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In this document, we collect all the results and discus-
sions, which, due to the page limit, could not find space in
the main manuscript.

Specifically, we provide a discussion about functional
maps in the partial setting in Section A. Next, we present our
unsupervised formulation and show one additional result in
this setting in Section B. We provide implementations details
for our experiments in Section C. In Section D, additional in-
formation about the used datasets and some example shapes
are visualized. Section E provides additional insights and
quantitative evaluation of our Cross-Attention Refinement
module. Additional quantitative and qualitative evaluations
of our method are provided in Section F and G respectively.
Finally, an ablation study on the component of our architec-
ture is provided in Section H.

A. Discussion about functional maps in the par-
tial setting

In this section, we provide some analysis of the partial
non-rigid matching problem, especially within the functional
maps framework. Our main goal is to establish the necessary
conditions under which the feature extraction network on the
two shapes must be “aware” of the other shape. Specifically,
we show that this communication across feature extraction
networks on the two shapes must be necessary for partial-to-
partial matching, within the functional maps representation.

A.1. Partial to full matching

We start with the simpler case of partial to full matching.
Namely, suppose a partial shape X is being matched to
the full shape Y . In this case, there exists a point-to-point
map T : X → Y so that for each point on X there is a
corresponding point on Y . In the discrete setting, this map
can be written as a binary matrix ΠXY where ΠXY(i, j) = 1
if and only if T (i) = j. Note that ΠXY has exactly one
value 1 per row. The corresponding functional map CYX
maps functions on Y to functions on X and, in the reduced
Laplacian basis can be written as: CYX = Φ+

XΠXYΦY .
Now suppose that a network F∗ is a perfect feature ex-

tractor in the following sense: given a shape, X , it associates
to each point on X a unique non-zero descriptor vector that
is moreover invariant under different possible transforma-

tions (including shape deformations, or part removal) of the
shape X . We let F∗(X ) = DX where the ith row of DX
corresponds to the descriptor of vertex i on X .

If F∗ is a perfect feature extractor and ΠXY is the under-
lying ground truth map between X and Y , then by definition,
we have DX = ΠXYDY . Remark that in order for this
equation to hold, the feature extractor simply needs to be
invariant under the shape partiality and does not need to be
dependent on the map ΠXY . For example, DX could store,
for every point, the index of the corresponding point on some
template shape.

If DX = ΠXYDY then in the reduced basis we have
Φ+
XDX = Φ+

XΠXYDY . Moreover, using the standard as-
sumption in the functional maps framework, that the descrip-
tor matrix DY lies within the span of the reduced Laplacian
basis on Y we have DY = ΦYΦ+

YDY . This implies:

Φ+
XDX = Φ+

XΠXYDY

= Φ+
XΠXYΦYΦ+

YDY

= CYXDY ,

where by definition CYX = Φ+
XΠXYΦY and DY =

Φ+
YDY .

We therefore conclude that if DX = Φ+
XDX , then un-

der the above assumptions (i.e., having a perfect feature
extractor and descriptors within the span of the basis), we
have ‖CYXDY − DX ‖ = 0, and if the linear system is
invertible the functional map CYX can be recovered via
CYX = arg minX ‖XDY −DX ‖2F .

It then follows “communication” between feature extrac-
tion on the two shapes is not strictly required to recover
the underlying functional map in the case of partial to full
matching.
Note: Observe that the argument above did not make as-
sumptions on the rank of the functional map matrix or on the
number of basis functions. Consider some part that exists on
the full shape Y and does not exist on the partial shape X .
If f is the descriptor that associates a feature value only to
points on that part, the equation CYXΦ+

YfY = Φ+
X fX can

hold even if fX = 0 but fY 6= 0. I.e., Ca = b and b = 0
does not imply that a = 0.



A.2. Full-to-partial and partial-to-partial matching

Consider now full-to-partial or partial-to-partial matching.
Here, unlike the case above, given a source shape X and a
target shape Y , there exists a mapping T : S ⊂ X → Y only
for a subset of points S ⊂ X .

