. (7),
Eq. (8), Eq. (9). We also experimented with training the different components
jointly but have observed that the problem is both more difficult and the relative
properties of the computed latent spaces become less pronounced when trained
together, leading to less realistic reconstructions (Sec. 4.1 of the supplementary).

4.3 Navigating the restricted latent space

After training the networks as described above, we use them at test time for
shape reconstruction and interpolation. We stress that at test time we do not
use the edge encoder and decoder networks ence, dece, as they require canonical
edge ordering. Instead we use the permutation invariant shape auto-encoder and
the mapping networks MPE ,MEP to better preserve intrinsic shape properties.

Interpolation Given two possibly noisy unorganized point clouds PA and PB
we first compute their associated edge-based latent codes:mA = MPE(encp(PA))
and mB = MPE(encp(PB)). Here we use the permutation-invariance of our en-
coder encp allowing to encode unordered point sets. We then linearly interpolate
between mA and mB but use the shape decoder decp for reconstruction. Thus,
we compute a family of intermediate point clouds as follows:

Pα = decp (MEP ((1− α)mA + αmB)) , α ∈ [0 . . . 1] (10)

In other words, we interpolate the latent codes in the edge-based latent space,
but perform the reconstruction via the shape decoder decp. This allows us to
make sure that the reconstructed shapes are both realistic and their intrinsic
metric is interpolated smoothly. Note that unlike the purely geometric methods,
such as [31], our approach does not rely on the given mesh structure at test time.
Instead, we employ the learned edge-based latent space as a proxy for recovering
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the intrinsic shape structure, which as we show below, is sufficient to obtain
accurate and smooth interpolations.

Since the edge length auto-encoder is fully rotation invariant, it is necessary
to align the output shapes at test time. We can do so easily by using the same
optimal rigid transformation as used to compute Eq. (9).

Reconstruction Given a point cloud PA we also use our trained architecture
for shape recovery via S = decp(MEP (MPE(encp(PA)))). Here we use the fact
that the edge-length latent space helps to regularize the shape space avoiding
noisy or distorted output.

4.4 Interpretation

Our approach can be interpreted both in terms of capturing the structure of
individual 3D shapes and of the entire shape space. For the former, our shape
and edge-length auto-encoders help to capture, respectively, the extrinsic and
intrinsic information of the underlying surface. Jointly, they enable more ac-
curate shape recovery and comparison. In this context, our approach is related
to methods for reconstructing a shape from its intrinsic metric. This problem,
while possible theoretically [21], is computationally challenging and error prone
in practice [48,11,15,14]. By using a learned latent space our reconstruction is
both efficient and leads to realistic results.

In terms of the shape space, the latent vectors of the shape auto-encoder pro-
vide a way to parametrize the space of realistic 3D shapes while the edge-length
latent space helps to impose a distance structure on that space. This is simi-
lar to the standard approach in Riemannian geometry [12] where the manifold
structure of a space and the metric on it are encoded separately. We highlight
this interpretation in the supplementary, and leave its complete exploration as
exciting future work.

4.5 Unsupervised training

Our method can be adapted to the unsupervised context where the 1-1 corre-
spondences are not provided during training. Contrary to our main pipeline, we
cannot compute the edge lengths directly from the training data. However, we
can encourage the model to produce a consistent mesh as described in [22]. We
initialize the weights by pre-training on a selected mesh using the reconstruc-
tion loss Lrec described in (4) and train the model using Chamfer distance and
regularization losses to keep the triangulation consistent. Finally, we can train
the edge-length auto-encoder by using the output of the shape auto-encoder as
training data. We describe this process in detail in the supplementary materials.

5 Results

Datasets We train our networks on two different datasets: humans and animals.
For humans, we use the dataset proposed in [28]. The dataset contains 17440
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shapes subsampled to 1k points from DFAUST [9] and SURREAL [45]. The test
set contains 10 sub-collections (character + action sequence, each consisting of
80 shapes) that are isolated from the training set of DFAUST and 2000 shapes
from SURREAL dataset. During training the area of each shape is normalized to
a common value. For animals we sample 12000 shapes from the SMAL dataset
[53]. We sample an equal number of shapes from the 5 categories (big cats,
horses, cows, hippos, dogs) to build a training set of 10000 shapes and a testset
of 2000 shapes. We simplify the shapes from SMAL to 2002 points per mesh.
The animal dataset provides challenging shape pairs that are far from being
isometric, some of which we highlight in the supplementary video.