We can still represent the mapping T as a binary matrix
ΠXY , s.t., ΠXY(i, j) = 1 if and only if T (i) = j. However,
in this case, the matrix ΠXY will have rows that are entirely
zero, for points outside of the subset S that don’t have a map
onto Y .

Observe that in this case, ifDX , DY are features obtained
by a perfect feature extractor F∗ as defined above, then we
cannot have DX = ΠXYDY . This is because the matrix
ΠXY will map features of points outside of S onto the zero
vector. I.e., for any point i /∈ S the corresponding row of
the matrix ΠXYDY will be exactly zero, whereas DX by
assumption is not a zero vector.

While the “standard” equation DX = ΠXYDY does not
hold, a modified version can easily be seen to hold. Let PX
by the binary matrix that is identity on S and zeros elsewhere.
I.e., P (i, i) = 1 if and only if i ∈ S. Then, again under the
assumptions of a perfect feature extractor we have:

PXDX = ΠXYDY .

If the descriptors are within the span of the Laplacian
basis, this implies:

Φ+
XPXDX = Φ+

XΠXYΦ+
YΦ+
YDY

= CYXDY .

I.e., we have ‖CYXDY −DX ‖ = 0. However, crucially,
in this case DX = Φ+

XPXDX , where PX is the projection
matrix onto the set S. We stress that the set S depends on
the underlying map (i.e., the target shape) and therefore,
unless the feature extractor is aware of the target shape being
mapped to, it cannot extract features for which ‖CYXDY −
DX ‖ = 0.

We, therefore, conclude that “communication” between
feature extraction on the two shapes is required to recover
the underlying functional map from the feature equation in
the case of full to partial or partial to partial matching.
Note: Consider some part that exists on the shape X and
does not exist on shape Y . If f is the descriptor that asso-
ciates a feature value only to points on that part, the equa-
tion CYXΦ+

YfY = Φ+
X fX where fY = 0 can hold only if

fX = 0. But this is only possible if the feature extractor
on X has access to the information about features on Y for
otherwise it would extract non-zero features fX for that part.
This confirms the above interpretation that in this case “com-
munication” between feature extraction on the two shapes is
necessary.

B. Unsupervised partial shape matching
In our main document, we presented losses to train the

network in the supervised setting. Here, we present a loss
that can be used in the unsupervised setting for partial-to-full
matching, and that works by promoting structural proper-
ties of the functional map. It should be noted that in the
unsupervised case, we predict the functional map in both
directions, i.e partial-to-full and full-to-partial, by applying
our Regularized FMap module in the following manner (we
follow the same notation as the main text, the full shape will
be denoted by shape 1, and the partial shape will be denoted
shape 2):

C12 = arg min
C

‖CA−B‖2F + λ
∑
ij

C2
ijM

12
ij

C21 = arg min
C

‖CB−A‖2F + λ
∑
ij

C2
ijM

21
ij

Our unsupervised loss is a modified version of the one
presented in [13] and can be written as follows:

Lunsup = α1Lbij + α2Lorth,

where :

• The bijectivity loss is formulated as follows: Lbij =
‖C12C21 − 1r‖2F . 1r is the identity matrix where only
the first r elements in the diagonal are equal to 1, r is
the estimated slope of the functional map under partial-
ity, which we estimate using the approach proposed in
[11]. Namely: r = max{i|Λ2

i < maxk
j=1 Λ1

j}. This
loss promotes the bijectivity of the map, in the sense
that transporting functions defined on the partial shape,
using point-wise map, to the full shape and transporting
them back should yield the same functions.

• The semi-orthogonality loss is formulated as: Lorth =
‖C12C

>
12 − 1r‖2F + ‖C>21C21 − 1r‖2F . This loss pro-

motes the orthogonality of the functional map and thus
local area preservation of the corresponding point-to-
point map [8]. Note that we are requiring only semi-
orthogonality since the area preservation property holds
only in the direction from partial to full shape.

In addition to these losses, and following existing liter-
ature [13, 14], it could be natural to use the commutativ-
ity with Laplacian loss: Lcomm = ‖C12∆1 −∆2C12‖2F +
‖C21∆2−∆1C21‖2F . This is not necessary in our case, how-
ever, as we already optimize for it during the construction of
the functional map, in the Regularized FMap Module (see
Section 3.4 of the main text).

To evaluate our unsupervised approach, we train our net-
work using only the unsupervised loss with α1 = α2 = 1,
by disabling our Cross Attention Refinement and Overlap
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Figure 1: We demonstrate an unsupervised approach to our
method on the PFARM dataset. Our method is competitive
with our supervised learning-based baseline and significantly
outperforms the axiomatic benchmarks.

Predictor modules, on the train set of the CUTS dataset, and
evaluate it on the PFARM dataset. Results are reported in
Figure 1. It can be seen that our unsupervised approach
produces competitive results, as it outperforms all axiomatic
methods, and gets on par with the supervised learning-based
baseline [2]. Remarkably, our unsupervised approach gener-
alizes across datasets and does not overfit to the underlying
mesh structure, unlike the commonly used SHOT descriptors
used in the axiomatic methods.

C. Implementation and Network Training
In Section 4 of the main text, we tested our network

against multiple baselines, and in multiple settings.
In our experiments, we used two feature extractors:

Diffusion-Net [15] and SparseConvNet [3]. For the for-
mer, we used the original implementation released by the
authors 1, our network is composed of four diffusion blocks
of width 128, and outputs a final pointwise feature of size
128. For the latter, we used the implementation provided in
the Minkowski Engine 2, our network has a Unet architecture
[12] of 4 blocks and outputs pointwise features of size 128.

Our Regularized FMap module in Section 3.4 of the main
text aims to minimize the following energy:

Copt = arg min
C

‖CA−B‖2F + λ
∑
ij

C2
ijMij

We use the resolvent mask with the resolvent Laplacian
parameter γ = 0.5, also, in all our experiments, we take

1https://github.com/nmwsharp/diffusion-net
2https://github.com/NVIDIA/MinkowskiEngine

λ = 100.
Our main supervised loss is composed of three terms and

is written as follows: L = λ1Lspec + λ2Lnce + λ3Lover.
For all our experiments, we took: λ1 = λ2 = λ3 = 1, and
the scaling parameter in Lnce is τ = 0.07.

Network training: In all our experiments, we train the
networks using an ADAM optimizer [4] with an initial learn-
ing rate of 0.001. During training, we augment the training
data on the fly by randomly rotating the input shapes around
the up axis, applying random scaling in the range [0.9, 1.1],
and jitter the position of each point by Gaussian noise with
zero mean and 0.01 standard deviation, in order to make
the network more robust, rotation invariant, and to avoid
overfitting.

In order to recover the point-to-point map from the func-
tional map, we used the standard nearest-neighbor method
from the original functional map paper [8], and keep only
the matches on the overlap region if necessary, using our
predicted overlap mask.

As mentioned in the main manuscript, our code and data
can be found online: https://github.com/pvnieo/
DPFM to ensure full reproducibility of the results, and stimu-
late further research in this direction.

Computational specifications All our experiments are ex-
ecuted using Pytorch [9], on a 64-bit machine, equipped with
an Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz and an
RTX 2080 Ti Graphics Card.

D. Datasets and Visualizations
In Section 4.1 of the main document, we presented several

datasets for training and evaluation. Namely, we used the
SHREC16 Partial Correspondence Benchmark [1], which is
a partial-to-full dataset. This dataset contains two subsets,
CUTS and HOLES. CUTS is composed of 120 pairs for
training, and 200 for testing, meanwhile, HOLES is com-
posed of 80 pairs for training, and 200 for testing. Each
partial shape is mapped to a null full shape which is a shape
of the same class in a neutral pose. Some examples of this
dataset are shown in Figure 2 (top).

We also introduced a new dataset: CP2P which is aimed
at evaluating partial-to-partial shape correspondence. In this
dataset, partial shapes from the same class (either human or
animals) are paired together. The overlap between the two
shapes can range from 10% to 90%. Some examples of this
dataset are shown in Figure 3.