5.1 Shape interpolation

We evaluate our method on our core application of shape interpolation and
compare against six different recent baselines. Namely, we compare to three
data-driven methods, by performing linear interpolations in the latent spaces
of auto-encoders using PointNet [38] and PointNet++ [39] architectures as well
as the pre-trained auto-encoder proposed in the state-of-the-art non-rigid shape
matching method 3D-CODED [22].

We also compare to three optimization-based geometric methods, by building
on the ideas from [31,42,13]. We produce our first two baselines by initializing a
linear path in latent space of our shape auto-encoder and optimizing each sample
via 1000 steps of gradient descent. We use GD EL to denote the method that
optimizes Edisc as described in Eq.(3), and G2 L2 to denote the method that
minimizes the L2 variance over the interpolated shape coordinates as described
in [42]. Finally we compare to a method simplified from [31] (GD Coord.), in
which we first initialize a path by linearly interpolating the coordinates of source
and target shapes. Similarly to GD EL, we minimize the discrete interpolation
energy Edisc using gradient descent on the point coordinates directly.

Remark that GD Coord., GD L2 and GD EL methods all rely on gradi-
ent descent to compute each interpolation at test time. In other words, these
approaches all require to solve a highly non-trivial optimization problem during
interpolation, leading to additional computational cost and parameters (learning
rate, number of iterations). In contrast, our method outputs a smooth interpo-
lation in a single pass.

Direct inference Optimization based

Ours PointNet 3D-Coded PointNet++ GD L2 GD EL GD Coord.

EL 0.231 0.3510 0.6130 0.2993 0.3631 0.2985 0.0345
Area (10−4) 1.261 1.773 3.137 1.586 1.838 1.714 0.248
Volume (10−4) 0.342 1.613 1.243 335.2 1.483 1.703 0.152

Table 1. We report the mean squared variance of the edge length (EL), per surface
area and total shape volume over the interpolations of 100 shape pairs. Our method
achieves lowest variance across all intrinsic features among direct inference methods.
Note that GD coord. leads to interpolation with low distortion, as it optimizes the
coordinates directly but produces unrealistic shapes (see Figure 4).
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To evaluate the interpolations we sample 50 shapes from the DFAUST testset
using farthest point sampling. We then test on 100 random pairs from those 50
shapes. We use our pipeline trained with α = 30, β = 1200 and γ = 800 in the
mapping networks loss described in Section 4.2. We provide an ablation study
on the choice of losses in supplementary materials.

Table 1 shows quantitative comparisons. Given an interpolation path (Sn)
obtained by each method, we compute the mean squared variance of various
shape features f on the path. We consider three features: lengths of edges, area
of faces and overall volume enclosed by the shape (computed from the mesh
embedding). For each of these, we compute the sum of the squared differences
across all instances in the interpolating sequence:

V arf (Sn) =
1

n− 1

n∑
i=2

‖f(Si)− f(Si−1)‖2. (11)

Intuitively, we expect a good interpolation method to result in smooth inter-
polations which would have low variance across all of the intrinsic shape proper-
ties. When comparing with PointNet++ as it inputs normalized bounding boxes,
we normalize the total area of each output. The large volume variance of this
baseline is primarily due to bad reconstruction quality of the input shapes.

As shown in Table 1 our method produces the best results among the direct
data-driven methods and the best results over all the baselines except from GD
Coord. This latter method is not data-driven and optimizes edge lengths directly
on the coordinates without any constraints. As such, it produces shapes with low
distortion but that are not realistic (see Figure 4). Furthermore, similarly to [31]
it requires the input shapes to be represented as meshes in 1-1 correspondence.