Finally, we introduced PFARM, an extension of the
recently introduced FARM partial dataset [5], which is a
partial-to-full dataset, designed to test the robustness of par-
tial shape matching methods to shapes that undergo near
isometric deformations with a significant change of connec-
tivity and sampling (see Figure 2 - bottom). The partiality



Figure 2: (top) Shapes from the SHREC16 Partiality Bench-
mark. Most of the shapes in this dataset have identical or
very similar connectivity for both cuts and holes. (bottom)
Shapes from the PFARM dataset that have highly diverse
connectivity and sampling and provide a more challenging
setting for dense partial shape correspondence.

Figure 3: Example pairs from the CP2P dataset with the
non-corresponding regions indicated in grey (i.e., only the
regions in white are expected to correspond). The dataset
has some challenging pairs with a considerable amount of
partiality similar to the second pair above.

is imposed by segmenting and deleting random patches of
shapes from the SHREC19 dataset [7], and is composed of
27 different partial human shapes, that are all mapped to a
full SMLP model [6] of 6k vertices, resulting in 27 evalu-
ation pairs. The resolution of each partial shape is around
10k vertices. It should be noted that because the size of this
dataset is small, it was only used for evaluation, and never
for training.

E. Analysis of the Cross-Attention Refinement
module

As was shown in Section 3 of the main manuscript, and
corroborated by our theoretical analysis provided in Section
A of the supplementary, the Cross Attention Refinement
module enables the communication between features on the

two shapes and thus allows the features on the overlap region
to synchronize, while down-weighing the features outside
the overlap. We evaluated this effect quantitatively on the
entire CP2P dataset. Specifically, the percentage of points in
the overlap region, with features whose L2 norm is below a
small threshold is 20% before the refinement and 23% after.
Meanwhile, for the points on the non-overlapping region,
this percentage changes from 34% before refinement to
83% after refinement. This demonstrates that the refinement
module effectively processes the features to account for the
points on the other shape, inside and outside the overlapping
region, and consequently the overlap region prediction, as we
observed a significant effect of the cross attention refinement
on the quality of the overlap region prediction. Specifically,
in the CP2P dataset, we measured the prediction accuracy to
be 58% without the refinement module and 81% with our
cross attention refinement processing.

F. Quantitative evaluation

Part To Full Shape Matching In Section 4.2 of the main
manuscript, we show a comparison of our method with the
baselines, on both CUTS and HOLES of the SHREC16
benchmark. In what follows, we provide some additional
quantitative evaluation in Figures 4, 5a and 5b.

Specifically, we first show the average geodesic error as
a function of the amount of partiality. We see in Figure 4
that our method has the lowest error curves compared to
all baselines, obtaining state-of-the-art results. In addition,
we see that our method stays significantly stable even in
strong instances of partiality, especially for CUTS, which
demonstrates the robustness of our method. We additionally
evaluate the accuracy of the predicted region, by plotting
the intersection-over-union with the ground-truth region, for
SHREC16, and compare it with the region predicted by PFM
[11]. Figure 5a shows that our method gives significantly
superior results than PFM, especially for cuts, where we
obtain a very high IOU for a large number of pairs.

Part To Part Shape Matching An evaluation of the cor-
respondence accuracy of our method on the CP2P dataset
was made in Section 4.4 of the main manuscript. Here we
provide a quantitative evaluation of the region prediction
ability. Since only our method, and the adaptation of PFM
(recall that in order to predict the region using PFM on the
CP2P dataset, we run it in both directions, which gives a
prediction of the region on both the source and target shapes)
are capable of predicting the overlap region, we only evalu-
ated these two methods. Figure 5b shows the evolution of
the percentage of pairs having a certain IOU. It can be seen
that our method outperforms PFM and obtains better results.
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Figure 4: Performance of different methods in relation to the degree of partiality on the test set of SHREC’16 Partial Benchmark,
both on cuts (left) and holes (right). Our method outperforms all the competing methods and achieves state-of-the-art results.
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Figure 5: Evaluation of region detection accuracy of our method vs PFM, on CUTS, HOLES and CP2P, by visualizing the
evolution of the percentage of pairs having a certain IOU. It can be seen that our method achieves superior results, especially
for CUTS and CP2P.

G. Qualitative evaluation

In this section, we show some qualitative results of our
method, as well as a comparison with the baselines.