In all qualitative figures, we visualize the minimum ratio between the lin-
ear interpolation of the ground truth edge lengths and the edge lengths of the
produced shapes. We color-code this ratio to highlight areas of highest intrin-
sic distortion (shown in red). In Figure 4 we illustrate the interpolated shapes
between the input source and target, shown in grey. We observe that PointNet
AE and PointNet++ methods tend to produce results that are closer to linear
interpolation of the coordinates. As highlighted above, we notice that while GD
Coord. has low variance in the interpolated intrinsic features, the reconstructed
shapes do not look natural. Overall, our method presents less distortions and
more smooth interpolations compared to all baselines. We present more compar-
isons and evaluations in a video and in the supplementary.

We further evaluate our model on the SMAL dataset. To build the interpola-
tion pairs from the test set, we sample 10 shapes per category by farthest points
sampling. We then choose 100 random pairs from that dataset. In Figure 5 we
show results of interpolating between two horses. We observe that linear inter-
polation in the shape latent space leads to shape distortions such as shorter legs
(middle) and wrong shape size estimation (top left). The Shape AE (resp. Ours)
produces a edge variance of 2.068 (resp. 1.548). Similarly to above, our method
shows improvement at interpolating intrinsic information. We provide detailed
numerical evaluation of interpolations on SMAL in supplementary materials.
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Fig. 4. Qualitative comparison of interpolation on DFAUST testset. We display the
edge ratio between the linear interpolation of the target and source edges and the
produced interpolation.

Interpolation in the unsupervised case. The unsupervised Shape AE (resp.
Ours) produces a edge variance of 0.599 (resp. 0.394). While we observe better
results in the supervised setting, our method nevertheless produces quantitative
and qualitative improvement over the linear interpolation in latent space. We
provide further numerical and qualitative results in the supplementary materials.

5.2 Shape reconstruction

We also evaluate the accuracy of our model for shape reconstruction on the
DFAUST/SURREAL testset. In Table 2, we compare the reconstruction accu-
racy to the base models. We measure intrinsic features: edge length and per
triangle area reconstruction loss, and extrinsic L2 coordinates reconstruction
loss. Our method reconstructs the input shape intrinsic features better that the
PointNet AE while producing comparable extrinsic reconstruction loss.

We further evaluate the generalization capacity of our network by evaluating
on the SCAPE [3] dataset. For testing we sample 1000 random points from the
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Fig. 5. Interpolation of two horses from the SMAL dataset.

EL PC area
(10−5) (10−4) (10−8)

PointNet AE 3.023 2.120 2.454
Edge Length AE 3.127 - -
Ours 1.641 2.572 1.562

Table 2. Mean squared reconstruction
losses on the humans testset. Edge length
reconstruction loss (EL), Point cloud co-
ordinates reconstruction loss (PC) and
per triangle area difference.

CD volume area
(10−3) (10−5)

Shape AE 4.703 30.851 0.1382
Ours 4.135 9.47 0.047

Table 3. Reconstruction accuracy on the
SCAPE dataset. Chamfer distance (CD),
mean squared total volume difference and
total area difference.

surface of each mesh. Table 3 shows an improvement in the reconstruction for
our method. We observe even higher relative performance when comparing the
total volume and total area of the reconstructed shapes which give a sense of the
perceived quality of the shapes. Shape distortions are often related to shrunk
or disproportional body parts. We show qualitative results on reconstruction in
the supplementary materials. Overall, our method produces more precise and
natural reconstructions. Finally, as shown in Figure 1, our method is robust to
high levels of noise (left), holes, and missing parts (right). We provide further
reconstruction examples in the supplementary materials.

6 Conclusion, Limitations & Future Work

We presented a method for interpolating unorganized point clouds. Key to our
approach is a dual latent space that both captures the extrinsic and intrinsic
shape information, given by edge lengths provided during training. We demon-
strate that our approach leads to significant improvement over existing methods,
both in terms of interpolation smoothness and quality of the generated results.
In the future, we plan to extend our method to incorporate other features such
as semantic classes or segmentations. It would also be interesting to explore our
dual encoding space in other applications on images or graphs.
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