Figure 6 visualizes the quality of the mapping using tex-
ture transfer on both CUTS and HOLES. It can be seen
that our method achieves high-quality correspondences com-
pared to the baselines.

Figure 7 shows the quality of the obtained map, and the
region detected on CP2P, using texture transfer. It can be
seen that our method is the only one that can accurately
detect the overlap region, and provides accurate maps.

H. Ablation study
In order to validate the different components of our ap-

proach, we consider two ablation studies, the first one con-
cerns the choice of the mask used in the Regularized FMap
module, and the second concerns the different terms in our
proposed loss.

Mask Ablation In Section 3.4 of the main document, we
proposed to use the resolvent mask for our Regularized
FMap module. To confirm this choice, we train our net-
work on the train set of CUTS and HOLES, and evaluate
it on the test set of the same dataset. We conducted three
experiments of this kind, the only variable is the used mask.
We tested using the Laplacian Mask [2], the slanted mask



Source Ground Truth PFM FSP DIR GeomFMaps Ours

Figure 6: Qualitative comparison of our method and all the baselines, on the SHREC 16 Partial dataset, both on CUTS (top
and middle) and HOLES (bottom). Correspondences are visualized by transferring a texture through the map. Our method
yields visually plausible solutions on both cuts and holes, in both humans and animals.

Source Ground Truth PFM FSP GeomFMaps Ours

Figure 7: Qualitative comparison of our method and all the baselines, on the CP2P dataset. Correspondences are visualized by
transferring a texture through the map. Our method is the only one yielding visually plausible solutions and provides accurate
region detection. The non-common regions are colored in green.



Mask Laplacian Mask Slanted Mask Our Mask
CUTS 3.5 4.27 3.2
HOLES 14.6 14.5 13.1

Table 1: The effects of using different masks in the Regu-
larized FMap module. The reported mean geodesic errors
are multiplied by 100 for clarity. The resolvent mask yields
the best results, both in the case of cuts and holes, with
significant improvement, especially in the latter case.

[11] and the resolvent mask [10]. Results are reported in
Table 1. It can be seen that the resolvent mask helps to
regularize the functional maps better, which leads to better
results, especially in the challenging case of the HOLES
dataset.

To better illustrate this result, we visualize in Figure 8 an
example of a ground-truth functional map and the shape of
the different masks. It can be seen that the Laplacian mask
has a very large slanted region (in black), which provides
poor regularization for the functional map. On the other
hand, the slanted mask [11] is based on a heuristic, and from
the shape of the mask, it can be seen that the latter promotes
functional maps with a very narrow diagonal, which is not
always good in the high frequencies. Finally, it can be seen
that the resolvent mask [10] follows the ground truth diago-
nal correctly, and the width of the latter changes as we move
from low to high frequencies.

Also, it should be noted that, unlike the Laplacian and the
resolvent mask, the slanted mask requires to know exactly
the direction of the slanted diagonal, information which is
not available in the case of partial-to-partial, which limits
the usability of this mask.

Loss Ablation Our proposed loss is composed of three
terms. To validate the utility of each of them, we trained the
sparse variant of our architecture and evaluated it on the test
set of HOLES. We did four experiments, by training our
network with all the losses, without the spectral loss Lspec,
without the NCE loss Lnce, and finally without accuracy
loss for the overlap module Lover. It can be seen from Table
2 that omitting any term of our loss leads to a significant
drop in the performance. Observe also the importance of
the spectral loss, as, without it, the network cannot converge,
and no learning can be done. This suggests that the overlap
prediction task benefits from the functional map correspon-
dence learning. We verified this effect quantitatively on the
CP2P dataset, where we observe that the accuracy of the
predicted overlap region is 50% without any functional map
correspondence learning and 81% with it. Finally, we ob-
serve that the spectral loss alone is not enough for obtaining
a good result, as it fails to provide important high-frequency
information, especially in the challenging cases of holes,

Ablation Mean Error on HOLES
no spectral loss 28.3

no NCE loss 13.8
no overlap loss 10.0

Total loss 9.3

Table 2: Ablation study of the different loss terms. The mean
geodesic error is multiplied by 100 for clarity. Omitting any
term of our proposed loss hurts the performance.

hence the need for the NCE loss.
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